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Abstract Using Reddy’s third-order shear deformation plate theory (TSDT) with von Kdrman geometrical
nonlinearity, this work presents an analytical solution on the buckling and postbuckling behaviors of eccen-
trically stiffened functionally graded material (ES-FGM) plates on elastic foundations subjected to in-plane
compressive loads or thermal loads or thermo-mechanical loads. Plates are reinforced by closely spaced FGM
stiffeners. The material properties of the plate and stiffeners are assumed to be temperature-dependent. The-
oretical formulations based on the smeared stiffeners technique and TSDT are derived. The expressions of
thermal parameters are found in the analytical form. Applying Galerkin method, the expressions to determine
the critical buckling load and analyze the postbuckling mechanical and thermal load—deflection curves are
obtained. Two iterative algorithms are presented for the case of temperature-dependent plate material proper-
ties. The effects of thermal element, FGM stiffeners, geometrical and material parameters, initial imperfection,
and foundation are considered and discussed. By comparing the present results with those in references, the
accuracy of the present study is affirmed.

1 Introduction

Functionally graded materials (FGMs) composed of ceramic and metal constituents have received much inter-
est in recent years. Due to essential characteristics such as high stiffness and excellent temperature resistance
capacity, functionally graded materials have found wide applications in many industries, especially in temper-
ature shielding structures and nuclear plants, where significant changes in material properties are unavoidable.
As aresult, many researches focused on the buckling and postbuckling analyses of plates made of FGM.
Ferreira et al. [1] employed the higher-order shear deformation theory to analyze the buckling of isotropic
and laminated plates by radial basis functions. Shariat and Eslami [2] presented the buckling analysis of rec-
tangular thick functionally graded plates under mechanical and thermal loads based on the TSDT. Khabbaz
et al. [3] studied the nonlinear analysis of FGM plates under pressure loads using the first-order shear defor-
mation theory (FSDT) and TSDT. Duc and Tung [4] investigated the buckling and postbuckling behaviors
of un-stiffened functionally graded plates resting on elastic foundations and subjected to thermo-mechanical
loads, in which the material properties are assumed to be temperature-independent. Javaheri and Eslami [5, 6]
investigated the stability of FGM plates subjected to mechanical and thermal loads based on the classical plate
theory (CPT) with temperature-independent material properties (T-ID). The same authors [7] considered the
thermal buckling of FGM plates based on the higher-order theory. The results of three- dimensional thermo-
mechanical buckling analysis for a composite FGM plate by using the finite element method were investigated
by Na and Kim [8]. Lanhe [9] presented an analytical solution for the thermal buckling of an FGM rectangular
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simply supported plate subjected to a uniform temperature rise and gradient through the thickness of the plate.
The buckling of heated FGM annular plates on an elastic foundation was studied analytically by Kiani and
Eslami [10].

For un-stiffened shells, many researches are focused on the buckling and postbuckling analysis of shells.
Hui and Du [11] studied initial postbuckling behaviors of imperfect antisymmetric crossply cylindrical shells
under torsion. Using singular perturbation technique, Zhang and Han [12] investigated the buckling and
postbuckling of imperfect cylindrical shells subjected to torsion based on the Karman—Donnell-type nonlinear
differential equations. Jiang et al. [13] presented mechanical, electrical and thermal properties of aligned
carbon nanotube/polyimide. Based on the higher-order shear deformation shell theory, Bagherizadeh et al. [14]
investigated the mechanical buckling of FGM un-stiffened cylindrical shells surrounded by a Pasternak elastic
foundation. Many investigations on the stability and vibration analysis of FGM un-stiffened cylindrical shells
surrounded by elastic foundations also have been published by Sofiyev et al. [15-17]. Sofiyev [18-20] studied
the nonlinear buckling of an FGM truncated conical shell with and without elastic foundations under an axial
load using classical shell theory (CST).

With temperature-dependent material properties (T-D), there are some significant results. Shen [21,22]
presented the thermal postbuckling behavior of an FGM plate and cylindrical shell. Shen [23] also investigated
anonlinear bending analysis of a simply supported FGM plate resting on an elastic foundation based on a higher-
order shear deformation plate theory. Lal et al. [24] examined the second-order statistics of the postbuckling
response of an FGM plate subjected to mechanical and thermal loading. Akbari et al. [25] performed a thermal
buckling analysis of temperature-dependent FGM conical shells based on an iterative generalized differential
quadrature method. Mirzavand and Eslami [26] presented a closed-form solution for thermal buckling of
piezoelectric FGM rectangular plates based on TSDT.

Nowadays, the stiffened plate and shell structures are widely used in modern industry fields, such as
ships, bridges, tank roofs and vehicles. Because the economical design of loaded structure can be obtained
by using stiffeners instead of increasing the thickness of the structure, many researches have been published
regarding structures reinforced by a system of stiffeners made of homogeneous material or functionally graded
material. The analysis of the linear buckling of stiffened plates by the orthotropic plate method may be found
in Timoshenko and Gere [27]. The elastic buckling and postbuckling behaviors of eccentrically stiffened plates
were evaluated analytically by Steen [28], using the simplified direct energy approach together with Marguerre’s
plate theory. The influence of stiffener location on the stability of stiffened plates under compression and in-
plane bending was studied by Bedair [29]. Bich et al. [30] investigated the nonlinear static buckling behavior
of eccentrically stiffened imperfect FGM plates and shallow shells and the nonlinear dynamic response of
eccentrically stiffened imperfect FGM panels on the basis of the classical plate and shell theory. Stiffeners in
these researches [27-30] were assumed to be homogenous.

Following the direction of FGM stiffeners, Najafizadeh et al. [31] with the stability equation given in terms
of displacement investigated the mechanical buckling behavior of FGM stiffened cylindrical shells reinforced
by rings and stringers using CST. Dung and Nam [32] presented a nonlinear dynamic analysis of eccentrically
stiffened functionally graded thin circular cylindrical shells surrounded by an elastic medium based on CST.
Dung et al. [33] investigated the stability of functionally graded truncated conical shells surrounded by an
elastic medium. Dung and Hoa [34] presented the nonlinear buckling and postbuckling of functionally graded
stiffened thin circular cylindrical shells under torsional load surrounded by elastic foundations in thermal
environments according to CST.

In this paper, the nonlinear analyses on the buckling and postbuckling behavior of imperfect FGM plates
reinforced by FGM stiffeners with temperature-dependent material properties based on Reddy’s third-order
shear deformation theory [35-37] are investigated. The explicit expressions to determine the critical buckling
load and analyze the postbuckling mechanical and thermal load—deflection curves are obtained. Two iterative
algorithms are presented for the case of temperature-dependent plate material properties. The effects of ther-
mal element, FGM stiffeners, geometrical and material parameters, initial imperfections and foundations are
considered and discussed.

2 Eccentrically stiffened FGM plates (ES-FGM plates)

Consider a functionally graded rectangular plate of length a, width b and uniform thickness 2. Assume that the
plate is reinforced by closely spaced the longitudinal and transversal stiffeners. The thickness and width of the
longitudinal stiffeners are 41, by. The thickness and width of the transversal stiffeners are 42, b,. The distance
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Fig. 1 Configuration of an eccentrically stiffened FGM plate

between two longitudinal stiffeners and two transversal stiffeners is d, d3, respectively. The coordinate system
(x, y, z) is chosen as shown in Fig. 1. The plane Oxy coincides with the un-deformed middle surface of the
plate, and the axis Oz is in the thickness direction (—h/2 < z < h/2).

