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Abstract Using Reddy’s third-order shear deformation plate theory (TSDT) with von Kármán geometrical
nonlinearity, this work presents an analytical solution on the buckling and postbuckling behaviors of eccen-
trically stiffened functionally graded material (ES-FGM) plates on elastic foundations subjected to in-plane
compressive loads or thermal loads or thermo-mechanical loads. Plates are reinforced by closely spaced FGM
stiffeners. The material properties of the plate and stiffeners are assumed to be temperature-dependent. The-
oretical formulations based on the smeared stiffeners technique and TSDT are derived. The expressions of
thermal parameters are found in the analytical form. Applying Galerkin method, the expressions to determine
the critical buckling load and analyze the postbuckling mechanical and thermal load–deflection curves are
obtained. Two iterative algorithms are presented for the case of temperature-dependent plate material proper-
ties. The effects of thermal element, FGM stiffeners, geometrical and material parameters, initial imperfection,
and foundation are considered and discussed. By comparing the present results with those in references, the
accuracy of the present study is affirmed.

1 Introduction

Functionally graded materials (FGMs) composed of ceramic and metal constituents have received much inter-
est in recent years. Due to essential characteristics such as high stiffness and excellent temperature resistance
capacity, functionally graded materials have found wide applications in many industries, especially in temper-
ature shielding structures and nuclear plants, where significant changes in material properties are unavoidable.
As a result, many researches focused on the buckling and postbuckling analyses of plates made of FGM.

Ferreira et al. [1] employed the higher-order shear deformation theory to analyze the buckling of isotropic
and laminated plates by radial basis functions. Shariat and Eslami [2] presented the buckling analysis of rec-
tangular thick functionally graded plates under mechanical and thermal loads based on the TSDT. Khabbaz
et al. [3] studied the nonlinear analysis of FGM plates under pressure loads using the first-order shear defor-
mation theory (FSDT) and TSDT. Duc and Tung [4] investigated the buckling and postbuckling behaviors
of un-stiffened functionally graded plates resting on elastic foundations and subjected to thermo-mechanical
loads, in which the material properties are assumed to be temperature-independent. Javaheri and Eslami [5,6]
investigated the stability of FGM plates subjected to mechanical and thermal loads based on the classical plate
theory (CPT) with temperature-independent material properties (T-ID). The same authors [7] considered the
thermal buckling of FGM plates based on the higher-order theory. The results of three- dimensional thermo-
mechanical buckling analysis for a composite FGM plate by using the finite element method were investigated
by Na and Kim [8]. Lanhe [9] presented an analytical solution for the thermal buckling of an FGM rectangular
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simply supported plate subjected to a uniform temperature rise and gradient through the thickness of the plate.
The buckling of heated FGM annular plates on an elastic foundation was studied analytically by Kiani and
Eslami [10].

For un-stiffened shells, many researches are focused on the buckling and postbuckling analysis of shells.
Hui and Du [11] studied initial postbuckling behaviors of imperfect antisymmetric crossply cylindrical shells
under torsion. Using singular perturbation technique, Zhang and Han [12] investigated the buckling and
postbuckling of imperfect cylindrical shells subjected to torsion based on the Kármán–Donnell-type nonlinear
differential equations. Jiang et al. [13] presented mechanical, electrical and thermal properties of aligned
carbon nanotube/polyimide. Based on the higher-order shear deformation shell theory, Bagherizadeh et al. [14]
investigated the mechanical buckling of FGM un-stiffened cylindrical shells surrounded by a Pasternak elastic
foundation. Many investigations on the stability and vibration analysis of FGM un-stiffened cylindrical shells
surrounded by elastic foundations also have been published by Sofiyev et al. [15–17]. Sofiyev [18–20] studied
the nonlinear buckling of an FGM truncated conical shell with and without elastic foundations under an axial
load using classical shell theory (CST).

With temperature-dependent material properties (T-D), there are some significant results. Shen [21,22]
presented the thermal postbuckling behavior of an FGM plate and cylindrical shell. Shen [23] also investigated
a nonlinear bending analysis of a simply supportedFGMplate resting on an elastic foundation based on a higher-
order shear deformation plate theory. Lal et al. [24] examined the second-order statistics of the postbuckling
response of an FGM plate subjected to mechanical and thermal loading. Akbari et al. [25] performed a thermal
buckling analysis of temperature-dependent FGM conical shells based on an iterative generalized differential
quadrature method. Mirzavand and Eslami [26] presented a closed-form solution for thermal buckling of
piezoelectric FGM rectangular plates based on TSDT.

Nowadays, the stiffened plate and shell structures are widely used in modern industry fields, such as
ships, bridges, tank roofs and vehicles. Because the economical design of loaded structure can be obtained
by using stiffeners instead of increasing the thickness of the structure, many researches have been published
regarding structures reinforced by a system of stiffeners made of homogeneous material or functionally graded
material. The analysis of the linear buckling of stiffened plates by the orthotropic plate method may be found
in Timoshenko and Gere [27]. The elastic buckling and postbuckling behaviors of eccentrically stiffened plates
were evaluated analytically bySteen [28], using the simplifieddirect energy approach togetherwithMarguerre’s
plate theory. The influence of stiffener location on the stability of stiffened plates under compression and in-
plane bending was studied by Bedair [29]. Bich et al. [30] investigated the nonlinear static buckling behavior
of eccentrically stiffened imperfect FGM plates and shallow shells and the nonlinear dynamic response of
eccentrically stiffened imperfect FGM panels on the basis of the classical plate and shell theory. Stiffeners in
these researches [27–30] were assumed to be homogenous.

Following the direction of FGM stiffeners, Najafizadeh et al. [31] with the stability equation given in terms
of displacement investigated the mechanical buckling behavior of FGM stiffened cylindrical shells reinforced
by rings and stringers using CST. Dung and Nam [32] presented a nonlinear dynamic analysis of eccentrically
stiffened functionally graded thin circular cylindrical shells surrounded by an elastic medium based on CST.
Dung et al. [33] investigated the stability of functionally graded truncated conical shells surrounded by an
elastic medium. Dung and Hoa [34] presented the nonlinear buckling and postbuckling of functionally graded
stiffened thin circular cylindrical shells under torsional load surrounded by elastic foundations in thermal
environments according to CST.

In this paper, the nonlinear analyses on the buckling and postbuckling behavior of imperfect FGM plates
reinforced by FGM stiffeners with temperature-dependent material properties based on Reddy’s third-order
shear deformation theory [35–37] are investigated. The explicit expressions to determine the critical buckling
load and analyze the postbuckling mechanical and thermal load–deflection curves are obtained. Two iterative
algorithms are presented for the case of temperature-dependent plate material properties. The effects of ther-
mal element, FGM stiffeners, geometrical and material parameters, initial imperfections and foundations are
considered and discussed.

2 Eccentrically stiffened FGM plates (ES-FGM plates)

Consider a functionally graded rectangular plate of length a, width b and uniform thickness h. Assume that the
plate is reinforced by closely spaced the longitudinal and transversal stiffeners. The thickness and width of the
longitudinal stiffeners are h1, b1. The thickness and width of the transversal stiffeners are h2, b2. The distance
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Fig. 1 Configuration of an eccentrically stiffened FGM plate

between two longitudinal stiffeners and two transversal stiffeners is d1, d2, respectively. The coordinate system
(x, y, z) is chosen as shown in Fig. 1. The plane Oxy coincides with the un-deformed middle surface of the
plate, and the axis 0z is in the thickness direction (−h/2 ≤ z ≤ h/2).

The functionally graded materials of plates and stiffeners are assumed to be varied continuously in the
thickness direction and made from a mixture of ceramic and metal.

Assume that the modulus of elasticity, coefficient of thermal expansion, thermal conductivity coefficient
of plates and stiffeners depend on temperature with the rule of mixtures, [36,38];

For the plate:

Ep(z, T ) = Em(T ) + Ecm(T )

(
2z + h

2h

)k

, Ecm(T ) = Ec(T ) − Em(T ) = −Emc(T ),

αp(z, T ) = αm(T ) + αcm(T )

(
2z + h

2h

)k

, αcm(T ) = αc(T ) − αm(T ) = −αmc(T ),

κp(z, T ) = κm(T ) + κcm(T )

(
2z + h

2h

)k

, κcm(T ) = κc(T ) − κm(T ) = −κmc(T ); (1)

for longitudinal stiffeners:

Esx (z, T ) = Ec(T ) + Emc(T )

(
2z − h

2h1

)k2
,

h

2
≤ z ≤ h

2
+ h1,

αsx (z, T ) = αc(T ) + αmc(T )

(
2z − h

2h1

)k2
, (2)

κsx (z, T ) = κc(T ) + κmc(T )

(
2z − h

2h1

)k2
;

for transversal stiffeners:

Esy(z, T ) = Ec(T ) + Emc(T )

(
2z − h

2h2

)k3
,

h

2
≤ z ≤ h

2
+ h2,

αsy(z, T ) = αc(T ) + αmc(T )

(
2z − h

2h2

)k3
, (3)

κsy(z, T ) = κc(T ) + κmc(T )

(
2z − h

2h2

)k3
;
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where k ≥ 0, k2 ≥ 0, k3 ≥ 0 are the volume fraction indices; the subscripts “m” and “c” refer to the metal and
ceramic constituents, respectively; Ep(z), αp(z), κp(z) are Young’s modulus, thermal expansion coefficient,
and thermal conductivity coefficient of the plate; Esx (z), αsx (z), κsx (z) and Esy(z), αsy(z), κsy(z) are Young’s
modulus, thermal expansion coefficient, and thermal conductivity coefficient of x-direction and y-direction
stiffeners, respectively.