The functionally graded materials of plates and stiffeners are assumed to be varied continuously in the
thickness direction and made from a mixture of ceramic and metal.

Assume that the modulus of elasticity, coefficient of thermal expansion, thermal conductivity coefficient
of plates and stiffeners depend on temperature with the rule of mixtures, [36,38];

For the plate:
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where k > 0, k2 > 0, k3 > 0 are the volume fraction indices; the subscripts “m” and “c” refer to the metal and
ceramic constituents, respectively; E,(z), ap(2), kp(z) are Young’s modulus, thermal expansion coefficient,
and thermal conductivity coefficient of the plate; Esy(z), a5 (2), ksx (z) and Esy(2), o5y (2), ksy(2) are Young’s
modulus, thermal expansion coefficient, and thermal conductivity coefficient of x-direction and y-direction
stiffeners, respectively.

Poisson’s ratio is assumed to be a constant.

Assume that the plate is resting on an elastic foundation with the plate—foundation interaction determined
by the Pasternak model as

qr = Kiw — K2Aw @)

where K| (N/m?) is the Winkler foundation modulus, and K» (N/m) is the shear layer stiffness of the Pasternak
model.

3 Basic relations and governing equations

Denote u, v, w the displacement components of the mid-plane of the plate in x, y, z direction, respectively,
and ¢y, ¢, are the rotations of a transverse normal about the y- and x-axis, respectively.

According to Reddy’s third-order shear deformation plate theory (TSDT) taking into account the von
Karman geometrical nonlinearity and an initial imperfection, the strain components across the plate thickness
at a distance z from the mid-plane are of the form [35-37]

3)
Ex &9 iy kx 0 )
0 1 3|, ® Vaz Vaz } o [ 1
8y — Sy + Z Ky + Z Ky ) = 0 + < (2) (5)
0 1 3) Vyz yyz Kyz
Vxy Yay Kyy Kxy
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o = b | [ |=2 Pyy + Wy o | T3 M ey, )
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(6.2)

inwhich &, &, are normal strains; yyy is the in-plane shear strain; yy, yy; are the transverse shear deformations,
and w* = w*(x, y) is a known function representing the initial imperfection of the plate.

From Eq. (6.1), the geometric compatibility equation of the imperfect plate is represented in the form
[37-39]

0 0 0 2
gx,yy + 8y,xx - ny,xy = w,xy — W xxWyy — wwxijkyy + Zw,x}’w,*xy - wjkxxw’Y)" (7)

The stress—strain relations taking into account the temperature dependence of the plate material properties are
defined by Hooke’s law as [9,38,40]
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GEZ% (sx +vey) — (A +v)ap (2, T) AT,
Ep(z,T)

O’)lr) = f_—vz (8y +U8x) —(1+v)oap(z,T) AT],

o Ep@T) b Ep@T) p _ Ep(z,T)

Vyz» (8.1)

T 20T T 2y



Buckling and postbuckling nonlinear analysis of imperfect FGM plates 2381

and for stiffeners taking into account the temperature [34,40]

0, =Esxx (2, T)ey — Eqx (2, T)asx (2, T) AT,

X

U; =Eg (2, T)ey — Egy (2, T) asy (2, T) AT,

0y, = Gsx (2, T) ¥xzs G;Z = Gsy (2, T) ¥y (3.2)

Xz

»

where AT = T — Ty denotes the change in the environment temperature from the initial free stress state; the
superscripts “p” and “s” denote plate and stiffener, respectively; Gy, Gy are shear moduli of x-direction and
y-direction stiffeners, respectively.

The in-plane normal force intensities N;, the bending moment intensities M; and higher-order bending
moment intensities P;, transverse shearing force intensities Q; and the higher-order shear force intensities R;
of functionally graded plates reinforced by FGM stiffeners are defined as

h/2 h/2 h/2
N; = / O'l-de + N, M; = / ZUide +M;, P= / Z3UithZ + P
—h/2 —h/2 —h/2
n)2 h/2
Q; = / Jl.pzdz + 0}, R = / Zzalgdz + R}, i=ux,y,
—h/2 —h/2
h/2 h/2 h/2
Ny = / afydz, M,y = / zofydz, Py = / z3afydz 9)
—h/2 —h/2 —h/2

where N7, M?, P’, O}, R} withi = x, y are respective quantities for stiffeners.
Substituting Egs. (5-6.1) and (8) in Eq. (9) and using the Lekhnitskii smeared stiffener technique, we
obtain expressions like as [31,34,39]

Ny = ape? + 01282 + a3y x + a1ady y + arsw xx + arew yy + arrP) + asdy’,
Ny = az e + azzsg + a3y x + a2dy y + arsw xx + a26W yy + a27P) + arsdy’
Nyy = 031)/)% + az@x,y + azzdy,x + azaw xy, (10)
M = bi1e) + bioe) + biade.x + biady.y + bisw xx + bigw,yy + bi7¢h + bigs*
My = by + b2282 + b23gx x + boady y + bosw xx + basw yy + brs + bass’
M,y = b31%9y + b32¢x,y + b33y x + b3sgw iy, (1)
Py = ci1e) 4 ciae) + c13der + Clady.y + Ciswoxx + Cl6w,yy + 170} + 188y

0 0 p S
Py =218, + €228 + 3¢y x + C24¢y,y + C25W xx + C26W yy + C27¢4 + C28¢4y»

Pyy = C3IV)?y + C32¢x,y + C33¢y,x + €34W xy, (12)
Ox =duéx +diw x,
Qy = d21¢y + d22w,y, (13.1)
Ry = ey +ennwy,
Ry = e21¢y + enw y, (13.2)
where @7, @3, o, #3%, ¢5%, ¢5*, #7705, ¢ are given by
)
of = / VB, (2. TYap (2. T) ATdz, j =1,2.4,
—h)2
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J
h/2 h/2

¢} = / 7V VEg 2, T)asy (2, T) ATdz, ¢7 = / dVEgy (2, T asy (2, T) ATdz, j =1,2,4, (14)
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and the coefficients a;;, b;j, c;j, di; are defined in “Appendix L.”

The relations (10-13.1) are the most significant contribution found in this work in which the thermal
elements in plates and stiffeners are considered.