Poisson’s ratio is assumed to be a constant.
Assume that the plate is resting on an elastic foundation with the plate–foundation interaction determined

by the Pasternak model as
q f = K1w − K2�w (4)

where K1 (N/m3) is theWinkler foundation modulus, and K2 (N/m) is the shear layer stiffness of the Pasternak
model.

3 Basic relations and governing equations

Denote u, v, w the displacement components of the mid-plane of the plate in x, y, z direction, respectively,
and φx , φy are the rotations of a transverse normal about the y- and x-axis, respectively.

According to Reddy’s third-order shear deformation plate theory (TSDT) taking into account the von
Kármán geometrical nonlinearity and an initial imperfection, the strain components across the plate thickness
at a distance z from the mid-plane are of the form [35–37]

⎛
⎜⎝

εx

εy

γxy

⎞
⎟⎠ =

⎛
⎜⎜⎝

ε0x

ε0y

γ 0
xy

⎞
⎟⎟⎠ + z

⎛
⎜⎜⎝

κ1
x

κ1
y

κ1
xy

⎞
⎟⎟⎠ + z3

⎛
⎜⎜⎜⎝

κ
(3)
x

κ
(3)
y

κ
(3)
xy

⎞
⎟⎟⎟⎠ ,

(
γxz

γyz

)
=

(
γ 0

xz

γ 0
yz

)
+ z2

⎛
⎝ κ

(2)
xz

κ
(2)
yz

⎞
⎠ (5)

where

⎛
⎜⎝

ε0x

ε0y

γ 0
xy

⎞
⎟⎠ =

⎛
⎜⎝

u,x + 1
2w

2
,x + w,xw

∗
,x

v,y + 1
2w

2
,y + w,yw

∗
,y

u,y + v,x + w,xw,y + w,xw
∗
,y + w,yw

∗
,x

⎞
⎟⎠ ,

(
γ 0

xz

γ 0
yz

)
=

(
φx + w,x

φy + w,y

)
, λ = 4

3h2 , (6.1)

⎛
⎜⎝
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x

κ1
y

κ1
xy

⎞
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⎛
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⎞
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y

κ
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⎞
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⎛
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κ
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φx + w,x

φy + w,y

)
,

(6.2)

inwhich εx , εy are normal strains; γxy is the in-plane shear strain; γxz, γyz are the transverse shear deformations,
and w∗ = w∗(x, y) is a known function representing the initial imperfection of the plate.

From Eq. (6.1), the geometric compatibility equation of the imperfect plate is represented in the form
[37–39]

ε0x,yy + ε0y,xx − γ 0
xy,xy = w2

,xy − w,xxw,yy − w,xxw
∗
,yy + 2w,xyw

∗
,xy − w∗

,xxw,yy . (7)

The stress–strain relations taking into account the temperature dependence of the plate material properties are
defined by Hooke’s law as [9,38,40]

σ
p
x = Ep (z, T )

1 − ν2

[(
εx + νεy

) − (1 + ν) αp (z, T ) �T
]
,

σ
p
y = Ep (z, T )

1 − ν2

[(
εy + νεx

) − (1 + ν) αp (z, T ) �T
]
,

σ
p
xy = Ep (z, T )

2 (1 + ν)
γxy, σ

p
xz = Ep (z, T )

2 (1 + ν)
γxz, σ

p
yz = Ep (z, T )

2 (1 + ν)
γyz, (8.1)
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and for stiffeners taking into account the temperature [34,40]

σ s
x = Esx (z, T ) εx − Esx (z, T ) αsx (z, T ) �T,

σ s
y = Esy (z, T ) εy − Esy (z, T ) αsy (z, T ) �T,

σ s
xz = Gsx (z, T ) γxz, σ

s
yz = Gsy (z, T ) γyz (8.2)

where �T = T − T0 denotes the change in the environment temperature from the initial free stress state; the
superscripts “p” and “s” denote plate and stiffener, respectively; Gsx , Gsy are shear moduli of x-direction and
y-direction stiffeners, respectively.

The in-plane normal force intensities Ni , the bending moment intensities Mi and higher-order bending
moment intensities Pi , transverse shearing force intensities Qi and the higher-order shear force intensities Ri
of functionally graded plates reinforced by FGM stiffeners are defined as

Ni =
h/2∫

−h/2

σ
p
i dz + N s

i , Mi =
h/2∫

−h/2

zσ p
i dz + Ms

i , Pi =
h/2∫

−h/2

z3σ sh
i dz + Ps

i ,

Qi =
h/2∫

−h/2

σ
p
i zdz + Qs

i , Ri =
h/2∫

−h/2

z2σ p
i zdz + Rs

i , i = x, y,

Nxy =
h/2∫

−h/2

σ
p
xydz, Mxy =

h/2∫
−h/2

zσ p
xydz, Pxy =

h/2∫
−h/2

z3σ p
xydz (9)

where N s
i , Ms

i , Ps
i , Qs

i , Rs
i with i = x, y are respective quantities for stiffeners.

Substituting Eqs. (5–6.1) and (8) in Eq. (9) and using the Lekhnitskii smeared stiffener technique, we
obtain expressions like as [31,34,39]

Nx = a11ε
0
x + a12ε

0
y + a13φx,x + a14φy,y + a15w,xx + a16w,yy + a17φ

p
1 + a18φ

sx
1 ,

Ny = a21ε
0
x + a22ε

0
y + a23φx,x + a24φy,y + a25w,xx + a26w,yy + a27φ

p
1 + a28φ

sy
1 ,

Nxy = a31γ
0
xy + a32φx,y + a33φy,x + a34w,xy, (10)

Mx = b11ε
0
x + b12ε

0
y + b13φx,x + b14φy,y + b15w,xx + b16w,yy + b17φ

p
2 + b18φ

sx
2 ,

My = b21ε
0
x + b22ε

0
y + b23φx,x + b24φy,y + b25w,xx + b26w,yy + b27φ

p
2 + b28φ

sy
2 ,

Mxy = b31γ
0
xy + b32φx,y + b33φy,x + b34w,xy, (11)

Px = c11ε
0
x + c12ε

0
y + c13φx,x + c14φy,y + c15w,xx + c16w,yy + c17φ

p
4 + c18φ

sx
4 ,

Py = c21ε
0
x + c22ε

0
y + c23φx,x + c24φy,y + c25w,xx + c26w,yy + c27φ

p
4 + c28φ

sy
4 ,

Pxy = c31γ
0
xy + c32φx,y + c33φy,x + c34w,xy, (12)

Qx = d11φx + d12w,x ,

Qy = d21φy + d22w,y, (13.1)

Rx = e11φx + e12w,x ,

Ry = e21φy + e22w,y, (13.2)

where φ
p
1, φ

p
2 , φ

p
4, φ

sx
1 , φsx

2 , φsx
4 , φ

sy
1 , φ

sy
2 , φ

sy
4 are given by

φ
p
j =

h/2∫
−h/2

z j−1Ep (z, T ) αp (z, T ) �T dz, j = 1, 2, 4,

φsx
j =

h1+h/2∫
h/2

z j−1Esx (z, T ) αsx (z, T ) �T dz, φ
sy
j =

h2+h/2∫
h/2

z j−1Esy (z, T ) αsy (z, T ) �T dz, j = 1, 2, 4, (14)
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and the coefficients ai j , bi j , ci j , di j are defined in “Appendix I.”
The relations (10–13.1) are the most significant contribution found in this work in which the thermal

elements in plates and stiffeners are considered.
The strain–force resultant relations reversely are obtained from Eq. (10),

ε0x = a∗
11Nx + a∗

12Ny + a∗
13φx,x + a∗

14φy,y + a∗
15w,xx + a∗

16w,yy + a∗
17φ

p
1 + a∗

18φ
sx
1 + a∗

19φ
sy
1 ,

ε0y = a∗
21Nx + a∗

22Ny + a∗
23φx,x + a∗

24φy,y + a∗
25w,xx + a∗

26w,yy + a∗
27φ

p
1 + a∗

28φ
sx
1 + a∗

29φ
sy
1 ,

γ 0
xy = a∗

31Nxy + a∗
32φx,y + a∗

33φy,x + a∗
34w,xy (15)

where

a∗
11 = a22

a66
, a∗

12 = −a12
a66

, a∗
13 = a12a23 − a22a13

a66
, a∗

14 = a12a24 − a22a14
a66

, a∗
15 = a12a25 − a22a15

a66
,

a∗
16 = a12a26 − a22a16

a66
, a∗

17 = a12a27 − a22a17
a66

, a∗
18 = −a22a18

a66
, a∗

19 = a12a28
a66

,

a∗
21 = −a21

a66
, a∗

22 = a11
a66

, a∗
23 = a13a21 − a23a11

a66
, a∗

24 = a14a21 − a24a11
a66

, a∗
25 = a15a21 − a25a11

a66
,

a∗
26 = a16a21 − a26a11

a66
, a∗

27 = a17a21 − a27a11
a66

, a∗
28 = a18a21

a66
, a∗

29 = −a28a11
a66

,

a∗
31 = 1

a31
, a∗

32 = −a32
a31

, a∗
33 = −a33

a31
, a∗

34 = −a34
a31

. (16)