The strain—force resultant relations reversely are obtained from Eq. (10),

0 * * * * * * x P * 48X % 4 Sy
ey = aj Ny +appNy + aj30xx +apdy,y +ajsw e +ajew,yy +ap¢) +agdy +ajed;,
0 * * * * * * x P * 48X % 4 Sy
g€y = ay Ny +ayn Ny + ay3¢xx + ardy y + aysw xx + arsw,yy + ax¢) + asgdy” +axd;,
0 * * * *
Yoy = @31 Nay +a3¢xy + a330y .0 + azw iy (15)
where
. a2 N an L Q12023 —a4a13 . (12024 — a20a14 L« Q12025 — axais
aj)=—, ap=—"", a3=—""—""">, a=—"-"—"", Qdj5= — 77—,
aess aes6 aes6 ae6 aee
« _ 12426 —andie « _ a12a27 — anaiy « _ amai « _ anax
Qe=—"—" " aun=———""", Qg=—"——", dg=—"7,
ags ase age age
« a2 « _ dail « _ ai3a2] —axaii « _ d14a21 — axsaig « _ 15421 — axsaii
dyr=—"—, ap=—, dpy=—"——" y=——""""", hy=——"""",
ags ae6 ags ae6 ags
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bhe=—"__ > ayny=—_—"", 4x3y= » Gy = — >
ae6 ae6 ae6 aes
1 az asz az4
aj=—, ap=———, a3 =———, ay=——. (16)
asy asy asy asi

Substituting Eq. (15) into Eq. (11, 12) yields
M, = bT1Nx + szNy + bT3¢x,x + bT4¢yJ + bTSw,xx + bTéw,yy + bT7¢f
+bisd + bigd) + b7l + bisgs’,
My = b3 Ny + b3 Ny + b33¢e x + by, y + Disw ax + bigw yy + b3767
+ b3ght" + biody + brrdh + baggy
Myy = b3 Nxy + 30,y + b33y + 34w xy,
Py = ¢y Nx 4 ¢loNy + cf3u x + clady,y + 5w + clgw,yy + ¢7¢)
+ gt + Cody + 17l + cisdy”,
Py = ¢35 Nx + 55Ny + e + Cydby.y + s + gy + C376)
+ st + Chody + 1) + casdy’
Pry = 3 Nay + Cpey + C33@y.x + oWy (7
where
bi; = bnajy, +biay, bl = briaj, + binady, biy = briajy + biaas; + b3,
bi, = bnajy + bioay, + bia, bis = brajs + biays + bis, bl = briaje + biase + bis,
bi; = bnaj; + binaz;, big = buiajg + biaayg, big = biiajy + biaag,
b3, = baajy + bxas,, biy, = briaj, +bnad,, b3y = baaiy + bnasy + b,
b3, = baaly + baoas, + bas, bis = baals + banass + brs, byg = bajaje + brnase + b,
by; = baiajy + bxay;,  byg = baajg + bynay, by = baajy + bnay,
b;:l = b31a;<l, b;ﬁz = b31a§‘2 + b3y, b;} = b31a§‘3 + b33, b;:4 = b31a§‘4 + b3y,
¢y = cuayy +cnay, ¢ =cndp +cnay, 3 = cnaps + cdy + s,

cls = cnajy +ciaz, +cia,  cfs = cnajs + cinazs +cis,  cjg = ciiafy + ci2ag + cie,
cl7 = cuaj; +cnay, g = cndjy +cay,  Cjg = Cliajg + €12a39,
¢ = ca1ayy +enayy, ¢ =cad +enay, 3 = cdjy + endys + 3,
Chy = Ca1a7y + €0a5, + €24, Cr5 = C21a]5 + C20a55 + €25, Ch = C21a]6 + €205 + C26,
37 = ca1a]7 + enay;, €y = Ca1djy + Cnayg,  C9 = C21d]g + C22a39,

:

€3] = €31a3), C3p = C31a3, + €32, €33 = C31a33 + €33, Chy = C31a34 + C34. (18)
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The nonlinear equilibrium equations of an imperfect FGM plate on elastic foundations based on Reddy’s
third-order shear deformation theory are [7,37,38]

Nx,x+ny,y =0, (19.1)
Nyyx + Ny =0, (19.2)

Qx,x + Qy,y —3x (Rx,x + Ry,y) +2 (PX,XX + 2ny,xy + P)")’)’) + N (w,xx + wijX)
+ 2Ny (g + w5y )+ Ny (W + w0 ) 49 = Kiw + K2 V2w =0, (19.3)
My + Myyy — Qx +3ARe — A (Pyx + Pyyy) =0, (19.4)
My + Myy — Qy + 3Ry — A (Pyyx + Pyy) =0 (19.5)

where ¢ is a uniform transversal force.
By putting

Nx = f,yyy Ny == f,xm ny = _f,xya (20)

it is easy to see that the first two equations (19.1) and (19.2) are automatically satisfied, and the three other
equations become

My xx 4 2Myy vy + My yy + foyy (Wrx + w7, ) =2y (w»xy + w,*xy) + fixx (w,yy + w,*yy)

+qg—-Kiw+ KzVZw =0,

My x4+ Myyy — Qx +3ARy — A (Pyx + Pryy) =0,

Myy s+ My y — Qy+3ARy — A (Pyyx + Pyy) =0. (21)
Substituting the expressions of M;;, P;j from Eq. (17) and O, Oy, Ry, Ry from Eq. (13.1) into Eq. (21), we
obtain

by froxx + (DY) + b3 = 2b%)) frxxyy +B51 Fyyyy + bi3¢s xax + (033 + 26%)) b xyy
+ (b4 + 2033) by xxy + D3adby,yyy + Bisw xxrx + (bl + D35 + 2b34) Wxxyy + DIgw,yyyy

+ £y (w,xx + wf‘xx) —2fxy (w,xy + w:"xy) + fx (w,yy + wj‘yy) +g—Kyw+ KoViw =0, (22)

(le - b?l) Foxyy + b0 frxxx + Di3bx xx + (bT4 + b§3) Py.xy + b3pdxyy + bisW xax + (biké + b§k4) W xyy
— 1 [(cT1 = 1) frayy + o frone + 30 ax + (g 4 €33) Dyay
+ 5,y + 5w onxx + (T + €3a) Woayy ] — diidx — diow x + 3% (e11¢x + er2w x) =0, (23)
(035 = b31) frxxy + 631 fiyyy + (033 +D3)) bxy + b33by.0x + D3ady. vy + (D35 + D3y) waxy + D3gw yyy
= [(e32 = €51) frxxy + 31 foyyy + (33 + 5p) brxy + 3y
+ Satyyy + (G35 4 o) Woxxy + W yyy | — d2idpy — doow y + 34 (e219y + epw,y) = 0. (24)

The three equations (22), (23) and (24) include four unknown functions w, ¢, ¢y, and f, so it is necessary
to find the fourth equation relating to these functions by using the compatibility equation (7). For this aim,
substituting the expressions of Eq. (15) into Eq. (7), one can write

a5y foxxx + (afy + @3y 4 a3y) fraxyy + a3y Foyyyy + @33¢x xax + (af3 — a3p) ey + (@34 — a33) By cxy

+afyby.yyy + 55w cxr + (afs + a3 — a34) Wxxyy + afeW,yyyy

- w,zxy + W xxW,yy + w»xijkyy
Equations (22)—(25) are four nonlinear and governing equations in terms of four dependent unknown functions
w, Px, ¢y, and f. They are used to investigate the buckling and postbuckling of imperfect ES-FGM plates
subjected to mechanical loads or thermal loads or thermo-mechanical loads and resting on elastic foundations.
It is obvious that this system of equations is more complex than the one established by using the classical
plate theory or the nonlinear stability analysis of un-stiffened FGM plates. However, the higher-order theories
(including Reddy’s third-order shear deformation theory) can represent better the kinematic behavior and may
not require shear correction factors. This is also the main reason why these theories are used to investigate the
nonlinear buckling and postbuckling of thicker FGM plates.