Substituting Eq. (15) into Eq. (11, 12) yields

Mx = b∗
11Nx + b∗

12Ny + b∗
13φx,x + b∗

14φy,y + b∗
15w,xx + b∗

16w,yy + b∗
17φ

p
1

+ b∗
18φ

sx
1 + b∗

19φ
sy
1 + b17φ

p
2 + b18φ

sx
2 ,

My = b∗
21Nx + b∗

22Ny + b∗
23φx,x + b∗

24φy,y + b∗
25w,xx + b∗

26w,yy + b∗
27φ

p
1

+ b∗
28φ

sx
1 + b∗

29φ
sy
1 + b27φ

p
2 + b28φ

sy
2 ,

Mxy = b∗
31Nxy + b∗

32φx,y + b∗
33φy,x + b∗

34w,xy,

Px = c∗
11Nx + c∗

12Ny + c∗
13φx,x + c∗

14φy,y + c∗
15w,xx + c∗

16w,yy + c∗
17φ

p
1

+ c∗
18φ

sx
1 + c∗

19φ
sy
1 + c17φ

p
4 + c18φ

sx
4 ,

Py = c∗
21Nx + c∗

22Ny + c∗
23φx,x + c∗

24φy,y + c∗
25w,xx + c∗

26w,yy + c∗
27φ

p
1

+ c∗
28φ

sx
1 + c∗

29φ
sy
1 + c27φ

p
4 + c28φ

sy
4 ,

Pxy = c∗
31Nxy + c∗

32φx,y + c∗
33φy,x + c∗

34w,xy (17)

where

b∗
11 = b11a∗

11 + b12a∗
21, b∗

12 = b11a∗
12 + b12a∗

22, b∗
13 = b11a∗

13 + b12a∗
23 + b13,

b∗
14 = b11a∗

14 + b12a∗
24 + b14, b∗

15 = b11a∗
15 + b12a∗

25 + b15, b∗
16 = b11a∗

16 + b12a∗
26 + b16,

b∗
17 = b11a∗

17 + b12a∗
27, b∗

18 = b11a∗
18 + b12a∗

28, b∗
19 = b11a∗

19 + b12a∗
29,

b∗
21 = b21a∗

11 + b22a∗
21, b∗

22 = b21a∗
12 + b22a∗

22, b∗
23 = b21a∗

13 + b22a∗
23 + b23,

b∗
24 = b21a∗

14 + b22a∗
24 + b24, b∗

25 = b21a∗
15 + b22a∗

25 + b25, b∗
26 = b21a∗

16 + b22a∗
26 + b26,

b∗
27 = b21a∗

17 + b22a∗
27, b∗

28 = b21a∗
18 + b22a∗

28, b∗
29 = b21a∗

19 + b22a∗
29,

b∗
31 = b31a∗

31, b∗
32 = b31a∗

32 + b32, b∗
33 = b31a∗

33 + b33, b∗
34 = b31a∗

34 + b34,

c∗
11 = c11a∗

11 + c12a∗
21, c∗

12 = c11a∗
12 + c12a∗

22, c∗
13 = c11a∗

13 + c12a∗
23 + c13,

c∗
14 = c11a∗

14 + c12a∗
24 + c14, c∗

15 = c11a∗
15 + c12a∗

25 + c15, c∗
16 = c11a∗

16 + c12a∗
26 + c16,

c∗
17 = c11a∗

17 + c12a∗
27, c∗

18 = c11a∗
18 + c12a∗

28, c∗
19 = c11a∗

19 + c12a∗
29,

c∗
21 = c21a∗

11 + c22a∗
21, c∗

22 = c21a∗
12 + c22a∗

22, c∗
23 = c21a∗

13 + c22a∗
23 + c23,

c∗
24 = c21a∗

14 + c22a∗
24 + c24, c∗

25 = c21a∗
15 + c22a∗

25 + c25, c∗
26 = c21a∗

16 + c22a∗
26 + c26,

c∗
27 = c21a∗

17 + c22a∗
27, c∗

28 = c21a∗
18 + c22a∗

28, c∗
29 = c21a∗

19 + c22a∗
29,

c∗
31 = c31a∗

31, c∗
32 = c31a∗

32 + c32, c∗
33 = c31a∗

33 + c33, c∗
34 = c31a∗

34 + c34. (18)
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The nonlinear equilibrium equations of an imperfect FGM plate on elastic foundations based on Reddy’s
third-order shear deformation theory are [7,37,38]

Nx,x + Nxy,y = 0, (19.1)

Nxy,x + Ny,y = 0, (19.2)

Qx,x + Qy,y − 3λ
(
Rx,x + Ry,y

) + λ
(
Px,xx + 2Pxy,xy + Py,yy

) + Nx
(
w,xx + w∗

,xx

)
+ 2Nxy

(
w,xy + w∗

,xy

)
+ Ny

(
w,yy + w∗

,yy

)
+ q − K1w + K2∇2w = 0, (19.3)

Mx,x + Mxy,y − Qx + 3λRx − λ
(
Px,x + Pxy,y

) = 0, (19.4)

Mxy,x + My,y − Qy + 3λRy − λ
(
Pxy,x + Py,y

) = 0 (19.5)

where q is a uniform transversal force.
By putting

Nx = f,yy, Ny = f,xx , Nxy = − f,xy, (20)

it is easy to see that the first two equations (19.1) and (19.2) are automatically satisfied, and the three other
equations become

Mx,xx + 2Mxy,xy + My,yy + f,yy
(
w,xx + w∗

,xx

) − 2 f,xy

(
w,xy + w∗

,xy

)
+ f,xx

(
w,yy + w∗

,yy

)

+ q − K1w + K2∇2w = 0,

Mx,x + Mxy,y − Qx + 3λRx − λ
(
Px,x + Pxy,y

) = 0,

Mxy,x + My,y − Qy + 3λRy − λ
(
Pxy,x + Py,y

) = 0. (21)

Substituting the expressions of Mi j , Pi j from Eq. (17) and Qx , Qy, Rx , Ry from Eq. (13.1) into Eq. (21), we
obtain

b∗
12 f,xxxx + (

b∗
11 + b∗

22 − 2b∗
31

)
f,xxyy + b∗

21 f,yyyy + b∗
13φx,xxx + (

b∗
23 + 2b∗

32

)
φx,xyy

+ (
b∗
14 + 2b∗

33

)
φy,xxy + b∗

24φy,yyy + b∗
15w,xxxx + (

b∗
16 + b∗

25 + 2b∗
34

)
w,xxyy + b∗

26w,yyyy

+ f,yy
(
w,xx + w∗

,xx

) − 2 f,xy

(
w,xy + w∗

,xy

)
+ f,xx

(
w,yy + w∗

,yy

)
+ q − K1w + K2∇2w = 0, (22)(

b∗
11 − b∗

31

)
f,xyy + b∗

12 f,xxx + b∗
13φx,xx + (

b∗
14 + b∗

33

)
φy,xy + b∗

32φx,yy + b∗
15w,xxx + (

b∗
16 + b∗

34

)
w,xyy

− λ
[(

c∗
11 − c∗

31

)
f,xyy + c∗

12 f,xxx + c∗
13φx,xx + (

c∗
14 + c∗

33

)
φy,xy

+ c∗
32φx,yy + c∗

15w,xxx + (
c∗
16 + c∗

34

)
w,xyy

] − d11φx − d12w,x + 3λ
(
e11φx + e12w,x

) = 0, (23)(
b∗
22 − b∗

31

)
f,xxy + b∗

21 f,yyy + (
b∗
23 + b∗

32

)
φx,xy + b∗

33φy,xx + b∗
24φy,yy + (

b∗
25 + b∗

34

)
w,xxy + b∗

26w,yyy

− λ
[(

c∗
22 − c∗

31

)
f,xxy + c∗

21 f,yyy + (
c∗
23 + c∗

32

)
φx,xy + c∗

33φy,xx

+ c∗
24φy,yy + (

c∗
25 + c∗

34

)
w,xxy + c∗

26w,yyy
] − d21φy − d22w,y + 3λ

(
e21φy + e22w,y

) = 0. (24)

The three equations (22), (23) and (24) include four unknown functions w,φx , φy , and f , so it is necessary
to find the fourth equation relating to these functions by using the compatibility equation (7). For this aim,
substituting the expressions of Eq. (15) into Eq. (7), one can write

a∗
22 f,xxxx + (

a∗
12 + a∗

21 + a∗
31

)
f,xxyy + a∗

11 f,yyyy + a∗
23φx,xxx + (

a∗
13 − a∗

32

)
φx,xyy + (

a∗
24 − a∗

33

)
φy,xxy

+ a∗
14φy,yyy + a∗

25w,xxxx + (
a∗
15 + a∗

26 − a∗
34

)
w,xxyy + a∗

16w,yyyy

− w2
,xy + w,xxw,yy + w,xxw

∗
,yy − 2w,xyw

∗
,xy + w∗

,xxw,yy = 0. (25)

Equations (22)–(25) are four nonlinear and governing equations in terms of four dependent unknown functions
w, φx , φy , and f . They are used to investigate the buckling and postbuckling of imperfect ES-FGM plates
subjected to mechanical loads or thermal loads or thermo-mechanical loads and resting on elastic foundations.
It is obvious that this system of equations is more complex than the one established by using the classical
plate theory or the nonlinear stability analysis of un-stiffened FGM plates. However, the higher-order theories
(including Reddy’s third-order shear deformation theory) can represent better the kinematic behavior and may
not require shear correction factors. This is also the main reason why these theories are used to investigate the
nonlinear buckling and postbuckling of thicker FGM plates.
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4 Boundary conditions and Galerkin method

In this paper, three cases of boundary conditions will be considered as follows [4,23,37,38]:

Case (1) Four edges of the plate are simply supported and freely movable (FM), i.e.,

w = φy = Nxy = Mx = Px = 0, Nx = Nxo at x = 0, a,

w = φx = Nxy = My = Py = 0, Ny = Nyo at y = 0, b. (26)

Case (2) Four edges of the plate are simply supported and immovable (IM), i.e.,

w = u = φy = Mx = Px = 0, Nx = Nxo at x = 0, a,

w = v = φx = My = Py = 0, Ny = Nyo at y = 0, b. (27)

Case (3) Four edges of the plate are simply supported. Uniaxial loads are applied in the direction of the x-
coordinate. The edges x = 0, x = a are considered freely movable, the remaining two edges being unloaded
and immovable. The boundary conditions, for this case, are

w = φy = Nxy = Mx = Px = 0, Nx = Nxo at x = 0, a,

w = v = φx = My = Py = 0, Ny = Nyo at y = 0, b (28)

where Nx0, Ny0 are pre-buckling force resultants in the x- and y-directions for case (1) and the first of case
(3), and they are fictitious compressive edge loads rendering the immovable edges for case (2) and the second
of case (3).

The analytical solution of the system of Eqs. (22)–(25) satisfying the boundary conditions can be found in
the form

w = W sin αx sin βy, w∗ = ξh sin αx sin βy,

f = F1 cos 2αx + F2 cos 2βy + F3 sin αx sin βy + 1

2
Nx0y2 + 1

2
Ny0x2,

φx = Φ1 cosαx sin βy, φy = Φ2 sin αx cosβy (29)

where α = mπ
a , β = nπ

b and m, n are numbers of half waves in the x- and y-direction, respectively, and the
coefficient ξ ∈ [0, 1] is an imperfection size of the plate.

By setting Eq. (29) into Eq. (25) and carrying out some calculations, the coefficients Fi (i = 1−3) are
determined as

F1 = β2

32α2a∗
22

W (W + 2ξh) , F2 = α2

32β2a∗
11

W (W + 2ξh) ,

F3 = − a∗
23α

3 + (
a∗
13 − a∗

32

)
αβ2

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
Φ1 −

(
a∗
24 − a∗

33

)
α2β + a∗

14β
3

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
Φ2

− a∗
25α

4 + (
a∗
15 + a∗

26 − a∗
34

)
α2β2 + a∗

16β
4

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4

W. (30)

Substituting the expressions in Eq. (29) into Eqs. (22), (23) and (24), then applying Galerkin method for the
resulting equations, we obtain

l11W + l12Φ1 + l13Φ2 + l14Φ1 (W + ξh) + l15Φ2 (W + ξh) + s1W (W + ξh)

+ s2W (W + 2ξh) + s3W (W + ξh) (W + 2ξh) + s4q − (
Nx0α

2 + Ny0β
2) (W + ξh) = 0, (31)

l21W + l22Φ1 + l23Φ2 + s5W (W + 2ξh) = 0, (32)

l31W + l32Φ1 + l33Φ2 + s6W (W + 2ξh) = 0, (33)

in which li j , sk(k = 1−6) are determined in “Appendix II.”
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From Eqs. (32) and (33), we obtain the following expressions:

Φ1 = l23l31 − l21l33
l22l33 − l23l32

W + l23s6 − l33s5
l22l33 − l23l32

W (W + 2ξh) ,

Φ2 = l32l21 − l22l31
l22l33 − l23l32

W + l32s5 − l22s6
l22l33 − l23l32

W (W + 2ξh) . (34)

Substituting Φ1, Φ2 from Eq. (34) into Eq. (31) yields the following expressions:(
l11 + l12

l23l31 − l21l33
l22l33 − l23l32

+ l13
l32l21 − l22l31
l22l33 − l23l32

)
W

+
(

s1 + l14
l23l31 − l21l33
l22l33 − l23l32

+ l15
l32l21 − l22l31
l22l33 − l23l32

)
W (W + ξh)

+
(

s2 + l12
l23s6 − l33s5

l22l33 − l23l32
+ l13

l32s5 − l22s6
l22l33 − l23l32

)
W (W + 2ξh)

+
(

s3 + l14
l23s6 − l33s5

l22l33 − l23l32
+ l15

l32s5 − l22s6
l22l33 − l23l32

)
W (W + ξh) (W + 2ξh)

+ s4q − (
Nx0α

2 + Ny0β
2) (W + ξh) = 0. (35)

The nonlinear Eq. (35) is used to determine the buckling loads and to analyze postbuckling load–deflection
curves of imperfect ES-FGM plates subjected to mechanical compressive loads or thermal loads or thermo-
mechanical loads taking into account elastic foundations.

5 Mechanical stability analysis

Consider a rectangular imperfect ES-FGM plate being simply supported at four edges and freely movable in
the plane [Case (1)]. The plate is subjected to the in-plane compressive loads Fx and Fy uniformly distributed
along the edges x = 0, a and y = 0, b, respectively.

If q = 0, Nxo = −hFx , Nyo = −hFy and putting η = Fy
Fx

, W̄ = W
h , Eq. (35) leads to the load–deflection

relation as

Fx = −1

α2 + ηβ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l11+l12
l23l31−l21l33
l22l33−l23l32

+l13
l32l21−l22l31
l22l33−l23l32

h
W̄

W̄+ξ

+
(

s1 + l14
l23l31−l21l33
l22l33−l23l32

+ l15
l32l21−l22l31
l22l33−l23l32

)
W̄

+
(

s2 + l12
l23s6−l33s5

l22l33−l23l32
+ l13

l32s5−l22s6
l22l33−l23l32

)
W̄(W̄+2ξ)

W̄+ξ

+
(

s3 + l14
l23s6−l33s5

l22l33−l23l32
+ l15

l32s5−l22s6
l22l33−l23l32

)
hW̄

(
W̄ + 2ξ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

The nonlinear Eq. (36) is used to analyze postbuckling load–deflection curves of imperfect ES-FGM plates
subjected to mechanical compressive loads.

If the plate is perfect, i.e., ξ = 0, taking W̄ → 0, Eq. (36) leads to

Fx = −1

h
(
α2 + ηβ2

)
(

l11 + l12
l23l31 − l21l33
l22l33 − l23l32

+ l13
l32l21 − l22l31
l22l33 − l23l32

)
. (37)

Equation (37) is used to determine the critical upper buckling load for a perfect ES-FGM plate.

6 Thermal stability analysis

Suppose that an imperfect ES-FGM plate is simply supported with immovable edges [Case (2)]. So the
immovable conditions u = 0 at x = 0, x = a and v = 0 at y = 0, y = b are fulfilled in the average sense as
[4,22]

b∫
0

a∫
0

u,xdxdy = 0,

a∫
0

b∫
0

v,ydydx = 0. (38)
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From the relations (6.1) and (15), (16), we obtain the following equations:

u,x = a∗
11 f,yy + a∗

12 f,xx + a∗
13φx,x + a∗

14φy,y + a∗
15w,xx + a∗

16w,yy

+ a∗
17φ

p
1 + a∗

18φ
sx
1 + a∗

19φ
sy
1 − w2

,x

2
− w,xw

∗
,x , (39.1)

v,y = a∗
21 f,yy + a∗

22 f,xx + a∗
23φx,x + a∗

24φy,y + a∗
25w,xx + a∗

26w,yy

+ a∗
27φ

p
1 + a∗

28φ
sx
1 + a∗

29φ
sy
1 − w2

,y

2
− w,yw

∗
,y . (39.2)

Substituting Eq. (29) into Eq. (39.1), and then into the conditions (38), gives us

Nx0 = a∗
22t11 − a∗

12t21
a∗
11a∗

22 − a∗
12a∗

21
W + a∗

22t12 − a∗
12t22

a∗
11a∗

22 − a∗
12a∗

21
W (W + ξh)

− a∗
22a∗

17 − a∗
12a∗

27

a∗
11a∗

22 − a∗
12a∗

21
φ
p
1 − a∗

22a∗
18 − a∗

12a∗
28

a∗
11a∗

22 − a∗
12a∗

21
φsx
1 − a∗

22a∗
19 − a∗

12a∗
29

a∗
11a∗

22 − a∗
12a∗

21
φ
sy
1 , (40.1)

Ny0 = a∗
11t21 − a∗

21t11
a∗
11a∗

22 − a∗
12a∗

21
W + a∗

11t22 − a∗
21t12

a∗
11a∗

22 − a∗
12a∗

21
W (W + ξh)

− a∗
11a∗

27 − a∗
21a∗

17

a∗
11a∗

22 − a∗
12a∗

21
φ
p
1 − a∗

11a∗
28 − a∗

21a∗
18

a∗
11a∗

22 − a∗
12a∗

21
φsx
1 − a∗

11a∗
29 − a∗

21a∗
19

a∗
11a∗

22 − a∗
12a∗

21
φ
sy
1 (40.2)

where

G3 = − a∗
23α

3 + (
a∗
13 − a∗

32

)
αβ2

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
, G4 = −

(
a∗
24 − a∗

33

)
α2β + a∗

14β
3

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
,

G5 = −a∗
25α

4 + (
a∗
15 + a∗

26 − a∗
34

)
α2β2 + a∗

16β
4

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
,

G10 = G3
l23l31 − l21l33
l22l33 − l23l32

+ G4
l32l21 − l22l31
l22l33 − l23l32

+ G5, G11 = G3
l23s6 − l33s5

l22l33 − l23l32
+ G4

l32s5 − l22s6
l22l33 − l23l32

,

t11 = 4δmδn

mnπ2

[
a∗
13α

(
l23l31−l21l33
l22l33−l23l32

)
+a∗

14β

(
l32l21−l22l31
l22l33 − l23l32

)
+ a∗

15α
2 + a∗

16β
2 + (

a∗
11β

2 + a∗
12α

2) G10

]
,

t12 = 4δmδn

mnπ2

[
a∗
13α

(
l23s6 − l33s5

l22l33 − l23l32

)
+ a∗

14β

(
l32s5 − l22s6

l22l33 − l23l32

)
+ (

a∗
11β

2 + a∗
12α

2) G11

]
+ 1

8
α2,

t21 = 4δmδn

mnπ2

[
a∗
23α

(
l23l31−l21l33
l22l33−l23l32

)
+a∗

24β

(
l32l21−l22l31
l22l33 − l23l32

)
+ a∗

25α
2 + a∗

26β
2 + (

a∗
21β

2 + a∗
22α

2) G10

]
,

t22 = 4δmδn

mnπ2

[
a∗
23α

(
l23s6 − l33s5

l22l33 − l23l32

)
+ a∗

24β

(
l32s5 − l22s6

l22l33 − l23l32

)
+ (

a∗
21β

2 + a∗
22α

2) G11

]
+ 1

8
β2. (41)