— Zw,xwa‘xy + wj“mw,yy =0. (25)
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4 Boundary conditions and Galerkin method

In this paper, three cases of boundary conditions will be considered as follows [4,23,37,38]:

Case (1) Four edges of the plate are simply supported and freely movable (FM), i.e.,

w=¢y=ny= x = X=07 NXZNxoat)C:O,a,
w:¢x=ny:My: yZO, Ny:Ny,,atyz(),b. (26)

Case (2) Four edges of the plate are simply supported and immovable (IM), i.e.,

w=u=¢, =My =P, =0, Ny=Nyatx=0,a,
w=v=¢;=My=P, =0, Ny=Ny,aty=0,b. 27)

Case (3) Four edges of the plate are simply supported. Uniaxial loads are applied in the direction of the x-
coordinate. The edges x = 0, x = a are considered freely movable, the remaining two edges being unloaded
and immovable. The boundary conditions, for this case, are

w:¢y=ny= =P, =0, Ny=N,,atx =0,a,
w=v=¢; =My =P, =0, Ny=Ny,aty=0,b (28)

where Ny, Ny are pre-buckling force resultants in the x- and y-directions for case (1) and the first of case
(3), and they are fictitious compressive edge loads rendering the immovable edges for case (2) and the second
of case (3).

The analytical solution of the system of Egs. (22)—(25) satisfying the boundary conditions can be found in
the form

w = Wsinaxsin By, w* = Ehsinax sin By,
w y, w* h y

1 1
f = Ficos2ax + F>cos2By + F3sinax sin By + ENX()y2 + 3 yoxz,

¢ = Dy cosaxsin By, ¢y, = D) sinax cos By (29)

where ¢ = ma—”, B = % and m, n are numbers of half waves in the x- and y-direction, respectively, and the
coefficient £ € [0, 1] is an imperfection size of the plate.

By setting Eq. (29) into Eq. (25) and carrying out some calculations, the coefficients F;(i = 1—3) are
determined as

132 Ol2
F = WW +2Eh), h = ——W (W +2&h),
1 R, (W+28h), F» 2 (W +28h)
Fy = a3’ + (af; — aj) af? @ (a3, — a33) &?B +ajy B

— 1 — @2
azot + (“Tz + a3 + “;1) a’p? +aj, p* apat + (“Tz + a5 + “;1) a’p? +aj, p

* 4 * * * 22 * 4

 agsot + (afs +ajg —ajy) &*B% + afP

az,at + (af, + a3, +aj)) @? 2 + af B4

(30)

Substituting the expressions in Eq. (29) into Egs. (22), (23) and (24), then applying Galerkin method for the
resulting equations, we obtain

W 1P + 113D +114P1 (W +Eh) +115Po (W +Eh) +s1 W (W +&h)

+55W (W + 2£h) + s3W (W + Eh) (W + 2£h) + saq — (Nxoo® + NyoB?) (W +£h) =0, (31)
AW + 1o®1 + 13 ®r +ssW (W 4 2Eh) =0, (32)
I3IW + 13D1 + 133D + s¢ W (W +2Eh) =0, (33)

in which /;;, sy (k = 1—6) are determined in “Appendix II.”
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From Egs. (32) and (33), we obtain the following expressions:

I3l31 — Il [ —1
_ 23831 7 0ifss 2356 — 13355

| = W (W + 2&h),
Il33 — 13132 Inl33 — 13132
l320p1 — Il [3085 — Ipos

, = 32021 22631 3255 2256 W(W-{-th) (34)
Inl33 — 13132 Inl33 — 13132

Substituting @1, @, from Eq. (34) into Eq. (31) yields the following expressions:

Ix3l31 — bil33 32071 — Iol3;
I+ I3
Inl33 — 313 133 — b3l

[r3l31 — [n1l [37l71 — [27l
N (S1 LBl Bl — o 31) WW L Eh)
21033 — I3l32 12033 — I3l32
lr3s6 — [338 [3785 — [0S
+(S2+l12 28 — s | 1x2s 226)W(W+2%_h)
Inl33 — I3l Inl33 — 3l
lr3s6 — [338 [3085 — [0S
+(s3+114 Sl R 2“’)W(W+5h>(vv+zsm
Inl33 — I3l3 21033 — Ix3l32
+54q — (Nxoa? + Nyop?) (W +&h) = 0. (35)

The nonlinear Eq. (35) is used to determine the buckling loads and to analyze postbuckling load—deflection
curves of imperfect ES-FGM plates subjected to mechanical compressive loads or thermal loads or thermo-
mechanical loads taking into account elastic foundations.

5 Mechanical stability analysis

Consider a rectangular imperfect ES-FGM plate being simply supported at four edges and freely movable in
the plane [Case (1)]. The plate is subjected to the in-plane compressive loads Fy and Fy uniformly distributed
along the edges x = 0, a and y = 0, b, respectively.

Ifg =0, Nyo = —hFx, Ny, = —hFy and putting n = ?—i, W = % Eq. (35) leads to the load—deflection
relation as

B Iala|~lyl Iayly | —lonl
I, 23113 |y obi—inl
U2 B n iy T3 Doy, W

h

We
_ balz1—bl33 I3l —=Dol31 \ vy
1 + (Sl + 114122133—123132 + 115122133—123132) w (36)

N, ;) V(W
a4+ np 356 —13355 lpss—lpyse |\ W(W+2§)
T2+ l12122133*123l32 + 1131221337123132) W+
135613355 I3p55—12256 V(W
{5+ 114122133—123132 +1his ) hWw (W + 25)

Inl33—1313

The nonlinear Eq. (36) is used to analyze postbuckling load—deflection curves of imperfect ES-FGM plates
subjected to mechanical compressive loads.
If the plate is perfect, i.e., & = 0, taking W — 0, Eq. (36) leads to
- 23131 — 121133 [32021 — 1213
Fr=————+-\ln+n2 13 )
T (> +1B?) ( 12033 — I3l32 Inl33 — l3l32

Equation (37) is used to determine the critical upper buckling load for a perfect ES-FGM plate.

(37)

6 Thermal stability analysis

Suppose that an imperfect ES-FGM plate is simply supported with immovable edges [Case (2)]. So the
immovable conditions u = 0atx = 0,x =a and v = 0at y = 0, y = b are fulfilled in the average sense as
[4,22]

a a

b b
//u,xdxdy =0, / vydydx = 0. (38)
0

0 0 0
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From the relations (6.1) and (15), (16), we obtain the following equations:

* * * * * *
uyx =ay fyy tapfxx +apgex +apdyy +ajsw e +ajew,yy
2

w
P Sy WX
+afz) +afsdlt +ajedy — —= —wawl, (39.1)
Uy =y fyy + A fxx +a3¢xx + adyy + arsw cx + azew,yy
2
* 4P * 48X * Sy w,y *
+ay¢) +axpdy + axed - T WoW. (39.2)

Substituting Eq. (29) into Eq. (39.1), and then into the conditions (38), gives us

* * *k
Arrl11 — A7s121 Annl1D — a* [52)
Nxo = 2 —— A W (W +8h)
ajayy — Appdy ayjay — ajas,
* ok ko k *
G447 —Appdy7 p a3,aig — ajpdag azzaw a12a29¢ (40.1)
* k * k * * * * .
ajdyy — Appdyy aydy)y — dppdy ay ay — apay,
* * *
a1 — a1t af ity — aiit2
_ 4 21 11 21
Nyo at,ay, —al,as at,ay, —aj W (W sh)
11922 12921 11922 1245,
* * * * * * * *k
%7 — 9197 p aj,azg — a21“18¢ _ 9119%9 — 49199 sy (40.2)
0, .