Introducing Eq. (40.1) into Eq. (35), with q = 0, we get

(
a∗
22a∗

17 − a∗
12a∗

27

)
α2 + (

a∗
11a∗

27 − a∗
21a∗

17

)
β2

a∗
11a∗

22 − a∗
12a∗

21
φ
p
1 +

(
a∗
22a∗

18 − a∗
12a∗

28

)
α2 + (

a∗
11a∗

28 − a∗
21a∗

18

)
β2

a∗
11a∗

22 − a∗
12a∗

21
φsx
1

+
(
a∗
22a∗

19 − a∗
12a∗

29

)
α2 + (

a∗
11a∗

29 − a∗
21a∗

19

)
β2

a∗
11a∗

22 − a∗
12a∗

21
φ
sy
1

= −
(

l11 + l12
l23l31 − l21l33
l22l33 − l23l32

+ l13
l32l21 − l22l31
l22l33 − l23l32

)
W

W + ξh

−
(

s1 + l14
l23l31 − l21l33
l22l33 − l23l32

+ l15
l32l21 − l22l31
l22l33 − l23l32

− t1α
2 − t3β

2
)

W
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−
(

s2 + l12
l23s6 − l33s5

l22l33 − l23l32
+ l13

l32s5 − l22s6
l22l33 − l23l32

)
W (W + 2ξh)

W + ξh

−
(

s3 + l14
l23s6 − l33s5

l22l33 − l23l32
+ l15

l32s5 − l22s6
l22l33 − l23l32

− t2α
2 − t4β

2
)

W (W + 2ξh) (42)

where

t1 = a∗
22t11 − a∗

12t21
a∗
11a∗

22 − a∗
12a∗

21
, t2 = a∗

22t12 − a∗
12t22

a∗
11a∗

22 − a∗
12a∗

21
, t3 = a∗

11t21 − a∗
21t11

a∗
11a∗

22 − a∗
12a∗

21
, t4 = a∗

11t22 − a∗
21t12

a∗
11a∗

22 − a∗
12a∗

21
. (43)

Equation (42) is used to analyze postbuckling load–deflection curves of imperfect ES-FGM plates subjected
to thermal loads on elastic foundations.

6.1 Uniform temperature rise

In this case, the FGM plate is exposed to a temperature environment uniformly raised from initial value Ti
to final value T f and �T = T f − Ti = const. Then, from Eq. (14), the thermal parameters are defined as
φ
p
1 = h P1�T, φsx

1 = h1P2�T, φ
sy
1 = h2P3�T, where

P1 = Emαm + 1

k + 1
(Emαcm + Ecmαm) + 1

2k + 1
Ecmαcm,

P2 = Ecαc + 1

k2 + 1
(Ecαmc + Emcαc) + 1

2k2 + 1
Emcαmc,

P3 = Ecαc + 1

k3 + 1
(Ecαmc + Emcαc) + 1

2k3 + 1
Emcαmc. (44)

Introducing φ
p
1, φ

sx
1 , φ

sy
1 into Eq. (42), we obtain the expression of temperature–deflection relation as

�T = −1

λ̄1h P1 + λ̄2h1P2 + λ̄h2P3

⎡
⎢⎢⎢⎢⎢⎢⎣

(
l11 + l12

l23l31−l21l33
l22l33−l23l32

+ l13
l32l21−l22l31
l22l33−l23l32

)
W̄

W̄+ξ

+
(

s1 + l14
l23l31−l21l33
l22l33−l23l32

+ l15
l32l21−l22l31
l22l33−l23l32

− t1α2 − t3β2
)

hW̄

+
(

s2 + l12
l23s6−l33s5

l22l33−l23l32
+ l13

l32s5−l22s6
l22l33−l23l32

)
h

W̄(W̄+2ξ)
W̄+ξ

+
(

s3 + l14
l23s6−l33s5

l22l33−l23l32
+ l15

l32s5−l22s6
l22l33−l23l32

− t2α2 − t4β2
)

h2W̄
(
W̄ + 2ξ

)

⎤
⎥⎥⎥⎥⎥⎥⎦
(45)

where

λ̄1 =
(
a∗
22a∗

17 − a∗
12a∗

27

)
α2 + (

a∗
11a∗

27 − a∗
21a∗

17

)
β2

a∗
11a∗

22 − a∗
12a∗

21
, λ̄2 =

(
a∗
22a∗

18 − a∗
12a∗

28

)
α2 + (

a∗
11a∗

28 − a∗
21a∗

18

)
β2

a∗
11a∗

22 − a∗
12a∗

21
,

λ̄3 =
(
a∗
22a∗

19 − a∗
12a∗

29

)
α2 + (

a∗
11a∗

29 − a∗
21a∗

19

)
β2

a∗
11a∗

22 − a∗
12a∗

21
. (46)

If the plate is initially perfect, i.e.,ξ = 0, from Eq. (46) taking W̄ → 0, we receive the expression of buckling
temperature change as

�T =
−
(

l11 + l12
l23l31−l21l33
l22l33−l23l32

+ l13
l32l21−l22l31
l22l33−l23l32

)
λ̄1h P1 + λ̄2h1P2 + λ̄h2P3

. (47)

Note that Eqs. (45) and (47) are explicit expressions of�T −W̄ relation and buckling temperature change�T ,
respectively, in case of temperature-independent plate material properties. On the contrary, when the material
properties of plates and stiffeners depend on temperature, those equations are implicit expressions. In that case,
the postbuckling temperature–deflection curves and critical buckling temperatures will be determined by two
iterative algorithms as follows:

Iterative algorithm 1 (For determining the critical buckling temperature)
It is necessary to use Eq. (47) with the following steps:
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(a1) Begin at the reference temperature, i.e., at T0 = 300K, and temperature-independent material properties
are found at T0 = 300K. Using Eq. (47), the buckling thermal load �T (1)

cr for the plate of temperature-
independent material is determined.

(a2) Using the material properties at T = T0 + �T (1)
cr and updating on the right of Eq. (47), the new buckling

thermal load �T (2)
cr is obtained.

(a3) Repeat step (a2) until the buckling temperature converges to a prescribed error tolerance ε, i.e., the iterative

process is defined as the relative difference between two consecutive solutions:
∣∣∣�T (i+1)

cr −�T (i)
cr

�T (i)
cr

∣∣∣ ≤ ε.

Iterative algorithm 2 (For determining postbuckling temperature–deflection curves)
It is necessary to use Eq. (45) with the following steps:

(b1) Begin with W/h = 0 at a specific point.
(b2) Use iterative procedures (a1)–(a3).
(b3) Specify the new value of W/h, repeat step (b2) until the postbuckling temperature converges to a pre-

scribed error tolerance.
(b4) Repeat steps (b2)–(b3) to obtain the postbuckling curve.

6.2 Nonlinear temperature change across the thickness

Assume that the temperature through thickness is governed by the one-dimensional Fourier equation of steady-
state heat conduction:

For plate
d

dz

[
κp (z)

dT

dz

]
= 0, T

∣∣z=−h/2 = Tm, T
∣∣z=h/2 = Tc, (48)

For x-direction stiffeners
d

dz

[
κsx (z)

dT

dz

]
= 0, T

∣∣z=h/2 = Tc, T
∣∣z=h/2+h1 = Tm, (49)

For y-direction stiffeners
d

dz

[
κsy (z)

dT

dz

]
= 0, T

∣∣z=h/2 = Tc, T
∣∣z=h/2+h2 = Tm (50)

where Tm and Tc are temperatures at metal-rich and ceramic-rich surfaces, respectively.
By solving Eqs. (48–50) with the mentioned boundary conditions, the solution for the temperature distri-

bution across the plate thickness is

Tp (z) = Tm + �T ∗
∑∞

p=0
1

kp+1

(
− κcm

κm

)p ( 2z+h
2h

)kp+1

∑∞
p=0

1
kp+1

(
− κcm

κm

)p , (51)

and the solutions for the temperature distribution across the stiffener thickness are

Tsx (z) = Tc − �T ∗
∑∞

p=0
1

k2 p+1

(
− κmc

κc

)p (
2z−h
2h1

)k2 p+1

∑∞
p=0

1
k2 p+1

(
− κmc

κc

)p , (52)

Tsy (z) = Tc − �T ∗
∑∞

p=0
1

k3 p+1

(
− κmc

κc

)p (
2z−h
2h2

)k3 p+1

∑∞
p=0

1
k3 p+1

(
− κmc

κc

)p , (53)

in which �T ∗ = Tc − Tm is the temperature change between ceramic surface and metal surface of the plate.
From Eqs. (51–53), we obtain the expressions �T (z) respecting Tp (z) , Tsx (z) and Tsy (z). Then, by the

same procedure as in the Sect. 6.1, the expressions of the thermal parameter from Eq. (14), in this case, are

φ
p
1 = h Hp�T ∗, φsx

1 = h1Hsx�T ∗, φsy
1 = h2Hsy�T ∗ (54)
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where

Hp =
∑∞

p=0
1

kp+1

(−κcm
κm

)p (
Emαm
kp+2 + Emαcm+Ecmαm

kp+k+2 + Ecmαcm
kp+2k+2

)
∑∞

p=0
1

kp+1

(−κcm
κm

)p ,

Hsx = Ecαc + Ecαmc + Emcαc

k2 + 1
+ Emcαmc

2k2 + 1
−

∑∞
p=0

1
k2 p+1

(−κmc
κc

)p (
Ecαc

k2 p+2 + Ecαmc+Emcαc
k2 p+k2+2 + Emcαmc

k2 p+2k2+2

)
∑∞

p=0
1

k2 p+1

(−κmc
κc

)p ,

Hsy = Ecαc + Ecαmc + Emcαc

k3 + 1
+ Emcαmc

2k3 + 1
−

∑∞
p=0

1
k3 p+1

(−κmc
κc

)p (
Ecαc

k3 p+2 + Ecαmc+Emcαc
k3 p+k3+2 + Emcαmc

k3 p+2k3+2

)
∑∞

p=0
1

k3 p+1

(−κmc
κc

)p .

(55)

Introducingφ
p
1, φ

sx
1 , φ

sy
1 fromEq. (54) into Eq. (42), wewill obtain the temperature–deflection implicit relation

for an ES-FGM plate with nonlinear temperature change.
In case of temperature-dependent material properties, postbuckling temperature–deflection curves and

critical buckling temperatures also will be determined by an above-presented iterative algorithm.

7 Thermo-mechanical stability analysis

Consider an imperfect ES-FGM plate simultaneously acted by a thermal field and a uniaxial compressive
loading Fx , uniformly distributed along the edges x = 0 and x = a. Suppose that the plate is simply supported
with movable edges x = 0, a, and immovable y = 0, b [Case (3)]. Employing Nx0 = −Fx h and Eqs. (39.1)
and (40.2), we obtain

Ny0 = a∗
21

a∗
22

Px h + t21
a∗
22

W + t22
a∗
22

W (W + ξh) − a∗
27

a∗
22

φ
p
1 − a∗

28

a∗
22

φsx
1 − a∗

29

a∗
22

φ
sy
1 . (56)

Substituting the expressions of Nx0 = −Fx h and Ny0, taking into account the expressions of φ
p
1, φ

sx
1 , φ

sy
1 the

yields the following expression:
For the plate under uniform temperature rise:

Fx = a∗
22

h
(
a∗
21β

2 − a∗
22α

2
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
l11 + l12

l23l31−l21l33
l22l33−l23l32

+ l13
l32l21−l22l31
l22l33−l23l32

)
W̄

W̄+ξ

+
(

s1 + l14
l23l31−l21l33
l22l33−l23l32

+ l15
l32l21−l22l31
l22l33−l23l32

− t21
a∗
22

)
hW̄

+ h
(

s2 + l12
l23s6−l33s5

l22l33−l23l32
+ l13

l32s5−l22s6
l22l33−l23l32

)
W̄(W̄+2ξ)
(W̄+ξ)

+
(

s3 + l14
l23s6−l33s5

l22l33−l23l32
+ l15

l32s5−l22s6
l22l33−l23l32

− t22
a∗
22

)
h2W̄

(
W̄ + 2ξ

)
+ s4

h(W̄+ξ)
q + β2

(
a∗
27

a∗
22

h P1 + a∗
28

a∗
22

h1P2 + a∗
29

a∗
22

h2P3

)
�T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (57)

for the plate under nonlinear temperature change:

Fx = a∗
22

h
(
a∗
21β

2 − a∗
22α

2
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
l11 + l12

l23l31−l21l33
l22l33−l23l32

+ l13
l32l21−l22l31
l22l33−l23l32

)
W̄

W̄+ξ

+
(

s1 + l14
l23l31−l21l33
l22l33−l23l32

+ l15
l32l21−l22l31
l22l33−l23l32

− t21
a∗
22

)
hW̄

+ h
(

s2 + l12
l23s6−l33s5

l22l33−l23l32
+ l13

l32s5−l22s6
l22l33−l23l32

)
W̄(W̄+2ξ)
(W̄+ξ)

+
(

s3 + l14
l23s6−l33s5

l22l33−l23l32
+ l15

l32s5−l22s6
l22l33−l23l32

− t22
a∗
22

)
h2W̄

(
W̄ + 2ξ

)
+ s4

h(W̄+ξ)
q + β2

(
a∗
27

a∗
22

h Hp + a∗
28

a∗
22

h1Hsx + a∗
29

a∗
22

h2Hsy

)
�T ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

Equations (57) and (58) are employed to trace postbuckling load–deflection curves of the imperfect ES-FGM
plates subjected to the combined mechanical and thermal loads.
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8 Numerical results and discussion

8.1 Validation of the present approach

As part of the validation of the present approach, three comparisons are carried out.

First comparison Consider a simply supported un-stiffened isotropic square plate (a = b) without elastic
foundations subjected to loads as follows:

– Uniaxial compressive load along x-axis with the nondimensional critical buckling loads

N̄1 = −Fx hb2

D
;

– Uniaxial compressive load along y-axis with the nondimensional critical buckling loads

N̄2 = −Fyhb2

D
;

– Biaxial compressive loads with the nondimensional critical buckling loads

N̄ = N̄1 + N̄2,

in which D = Eh3

12(1−ν2)
and Fx is given by Eq. (37) with η = 0, Fy is determined from Eq. (35) with

q = 0, Fx = 0, ξ = 0, Ny0 = −hFy .
Table 1 shows the present results compared with those of Huu-Tai Thai and Dong-Ho Choi [41] based on

refined plate theory (RPT).
As can be observed, the present results coincide with those of Ref. [41].

Second comparison Consider an un-stiffened FGM plate without elastic foundations with parameters [2]
Em = 70GPa, Ec = 380GPa, ν = 0.3, a/b = 0.5, m = n = 1.

Table 1 Comparison of nondimensional critical buckling loads with the results of Ref. [41] for un-stiffened isotropic plates
without elastic foundations

a/b b/h Work N̄1 N̄2 N̄

1 10 Ref. [41] 3.7866 3.7866 1.8933
Present 3.7866∗ 3.7866 1.8933

20 Ref. [41] 3.2653 3.2653 1.6327
Present 3.2653 3.2653 1.6327

30 Ref. [41] 2.6586 2.6586 1.3293
Present 2.6586 2.6586 1.3293

40 Ref. [41] 1.9550 1.9550 1.0566
Present 1.9550 (2,1) 1.9550 (1,2) 1.0567

1.5 10 Ref. [41] 4.0253 2.0048 1.3879
Present 4.0253 (2,1) 2.0048 1.3879

20 Ref. [41] 3.3077 1.7946 1.2424
Present 3.3077 (2,1) 1.7946 1.2424

30 Ref. [41] 2.5545 1.5285 1.0582
Present 2.5545 (2,1) 1.5285 1.0582

40 Ref. [41] 1.9421 1.2670 0.8772
Present 1.9421 (2,1) 1.2670 0.8772

2 10 Ref. [41] 3.7866 1.5093 1.2075
Present 3.7866 (2,1) 1.5093 1.2075

20 Ref. [41] 3.2653 1.3697 1.0958
Present 3.2653 (2,1) 1.3697 1.0958

30 Ref. [41] 2.5839 1.1873 0.9498
Present 2.5839 (3,1) 1.1873 0.9498

40 Ref. [41] 1.9230 1.0015 0.8012
Present 1.9230 (3,1) 1.0015 0.8012

∗ The remaining cases are taken with mode (m, n) = (1, 1).
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Table 2 Comparison of the critical buckling load F∗
x with the results of [2] for un-stiffened FGMplateswithout elastic foundations

η Theory b/h = 10 b/h = 20 b/h = 40 b/h = 60 b/h = 80 b/h = 100

0 CPT [2] 267.48 33.435 4.1794 1.2383 0.5224 0.2675
TSDT [2] 239.15 32.472 4.1486 1.2343 0.5215 0.2672
Present 239.15 32.472 4.1486 1.2343 0.5215 0.2672

1 CPT [2] 213.99 26.748 3.4353 0.9907 0.4179 0.2140
TSDT [2] 191.32 25.978 3.3189 0.9879 0.4172 0.2137
Present 191.32 25.978 3.3189 0.9874 0.4172 0.2137

−1 CPT[2] 356.64 44.580 5.5725 1.6511 0.6966 0.3566
TSDT [2] 318.86 43.296 5.5315 1.6457 0.6953 0.3562
Present 318.86 43.296 5.5315 1.6457 0.6953 0.3562

Table 3 Comparison of the critical buckling load Fcr
x (Pa) (×108) with the results of [30] for un-stiffened and stiffened FGM

plates without elastic foundations

k Un-stiffened Stiffened

Ref. [23] Present Ref. [23] Present

0.2 0.3204 (1,1) 0.32033 (1,1) 1.3503 (1,1) 1.3495 (1,1)
1 0.1948 (1,1) 0.19475 (1,1) 1.1552 (1,1) 1.1545 (1,1)
5 0.1285 (1,1) 0.12850 (1,1) 1.0309 (1,1) 1.0302 (1,1)
10 0.1171 (1,1) 0.11705 (1,1) 1.0236 (1,1) 1.0229 (1,1)

Fig. 2 Comparison of the effects of the volume fraction index on the postbuckling of un-stiffened FGM plates without elastic
foundations under uniform temperature rise

The results of the critical buckling load F∗
x = bhFcr

x ,with Fcr
x given by Eq. (37), are compared with those

of Shariat and Eslami [2] based on TSDT (Table 2). It can be seen that the present solutions are in close
agreement with TSDT [2].