* ES * ES
ajayy — appdy

* * * *
ay,ay — ajpas ayly) — Appdy

where
G; = — apye’ + (ajy — afy) ep? Ga=— (a3, — a3;) @B + afy B’
az,at + (afy + a3, +aj)) &% +aj B4 an,at + (afy + a3, +a3)) @2B% +aj
Gs = —a>2k5a4 + (afs + a3g — ayy) &?B° + ajB’
a§2a4 + (“Tz + a3 + “;) a’p? + aflﬁ“’
I3l31 — bil33 3201 — Iol31 2356 — [3355 3285 — [2256
Gio = G3 + Gs,G11 = G3

21033 — I3l32

48,8, _a* la3l31 —la1l33
mnw? | Inlys —Islz

488 [ ( l356 — 13355 )
oy = 5 | 413« + a
mnmw= | Inl33 — bsl3n

b - 48,8, 'a* o (123131—121133)+
mnr? [ \Unls—lals

45mdn [ ( l2356 — 13355 ) N
5 (1 Ol e m—
mnw= | 133 — D3l32

1 =

In =

4
133 — b3l32

2033 — I3l32
( 32021 —120l31
Inl33 — 3l

Inl33 — I3l3
( l32l21 — 122131
Inl3z — Ixsl3;
( l3255 — 12256
Inlzz — Isl3

[ -1 1
(B2 ) ety ¢ e

Introducing Eq. (40.1) into Eq. (35), with ¢ = 0, we get

* ok * %k 2 ko
(%2“17 - a12“27) a” + (a”a27

2
- ai‘lai%) B

ko %k ko %k 2 ko %k
(“22“18 - “126128) a” + (“11“28 -

ll3z — 3l3’

1
) + (aflﬂz +a§2a2) G11] + §,32.

* * *k *
apayy — Appdyy

ko * %k 2 ko k
i (022“19 - a12“29) a” + (a11“29

2
- 431“79) B

o) +

* *k * *
apayy — Appdy

* * * *
apayy — Appdyy

sy
¢

I3l31 — D1l33
- (111 + 12
Inl33 — bsl3

13132121 - 122131) w
Inl33 — b3l

W +&h

lslz1 — il
B (s1 PRl Rl iR
Inl33 — I23132

3201 — Il
ph — ol | o t3ﬁ2) W
Inl33 — D313

) + a]"Saz + ai‘6,32 + (a]"lﬂz + afzaz) G10:| ,

) + ajs0” + aseB + (a5 8 + a5ye”) GIO} ;

(41)

2
o
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(S ny 1356 — 13355 I3255 — [2256 ) W (W + 2&h)
—\s2+1i2 13
Inl33 — Ix3l32 Inl33 — Ix3l32 W+&h
2356 — [3355 3255 — [256
33 2 2
- (S3 l14 15 —nha” —up” )W (W +2&h) (42)
133 — b3l3n 133 — b3l
where
_ a;ztll - athZI _ a;ZIIZ - a72t22 = aTﬁZl - ailtll fy = aiklt22 - aékltlZ 43)
%k * % T4 T x % * % 9T % x x % T % % P
ajdy) — Appdy aj1ayy — Appdy, ajayy — appdy ayay)y — dppdy

Equation (42) is used to analyze postbuckling load—deflection curves of imperfect ES-FGM plates subjected
to thermal loads on elastic foundations.
6.1 Uniform temperature rise

In this case, the FGM plate is exposed to a temperature environment uniformly raised from initial value 7;
to final value Ty and AT = Ty — T; = const. Then, from Eq. (14), the thermal parameters are defined as

¢ = hPIAT, ¢1° = hi P,AT, ¢}° = hy P3AT, where

1 1
Py = Enom + —— (Em@em + Ecm@m) + ——— EcmOcem,

k+1 2k + 1
1
P, = Ecac + m (Ecame + Emcae) + mEmcamc,
1 1
Py = Ecac + m (Ecome + Emcare) + 2lQﬁEchlmc- (44)

Introducing q,’){’, 1, ¢i’y into Eq. (42), we obtain the expression of temperature—deflection relation as

l3l31—=lr1133 32021 —l2l31 w
(l” +l2 nl33—13l3 +h3 l22133 —123132) W+é

lal31 =133 Lol —lply 2 _ 2 57
-1 + (s1 + 14 Il33—12313> + 115122133—123132 ha 13p°) hW

AT = = = = oo
MhP, + *hi P>+ Mo P 1356—13355 132551256 W (W+28)
1Py A2 By + A2 £ + (s2 +lulzzl3rlz3l3z +hs3 l22033—123132 h W+é
1r356—13355 I30s5—lps6 2 2\ 1277 (1
+ (S3 + 14 Inlz3—Ir3l3n + 115122133*123132 ho t4p ) h“W (W + 25)
(45)

where

* % * % 2 * % * % 2 * % * % 2 * % * % 2
i = (“22“17 - “12“27) o + (“11“27 - “21“17) B Ry = (“22“18 - “12“28) o + (“11“28 - “21“18) B

* * * * * * * *
ajdy) — Appdy ajlyy — Appdy
* % * % 2 * % * % 2
T (a3,afy — afrazy) @ + (af a3y — a3,aj,) B 16
37 atal, —atar ' (46)
11922 12921

If the plate is initially perfect, i.e..& = 0, from Eq. (46) taking W — 0, we receive the expression of buckling
temperature change as

_ lyslz1—D1133 l3pl01—1po131
(111 T 112122133—123132 +h3 122133—123132)

thPl + )_»2h1P2 + )_»th3

AT = (47)
Note that Egs. (45) and (47) are explicit expressions of AT — W relation and buckling temperature change AT,
respectively, in case of temperature-independent plate material properties. On the contrary, when the material
properties of plates and stiffeners depend on temperature, those equations are implicit expressions. In that case,
the postbuckling temperature—deflection curves and critical buckling temperatures will be determined by two
iterative algorithms as follows:

Iterative algorithm 1 (For determining the critical buckling temperature)

It is necessary to use Eq. (47) with the following steps:
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(al) Begin at the reference temperature, i.e., at 7o = 300 K, and temperature-independent material properties

are found at Ty = 300 K. Using Eq. (47), the buckling thermal load ATC(rl) for the plate of temperature-
independent material is determined.
(a2) Using the material properties at 7 = Ty + ATC(rl) and updating on the right of Eq. (47), the new buckling
thermal load ATC(rZ) is obtained.
(a3) Repeatstep (a2) until the buckling temperature converges to a prescribed error tolerance ¢, i.e., the iterative
(+1) Q)
process is defined as the relative difference between two consecutive solutions: % <e.
Iterative algorithm 2 (For determining postbuckling temperature—deflection curves)

It is necessary to use Eq. (45) with the following steps:

(b1) Begin with W/h = 0 at a specific point.

(b2) Use iterative procedures (al)—(a3).

(b3) Specify the new value of W/ h, repeat step (b2) until the postbuckling temperature converges to a pre-
scribed error tolerance.