Third comparison Table 3 presents the comparison on the results of the critical buckling load Fcr
x of the FGM

plate [given by Eq. (37)], with the results of Bich et al. [30] based on CPT. The input parameters of the FGM
plate are taken to be a = b = 1.5m, h = 0.008m, h1 = h2 = 30 × 10−3 m, b1 = b2 = 3 × 10−3 m,
d1 = d2 = 0.15m, Em = 70GPa, Ec = 380GPa, ν = 0.3.

As can be seen, a very good agreement is obtained in this comparison.

Fourth comparison Figure 2 illustrates the present results with the results of Duc and Tung [4] for un-stiffened
FGM plates without elastic foundations and under the uniform temperature rise based on the TSDT with
parameters Ec = 380 × 109 Pa, αc = 7.4 × 10−6 ◦C−1, Em = 70 × 109 Pa, αm = 23 × 10−6 ◦C−1, ν = 0.3.
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Table 4 Temperature-dependent coefficients E (in Pa), α (in K−1), and κ(in WmK−1) for ceramics and metals (from Reddy and
Chin [42])

Materials Properties P0 P−1 P1 P2 P3

Silicon nitride E 348.43e+9 0 −3.070e−4 2.160e−7 −8.946e−11
α 5.8723e−6 0 9.095e−4 0 0
κ 13.723 0 −1.032e−3 5.466e−7 −7.876e−11

Stainless steel E 201.04e+9 0 3.079e−4 −6.534e − 7 0
α 12.330e−6 0 8.086e−4 0 0
κ 15.379 0 −1.264e−3 2.092e−6 −7.223e−10

Fig. 3 Effect of the volume fraction index k on the postbuckling behavior of ES-FGM plates under uniaxial compression

As can be observed, a good agreement can be witnessed.

8.2 Numerical results for ES-FGM plates on elastic foundations

Numerical results are presented in this Section for FGM plates made from a mixture of ceramic (Silicon
nitride Si3N4) and metal (Stainless steel SUS304) reinforced by FGM stiffeners made from Si3N4/ SUS304.
The geometric property of the plate is b = 1m, and the geometric properties of the stiffeners are b1 =
b2 = 0.005m, h1 = h2 = 0.02m, k2 = k3 = 1/k. The elastic foundation parameters are used as K1 =
5 × 107 N/m3, K2 = 105 N/m (except in Sect. 8.2.4). The buckling load is minimum corresponding to the
buckling mode (m, n) = (1, 1).

The material properties, such as Young’s modulus E , thermal expansion coefficient α and thermal conduc-
tivity κ , can be expressed as a nonlinear function of temperature (from Reddy and Chin [42]) as

P = P0
(
P−1T −1 + 1 + P1T + P2T 2 + P3T 3) (59)

in which T = T0 + �T and T0 = 300K (room temperature), P0, P−1, P2, P1 and P3 are the coefficients of
temperature T (K) and are unique to the constituent materials (Table 4). Poisson’s ratio ν is assumed to be a
constant, and ν = 0.28.

8.2.1 Effect of volume fraction indices k, k2, k3

Figure 3 illustrates the effect of volume fraction index k (k2 = k3 = 1/k) on the postbuckling Fx − W/h
curves of ES-FGM plates on an elastic foundation under uniaxial compression.
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Fig. 4 Effect of the volume fraction index k on the postbuckling behavior of ES-FGM plates under nonlinear temperature change

Fig. 5 Effect of side-to-thickness ratio b/h on the postbuckling behavior of an ES-FGM on elastic foundations under uniaxial
compression

Figure 4 illustrates the effect of volume fraction index k on postbuckling �T − W/h curves of ES-FGM
plates on an elastic foundation with the nonlinear change of temperature.

From these Figures, it can be seen that the postbuckling curves become higherwhen the value of k decreases.
This property is appropriate to the real characteristic of the material, because the smaller value of k corresponds
to the richer ceramic, and the plate has the better load-carrying capacity (Fig. 3) or the plate becomes better
thermal barrier structure (Fig. 4).

8.2.2 Effect of geometric parameters

Figure 5 shows the effect of the ratio b/h on postbuckling Fx − W/h curves of an ES-FGM plate on elastic
foundations under uniaxial compression. It can be observed that the postbuckling load–deflection curves
become lower when the values of b/h increase.
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Fig. 6 Effect of imperfection on the thermal nonlinear response of immovable edge ES-FGM plates (T-D)

Table 5 Critical compressive load Fcr
x (GPa) for different number of stiffeners and material of stiffener of ES-FGM plates

(η = 1, k = 1)

The number of stiffeners Fcr
x (GPa)

a/b = 1 a/b = 1.5

Without stiffeners 1.2014 0.9048
5+5 Orthogonal stiffeners 1.2298 0.9270
10+10 Orthogonal stiffeners 1.2580 0.9489
20+20 Orthogonal stiffeners 1.3137 0.9917
40+40 Orthogonal stiffeners 1.4220 1.0740

Table 6 The critical thermal load�Tcr (K) for ES-FGM plates subjected to uniform temperature rise with temperature-dependent
properties (T-D properties)

a/b k Arrangement of stiffeners

Without stiffeners 20 Longitudinal stiffeners 20 Transversal stiffeners Orthogonal stiffeners (10+10)

0.75 0.2 395.38a (504.22b) 415.73 (536.55) 402.27 (515.13) 409.52 (526.63)
1 326.17 (397.34) 341.67 (420.17) 331.23 (404.78) 336.85 (413.05)
5 289.05 (342.19) 302.75 (361.17) 293.47 (348.30) 298.47 (355.22)

1 0.2 306.75 (371.66) 315.86 (384.80) 315.86 (384.80) 316.17 (385.25)
1 251.63 (293.63) 258.40 (302.78) 258.40 (302.78) 258.64 (303.11)
5 221.95 (253.49) 227.81 (261.06) 227.81 (261.06) 228.02 (261.33)

1.5 0.2 239.56 (278.66) 241.57 (281.36) 249.56 (292.09) 245.73 (286.92)
1 195.99 (221.15) 197.38 (222.92) 203.45 (230.61) 200.54 (226.92)
5 172.61 (191.65) 173.77 (193.07) 179.02 (199.50) 176.50 (196.41)

a T-D, b T-ID

Table 6 gives the effect of the ratio a/b on the critical thermal load�Tcr (K) for ES-FGMplates subjected to
the uniform temperature rise with temperature-dependent properties. As can be seen, the values of the critical
thermal loads with a/b = 0.75 are largest, but the ones with a/b = 1 are smaller, and the ones with a/b = 1.5
are smallest.

Figure 6 shows effects of imperfection on the nonlinear response of plates exposed to the uniform temper-
ature field with temperature-dependent properties. It is observed that the postbuckling load-carrying capacity
of plates is reduced with the increase in imperfection size ξ when the deflection is still small, but an inverse
trend occurs when the deflection is sufficiently large.
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8.2.3 Effect of stiffeners

Table 5 shows effects of the stiffener number on the critical mechanical load. It can be seen that the critical load
increases with the increased number of stiffeners. This increase is considerable. For example, Fcr

x = 1.422GPa
(40+40 orthogonal stiffeners) increases about 7.6% in comparison with Fcr

x = 1.3137GPa (20+20 orthogonal
stiffeners).

Table 6 presents the effects of different stiffener types as longitudinal stiffeners, transversal stiffeners and
orthogonal stiffeners on critical buckling loads of the FGM plate. It can be seen that these types of stiffeners
affect strongly the critical thermal load of the plate.

Fig. 7 Effect of foundations on the postbuckling behavior of ES-FGM on elastic foundations under uniaxial compression

Fig. 8 Thermal postbuckling of ES-FGMplates on a foundationwith temperature-independent (T-ID) and temperature-dependent
(T-D) properties
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Fig. 9 Effect of increasing temperature field on the postbuckling behavior of ES-FGM plates under uniaxial compression

Fig. 10 Effect of nonlinear temperature change on the postbuckling behavior of ES-FGM plates under uniaxial compression

8.2.4 Effect of elastic foundations

Figure 7 shows effects of elastic foundations on postbuckling Fx −W/h curves and�T −W/h of an ES-FGM
plate by using Eq. (36). As can be observed, the curve corresponding to both parameters of foundation K1 
= 0,
K2 
= 0 is the highest, the one corresponding to without foundation is the lowest.

8.2.5 Effect of temperature on postbuckling load–deflection curves of orthogonally stiffened FGM plates

Figure 8 shows the effect of temperature on postbuckling �T − W/h curves of an ES-FGM plate (a = b) for
two cases T-ID and T-D material properties. It is evident that the postbuckling load-carrying capacity of the
plate is strongly reduced.

Figures 9 and 10 show the effects of temperature on postbuckling Fx − W/h curves of ES-FGM square
plates under mechanical compression load on elastic foundations for T-ID with uniform temperature rise and
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Table 7 The value of critical thermal loads �Tcr (K) in two cases of an FGM plate: uniform temperature rise and nonlinear
temperature change

k Uniform temperature rise Nonlinear temperature change

K1 = 0, K2=0 K1 = 5×107 N/m3,
K2 = 105 N/m

K1 = 0, K2=0 K1 = 5×107 N/m3,
K2 = 105 N/m

Without stiffeners 0.2 357.49 371.83 753.71 783.95
0.5 312.23 325.69 673.04 702.06
1 280.83 293.70 606.89 634.71
5 241.38 253.52 502.25 527.52

Orthogonal FGM stiffeners 0.2 371.29 385.43 783.04 812.87
0.5 323.59 336.87 697.69 726.32
1 290.49 303.19 627.77 655.20
5 249.39 261.36 518.78 543.68

nonlinear temperature change. It can be seen that the postbuckling curves become lower gradually with the
increase in temperature. This is reasonable because the preheated ES-FGMplates exhibit a decreasing tendency
in the postbuckling load- carrying capacity when they are subjected to added action of mechanical loads.