(b4) Repeat steps (b2)—(b3) to obtain the postbuckling curve.

6.2 Nonlinear temperature change across the thickness

Assume that the temperature through thickness is governed by the one-dimensional Fourier equation of steady-
state heat conduction:

d dT ]
For plate = |:/<p (2) d_Z_ =0, T |z=—h/2 =Tn, T |z:h/2 =T, (48)
. . d dT ]
For x-direction stiffeners o Ksx (2) = | = 0, T |z:h/2 =T, T ’z:h/2+hl = T, (49)
z z
S . d dT T
For y-direction stiffeners e Ksy (2) e =0, T |z=h/2 =T, T |z=h/2+h2 =Tn 50)
V4 Z |

where Ty, and T, are temperatures at metal-rich and ceramic-rich surfaces, respectively.
By solving Egs. (48-50) with the mentioned boundary conditions, the solution for the temperature distri-
bution across the plate thickness is

oo 1 ( Kcm)p (2Z+h)kp+1

p=0 kp+1 \ ™ &m 2h
Ty (2) = Ty + AT* ! . : (51)
P [e9) 1 Kem P
Zp:() kpF1 " km
and the solutions for the temperature distribution across the stiffener thickness are
yoo I ( ch)l’ (2z—h)k2p+1
=0 Top+1 ™ ke 2h
To (2) = Te — AT* Ee— Lo (52)
ZOO _ 1 (_Kme
p=0 ko p+1 ( Kc )
o0 1 Kme p 2z—h ksp+1
o () (52)
Toy (z) = Tc — AT ) (53)

o] 1 me P
> marr ()
in which AT* = T, — Ty, is the temperature change between ceramic surface and metal surface of the plate.

From Egs. (51-53), we obtain the expressions AT (z) respecting T, (z) , Tsy (z) and Ty (z). Then, by the

same procedure as in the Sect. 6.1, the expressions of the thermal parameter from Eq. (14), in this case, are

¢ = hHyAT*, ¢} = hiHy AT*, ¢} = hoHy AT* (54)
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where

ZOO 1 —Kem r Emom + Emocm+Eemam + Ecmdem
H p=0 kp+1 Km kp+2 kp+k+2 kp+2k+2
P zoo 1 —Kem P ’
p=0 kp+1 Km
ZOO 1 —Kme r Ecac + Ecome+Emcdc + Emcme
Ecame + Ence EmcOme =0 Top+1 \ k¢ kap+2 ko p+ka+2 ko p+2ky+2
Hsy = Ecac + + - s

k2 + 1 2k2 + 1 ZOO 1 —Kmc P
p=0 kpp+T1 \ ke
o0 1 —Kmc Ecac EcametEmcc EmcOme
Ecotme + Eme@tc  Emcttme  22p=0 FpTT ( e ) (k3p+2 T Topthtz T k3p+2k3+2)
Hsy = Ecac + — 7
ks +1 2k3 + 1 Zoo 1 —Kmc
p=0 k3 p+1 Kc

(55)

Introducing qb?, o7, qb?y from Eq. (54) into Eq. (42), we will obtain the temperature—deflection implicit relation
for an ES-FGM plate with nonlinear temperature change.

In case of temperature-dependent material properties, postbuckling temperature—deflection curves and
critical buckling temperatures also will be determined by an above-presented iterative algorithm.

7 Thermo-mechanical stability analysis

Consider an imperfect ES-FGM plate simultaneously acted by a thermal field and a uniaxial compressive
loading F,, uniformly distributed along the edges x = 0 and x = a. Suppose that the plate is simply supported
with movable edges x = 0, a, and immovable y = 0, b [Case (3)]. Employing Nyo = —Fh and Egs. (39.1)
and (40.2), we obtain

ay, 01 159 a3 p A3y . 439 sy
Ny():—*th—l-—*W—l-TW(W-i-gh)——*(p] __*(]51 __*¢1 . (56)
a a a a a a
22 22 22 22 22 22
Substituting the expressions of Nyo = —Fyh and Ny, taking into account the expressions of qbll), % qbfy the

yields the following expression:
For the plate under uniform temperature rise:

(1 -+ IR + o RRSER) '
) + (4 e BRISRE + hs R — ) 1
Fm g | h(reEERE i) S | o
+ (o0 + e BSRRS + hs BRSNS — ) W (W +26)
_ +h(v%4+5)61+52 (%hpl +%h1P2+%h2P3) AT _
for the plate under nonlinear temperature change:
_(1114—112% —i—l13%)‘@lJrg i
. + (o -+ DR + LR — ) n
P ey | (iR ) 68
+ (304 D BRSREE + Lo — ) W (W +26)
| A (G Gt Gty ) AT

Equations (57) and (58) are employed to trace postbuckling load—deflection curves of the imperfect ES-FGM
plates subjected to the combined mechanical and thermal loads.
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8 Numerical results and discussion
8.1 Validation of the present approach

As part of the validation of the present approach, three comparisons are carried out.

First comparison Consider a simply supported un-stiffened isotropic square plate (¢ = b) without elastic
foundations subjected to loads as follows:

— Uniaxial compressive load along x-axis with the nondimensional critical buckling loads

_ —F,.hb*
Ni=——:
D

’

— Uniaxial compressive load along y-axis with the nondimensional critical buckling loads

- —Fyhb?
Ny = ——
D

— Biaxial compressive loads with the nondimensional critical buckling loads
N = Ni + Na,
in which D = % and F) is given by Eq. (37) with n = 0, Fy is determined from Eq. (35) with
g=0,F=0,§ =0,Ny=—hFy.
Table 1 shows the present results compared with those of Huu-Tai Thai and Dong-Ho Choi [41] based on

refined plate theory (RPT).
As can be observed, the present results coincide with those of Ref. [41].

Second comparison Consider an un-stiffened FGM plate without elastic foundations with parameters [2]
En =70GPa, E. =380GPa,v=0.3,a/b=05,m=n=1.

Table 1 Comparison of nondimensional critical buckling loads with the results of Ref. [41] for un-stiffened isotropic plates
without elastic foundations

a/b b/h Work N N> N
1 10 Ref. [41] 3.7866 3.7866 1.8933
Present 3.7866* 3.7866 1.8933
20 Ref. [41] 3.2653 3.2653 1.6327
Present 3.2653 3.2653 1.6327
30 Ref. [41] 2.6586 2.6586 1.3293
Present 2.6586 2.6586 1.3293
40 Ref. [41] 1.9550 1.9550 1.0566
Present 1.9550 (2,1) 1.9550 (1,2) 1.0567
1.5 10 Ref. [41] 4.0253 2.0048 1.3879
Present 4.0253 (2,1) 2.0048 1.3879
20 Ref. [41] 3.3077 1.7946 1.2424
Present 3.3077 (2,1) 1.7946 1.2424
30 Ref. [41] 2.5545 1.5285 1.0582
Present 2.5545 (2,1) 1.5285 1.0582
40 Ref. [41] 1.9421 1.2670 0.8772
Present 1.9421 (2,1) 1.2670 0.8772
2 10 Ref. [41] 3.7866 1.5093 1.2075
Present 3.7866 (2,1) 1.5093 1.2075
20 Ref. [41] 3.2653 1.3697 1.0958
Present 3.2653 (2,1) 1.3697 1.0958
30 Ref. [41] 2.5839 1.1873 0.9498
Present 2.5839 (3,1) 1.1873 0.9498
40 Ref. [41] 1.9230 1.0015 0.8012
Present 1.9230 (3,1) 1.0015 0.8012

*The remaining cases are taken with mode (m, n) = (1, 1).
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Table 2 Comparison of the critical buckling load F;* with the results of [2] for un-stiffened FGM plates without elastic foundations

n Theory b/h =10 b/h =120 b/h =40 b/h =60 b/h =80 b/h =100

0 CPT [2] 267.48 33.435 4.1794 1.2383 0.5224 0.2675
TSDT [2] 239.15 32472 4.1486 1.2343 0.5215 0.2672
Present 239.15 32472 4.1486 1.2343 0.5215 0.2672

1 CPT [2] 213.99 26.748 3.4353 0.9907 0.4179 0.2140
TSDT [2] 191.32 25.978 3.3189 0.9879 0.4172 0.2137
Present 191.32 25.978 3.3189 0.9874 0.4172 0.2137

-1 CPT[2] 356.64 44.580 5.5725 1.6511 0.6966 0.3566
TSDT [2] 318.86 43.296 5.5315 1.6457 0.6953 0.3562
Present 318.86 43.296 5.5315 1.6457 0.6953 0.3562

Table 3 Comparison of the critical buckling load F{'(Pa) (x 108) with the results of [30] for un-stiffened and stiffened FGM

plates without elastic foundations

k Un-stiffened Stiffened
Ref. [23] Present Ref. [23] Present
0.2 0.3204 (1,1) 0.32033 (1,1) 1.3503 (1,1) 1.3495 (1,1)
1 0.1948 (1,1) 0.19475 (1,1) 1.1552 (1,1) 1.1545 (1,1)
5 0.1285 (1,1) 0.12850 (1,1) 1.0309 (1,1) 1.0302 (1,1)
10 0.1171 (1,1) 0.11705 (1,1) 1.0236 (1,1) 1.0229 (1,1)
1400 T : :
——Present, £=0 #
----- Present, £=0.1 ,"
12007 < Ref. [4] R
1000+ bfa=1, b/h=20 n

(mn)=(1,1)

_. 800
O
L
2

600

400 1

200 iz 1

’ %
I
o . ‘ ‘ . .
0 02 04 06 08 1 1.2
Wih

Fig. 2 Comparison of the effects of the volume fraction index on the postbuckling of un-stiffened FGM plates without elastic
foundations under uniform temperature rise

The results of the critical buckling load F} = bh F" ,with F{" given by Eq. (37), are compared with those
of Shariat and Eslami [2] based on TSDT (Table 2). It can be seen that the present solutions are in close
agreement with TSDT [2].

Third comparison Table 3 presents the comparison on the results of the critical buckling load F;" of the FGM
plate [given by Eq. (37)], with the results of Bich et al. [30] based on CPT. The input parameters of the FGM
plate are taken tobe a = b = 1.5m, h = 0.008m, h; = hy = 30 x 1073 m, by = by =3 x 103 m,
di =dr =0.15m, Ey = 70GPa, E. = 380GPa, v = 0.3.

As can be seen, a very good agreement is obtained in this comparison.

Fourth comparison Figure 2 illustrates the present results with the results of Duc and Tung [4] for un-stiffened
FGM plates without elastic foundations and under the uniform temperature rise based on the TSDT with
parameters E. = 380 x 10° Pa, o = 7.4 x 1070°C~!, E; =70 x 10° Pa, oy = 23 x 1079°C~1, v = 0.3.
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Table 4 Temperature-dependent coefficients £ (in Pa), o (in K1), and «(in W mK~!) for ceramics and metals (from Reddy and
Chin [42])

Materials Properties Py P_ Py P Ps
Silicon nitride E 348.43e+9 0 —3.070e—4 2.160e—7 —8.946e—11
o 5.8723e—6 0 9.095¢e—4 0 0
K 13.723 0 —1.032e-3 5.466e—7 —7.876e—11
Stainless steel E 201.04e+9 0 3.079¢e—4 —6.534e — 7 0
o 12.330e—6 0 8.086e—4 0 0
K 15.379 0 —1.264e—3 2.092e—6 —7.223e—10
3 ;
— é:O
----- £=0.1

b/h=20, d,=d_=0.1m

F (GPa)

1 1

0 05 1 15
Wih

Fig. 3 Effect of the volume fraction index k on the postbuckling behavior of ES-FGM plates under uniaxial compression

As can be observed, a good agreement can be witnessed.

8.2 Numerical results for ES-FGM plates on elastic foundations

Numerical results are presented in this Section for FGM plates made from a mixture of ceramic (Silicon
nitride Si3N4) and metal (Stainless steel SUS304) reinforced by FGM stiffeners made from SizN4/ SUS304.
The geometric property of the plate is b = 1m, and the geometric properties of the stiffeners are b =
by = 0.005m,hy = hy, = 0.02m, kp = k3 = 1/k. The elastic foundation parameters are used as K| =
5 x 10’ N/m?, K» = 10° N/m (except in Sect. 8.2.4). The buckling load is minimum corresponding to the
buckling mode (m, n) = (1, 1).

The material properties, such as Young’s modulus E, thermal expansion coefficient « and thermal conduc-
tivity «, can be expressed as a nonlinear function of temperature (from Reddy and Chin [42]) as

P=Py(P.iT™ '+ 1+ PiT + P,T? + P3T°) (59)

in which 7' = Tp + AT and Ty = 300K (room temperature), Py, P_1, P>, P; and Ps are the coefficients of
temperature 7 (K) and are unique to the constituent materials (Table 4). Poisson’s ratio v is assumed to be a
constant, and v = 0.28.

8.2.1 Effect of volume fraction indices k, ko, k3

Figure 3 illustrates the effect of volume fraction index k (ko = k3 = 1/k) on the postbuckling Fy — W/h
curves of ES-FGM plates on an elastic foundation under uniaxial compression.
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Fig. 4 Effect of the volume fraction index k on the postbuckling behavior of ES-FGM plates under nonlinear temperature change
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Fig. 5 Effect of side-to-thickness ratio b/ h on the postbuckling behavior of an ES-FGM on elastic foundations under uniaxial
compression

Figure 4 illustrates the effect of volume fraction index k on postbuckling AT — W/h curves of ES-FGM
plates on an elastic foundation with the nonlinear change of temperature.

From these Figures, it can be seen that the postbuckling curves become higher when the value of k decreases.
This property is appropriate to the real characteristic of the material, because the smaller value of k corresponds
to the richer ceramic, and the plate has the better load-carrying capacity (Fig. 3) or the plate becomes better
thermal barrier structure (Fig. 4).

8.2.2 Effect of geometric parameters

Figure 5 shows the effect of the ratio b/ h on postbuckling F, — W/h curves of an ES-FGM plate on elastic
foundations under uniaxial compression. It can be observed that the postbuckling load—deflection curves
become lower when the values of b/ & increase.
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Table 5 Critical compressive load F;" (GPa) for different number of stiffeners and material of stiffener of ES-FGM plates
m=1Lk=1)

The number of stiffeners F"(GPa)

a/b=1 a/b=15
Without stiffeners 1.2014 0.9048
5+5 Orthogonal stiffeners 1.2298 0.9270
10+10 Orthogonal stiffeners 1.2580 0.9489
20+20 Orthogonal stiffeners 1.3137 0.9917
40+40 Orthogonal stiffeners 1.4220 1.0740

Table 6 The critical thermal load AT, (K) for ES-FGM plates subjected to uniform temperature rise with temperature-dependent
properties (T-D properties)

a/b k Arrangement of stiffeners
Without stiffeners 20 Longitudinal stiffeners 20 Transversal stiffeners ~ Orthogonal stiffeners (10+10)
0.75 0.2 395.38%(504.22°)  415.73 (536.55) 402.27 (515.13) 409.52 (526.63)
1 326.17 (397.34) 341.67 (420.17) 331.23 (404.78) 336.85 (413.05)
5 289.05 (342.19) 302.75 (361.17) 293.47 (348.30) 298.47 (355.22)
1 0.2 306.75 (371.66) 315.86 (384.80) 315.86 (384.80) 316.17 (385.25)
1 251.63 (293.63) 258.40 (302.78) 258.40 (302.78) 258.64 (303.11)
5 221.95 (253.49) 227.81 (261.06) 227.81 (261.06) 228.02 (261.33)
1.5 0.2 239.56 (278.66) 241.57 (281.36) 249.56 (292.09) 245.73 (286.92)
1 195.99 (221.15) 197.38 (222.92) 203.45 (230.61) 200.54 (226.92)
5 172.61 (191.65) 173.77 (193.07) 179.02 (199.50) 176.50 (196.41)
aT-D,° TID

Table 6 gives the effect of the ratio a /b on the critical thermal load AT, (K) for ES-FGM plates subjected to
the uniform temperature rise with temperature-dependent properties. As can be seen, the values of the critical
thermal loads with a/b = 0.75 are largest, but the ones with a /b = 1 are smaller, and the ones witha/b = 1.5
are smallest.

Figure 6 shows effects of imperfection on the nonlinear response of plates exposed to the uniform temper-
ature field with temperature-dependent properties. It is observed that the postbuckling load-carrying capacity
of plates is reduced with the increase in imperfection size £ when the deflection is still small, but an inverse
trend occurs when the deflection is sufficiently large.
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8.2.3 Effect of stiffeners

Table 5 shows effects of the stiffener number on the critical mechanical load. It can be seen that the critical load
increases with the increased number of stiffeners. This increase is considerable. For example, F{" = 1.422 GPa
(40+40 orthogonal stiffeners) increases about 7.6 % in comparison with F* = 1.3137 GPa (20420 orthogonal
stiffeners).

Table 6 presents the effects of different stiffener types as longitudinal stiffeners, transversal stiffeners and
orthogonal stiffeners on critical buckling loads of the FGM plate. It can be seen that these types of stiffeners
affect strongly the critical thermal load of the plate.
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Fig. 7 Effect of foundations on the postbuckling behavior of ES-FGM on elastic foundations under uniaxial compression
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Fig. 8 Thermal postbuckling of ES-FGM plates on a foundation with temperature-independent (T-ID) and temperature-dependent
(T-D) properties
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Fig. 10 Effect of nonlinear temperature change on the postbuckling behavior of ES-FGM plates under uniaxial compression

8.2.4 Effect of elastic foundations

Figure 7 shows effects of elastic foundations on postbuckling F, — W/ h curves and AT — W/ h of an ES-FGM
plate by using Eq. (36). As can be observed, the curve corresponding to both parameters of foundation K # 0,
K7 # 0 is the highest, the one corresponding to without foundation is the lowest.

8.2.5 Effect of temperature on postbuckling load—deflection curves of orthogonally stiffened FGM plates

Figure 8 shows the effect of temperature on postbuckling AT — W/ h curves of an ES-FGM plate (a = b) for
two cases T-ID and T-D material properties. It is evident that the postbuckling load-carrying capacity of the
plate is strongly reduced.

Figures 9 and 10 show the effects of temperature on postbuckling Fy — W/h curves of ES-FGM square
plates under mechanical compression load on elastic foundations for T-ID with uniform temperature rise and
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Table 7 The value of critical thermal loads AT, (K) in two cases of an FGM plate: uniform temperature rise and nonlinear
temperature change

k Uniform temperature rise Nonlinear temperature change
K1 =0,K,=0  K;=5x10"N/m?, K1 =0,K,=0  K;=5x10"Nm?
K> = 10°N/m K> = 10°N/m

Without stiffeners 0.2 357.49 371.83 753.71 783.95

0.5 312.23 325.69 673.04 702.06

1 280.83 293.70 606.89 634.71

5 241.38 253.52 502.25 527.52
Orthogonal FGM stiffeners 0.2 371.29 385.43 783.04 812.87

0.5 323.59 336.87 697.69 726.32

1 290.49 303.19 627.77 655.20

5 249.39 261.36 518.78 543.68

nonlinear temperature change. It can be seen that the postbuckling curves become lower gradually with the
increase in temperature. This is reasonable because the preheated ES-FGM plates exhibit a decreasing tendency
in the postbuckling load- carrying capacity when they are subjected to added action of mechanical loads.

Table 7 shows values of critical thermal loads AT, (K) for two cases of uniform temperature rise and non-
linear temperature change. As can be seen, the critical thermal loads of FGM plates under uniform temperature
rise are smaller than those under nonlinear temperature change.

9 Conclusions

This paper presents buckling and postbuckling nonlinear analyses of imperfect FGM plates reinforced by
FGM stiffeners on elastic foundations and subjected to in-plane compressive mechanical loads or thermal
loads or thermo-mechanical loads simultaneously by an analytical approach. The material properties of plate
and stiffeners are assumed to be T-D or T-ID and graded in the thickness direction according to a volume fraction
power-law distribution. Based on the Reddy’s TSDT with the von Karman kinematic nonlinearity and taking
into account stiffener, four nonlinear stability equations for ES-FGM plates are derived. Equations (10-13.1)
are the most important relations found in this work in which the contribution of stiffeners and thermal elements
in equations of N;j, M;;, P;j, Q;, R; are taken into account. The closed-form expressions for determining the
buckling load and analyzing postbuckling load—deflection curves are obtained by the Galerkin method. Two
iterative algorithms are presented for the case of temperature-dependent plate material properties. The effects
of temperature, stiffener, material properties, geometrical parameters, and foundation parameters are analyzed
in detail by numerical calculations. The comparisons show that the present results are in good agreement with
the existing previous results and therefore affirmed the reliability and accuracy of the proposed method. Some
remarks are deduced from the present results as:

(i) Reddy’s third-order shear deformation theory can represent better the kinematic behavior and may not
require shear correction factors. This is also the main reason why this theory is used to investigate the
nonlinear buckling and postbuckling of thicker FGM plates.

(i) The postbuckling mechanical load—deflection curves lower gradually with increase of AT

(iii) The presence of stiffeners enhances the stability of FGM plates.

(iv) The thermal element, stiffener, foundation parameters and volume index affect strongly buckling and
postbuckling behavior of plates.

Appendix I

h/2
Ei = / Z7VEy (2. T)dz, i=1,2,3,4,5,7,
—h/2
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