Table 7 shows values of critical thermal loads �Tcr (K) for two cases of uniform temperature rise and non-
linear temperature change. As can be seen, the critical thermal loads of FGM plates under uniform temperature
rise are smaller than those under nonlinear temperature change.

9 Conclusions

This paper presents buckling and postbuckling nonlinear analyses of imperfect FGM plates reinforced by
FGM stiffeners on elastic foundations and subjected to in-plane compressive mechanical loads or thermal
loads or thermo-mechanical loads simultaneously by an analytical approach. The material properties of plate
and stiffeners are assumed to beT-DorT-ID and graded in the thickness direction according to a volume fraction
power-law distribution. Based on the Reddy’s TSDT with the von Kármán kinematic nonlinearity and taking
into account stiffener, four nonlinear stability equations for ES-FGM plates are derived. Equations (10–13.1)
are the most important relations found in this work in which the contribution of stiffeners and thermal elements
in equations of Ni j , Mi j , Pi j , Qi , Ri are taken into account. The closed-form expressions for determining the
buckling load and analyzing postbuckling load–deflection curves are obtained by the Galerkin method. Two
iterative algorithms are presented for the case of temperature-dependent plate material properties. The effects
of temperature, stiffener, material properties, geometrical parameters, and foundation parameters are analyzed
in detail by numerical calculations. The comparisons show that the present results are in good agreement with
the existing previous results and therefore affirmed the reliability and accuracy of the proposed method. Some
remarks are deduced from the present results as:

(i) Reddy’s third-order shear deformation theory can represent better the kinematic behavior and may not
require shear correction factors. This is also the main reason why this theory is used to investigate the
nonlinear buckling and postbuckling of thicker FGM plates.

(ii) The postbuckling mechanical load–deflection curves lower gradually with increase of �T .
(iii) The presence of stiffeners enhances the stability of FGM plates.
(iv) The thermal element, stiffener, foundation parameters and volume index affect strongly buckling and

postbuckling behavior of plates.

Appendix I

Ei =
h/2∫

−h/2

zi−1Ep (z, T ) dz, i = 1, 2, 3, 4, 5, 7,



2398 D. V. Dung, N. T. Nga

E sx
i =

h1+h/2∫
h/2

zi−1Esx (z) dz, E sy
i =

h2+h/2∫
h/2

zi−1Esy (z) dz, i = 1, 2, 3, 4, 5, 7,

a11 =
(

E1

1 − ν2
+ b1E sx

1

d1

)
, a12 = E1ν

1 − ν2
, a13 = E2

1 − ν2
+ b1E sx

2

d1
− λ

(
E4

1 − ν2
+ b1E sx

4

d1

)
,

a14 = E2ν

1 − ν2
− λ

E4ν

1 − ν2
, a15 = −λ

(
E4

1 − ν2
+ b1E sx

4

d1

)
, a16 = −λ

E4ν

1 − ν2
,

a17 = − 1

1 − ν
, a18 = −b1

d1
,

a21 = E1ν

1 − ν2
= a12, a22 = E1

1 − ν2
+ b2E sy

1

d2
, a23 = E2ν

1 − ν2
− λ

E4ν

1 − ν2
,

a24 = E2

1 − ν2
+ b2E sy

2

d2
− λ

(
E4

1 − ν2
+ b2E sy

4

d2

)
, a25 = −λ

E4ν

1 − ν2
= a16,

a26 = −λ

(
E4

1 − ν2
+ b2E sy

4

d2

)
, a27 = − 1

1 − ν
= a17, a28 = −b2

d2
,

a31 = E1

2 (1 + ν)
, a32 = E2

2 (1 + ν)
− λ

E4

2 (1 + ν)
, a33 = a32, a34 = −λ

E4

1 + ν
,

b11 = E2

1 − ν2
+ b1E sx

2

d1
, b12 = E2ν

1 − ν2
,

b13 = E3

1 − ν2
+ b1E sx

3

d1
− λ

(
E5

1 − ν2
+ b1E sx

5

d1

)
, b14 = E3ν

1 − ν2
− λ

E5ν

1 − ν2
,

b15 = −λ

(
E5

1 − ν2
+ b1E sx

5

d1

)
, b16 = −λ

E5ν

1 − ν2
,

b17 = − 1

1 − ν
= a17, b18 = −b1

d1
= a18,

b21 = E2ν

1 − ν2
= b12, b22 = E2

1 − ν2
+ b2E sy

2

d2
, b23 = E3ν

1 − ν2
− λ

E5ν

1 − ν2
,

b24 = E3

1 − ν2
+ b2E sy

3

d2
− λ

(
E5

1 − ν2
+ b2E sy

5

d2

)
, b25 = −λ

E5ν

1 − ν2
= b16,

b26 = −λ

(
E5

1 − ν2
+ b2E sy

5

d2

)
, b27 = − 1

1 − ν
= b17, b28 = −b2

d2
,

b31 = E2

2 (1 + ν)
, b32 = E3

2 (1 + ν)
− λ

E5

2 (1 + ν)
, b33 = b32, b34 = −λ

E5

1 + ν
,

c11 = E4

1 − ν2
+ b1E sx

4

d1
, c12 = E4ν

1 − ν2
, c13 = E5

1 − ν2
+ b1E sx

5

d1
− λ

(
E7

1 − ν2
+ b1E sx

7

d1

)
,

c14 = E5ν

1 − ν2
− λ

E7ν

1 − ν2
, c15 = −λ

(
E7

1 − ν2
+ b1E sx

7

d1

)
, c16 = −λ

E7ν

1 − ν2
,

c17 = − 1

1 − ν
= a17, c18 = −b1

d1
,

c21 = E4ν

1 − ν2
= c12, c22 = E4

1 − ν2
+ b2E sy

4

d2
, c23 = E5ν

1 − ν2
− λ

E7ν

1 − ν2
,

c24 = E5

1 − ν2
+ b2E sy

5

d2
− λ

(
E7

1 − ν2
+ b2E sy

7

d2

)
, c25 = −λ

E7ν

1 − ν2
= b16,



Buckling and postbuckling nonlinear analysis of imperfect FGM plates 2399

c26 = −λ

(
E7

1 − ν2
+ b2E sy

7

d2

)
, c27 = − 1

1 − ν
= a17, c28 = −b2

d2
,

c31 = E4

2 (1 + ν)
, c32 = E5

2 (1 + ν)
− λ

E7

2 (1 + ν)
, c33 = c32, c34 = −λ

E7

1 + ν
,

d11 = E1

2 (1 + ν)
+ b1

d1

E sx
1

2 (1 + ν)
− 3λ

[
E3

2 (1 + ν)
+ b1

d1

E sx
3

2 (1 + ν)

]
, d12 = d11,

d21 = E1

2 (1 + ν)
+ b2

d2

E sy
1

2 (1 + ν)
− 3λ

[
E3

2 (1 + ν)
+ b2

d2

E sy
3

2 (1 + ν)

]
, d22 = d21,

e11 = E3

2 (1 + ν)
+ b1

d1

E sx
3

2 (1 + ν)
− 3λ

[
E5

2 (1 + ν)
+ b1

d1

E sx
5

2 (1 + ν)

]
, e12 = e11,

e21 = E3

2 (1 + ν)
+ b2

d2

E sy
3

2 (1 + ν)
− 3λ

[
E5

2 (1 + ν)
+ b2

d2

E sy
5

2 (1 + ν)

]
, e22 = e21.

Appendix II

δm = 1 − (−1)m

2
, δn = 1 − (−1)n

2
, G3 = − a∗

23α
3 + (

a∗
13 − a∗

32

)
αβ2

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
,

G4 = −
(
a∗
24 − a∗

33

)
α2β + a∗

14β
3

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
, G5 = −a∗

25α
4 + (

a∗
15 + a∗

26 − a∗
34

)
α2β2 + a∗

16β
4

a∗
22α

4 + (
a∗
12 + a∗

21 + a∗
31

)
α2β2 + a∗

11β
4
,

l11 = b∗
15α

4 + (
b∗
16 + b∗

25 + 2b∗
34

)
α2β2 + b∗

26β
4 − K1 − K2

(
α2 + β2)

+G5
[
b∗
12α

4 + (
b∗
11 + b∗

22 − 2b∗
31

)
α2β2 + b∗

21β
4] ,

l12 = b∗
13α

3 + (
b∗
23 + 2b∗

32

)
αβ2 + G3

[
b∗
12α

4 + (
b∗
11 + b∗

22 − 2b∗
31

)
α2β2 + b∗

21β
4] ,

l13 = (
b∗
14 + 2b∗

33

)
α2β + b∗

24β
3 + G4

[
b∗
12α

4 + (
b∗
11 + b∗

22 − 2b∗
31

)
α2β2 + b∗

21β
4] ,

l14 = G3
32α2β2

3mnπ2 δmδn, l15 = G4
32α2β2

3mnπ2 δmδn,

l21 = (
b∗
15 − λc∗

15

)
α3 + [(

b∗
16 + b∗

34

) − λ
(
c∗
16 + c∗

34

)]
αβ2 + (d12 − 3λe12) α

+ {(
b∗
12 − λc∗

12

)
α3 + [(

b∗
11 − b∗

31

) − λ
(
c∗
11 − c∗

31

)]
αβ2} G5,

l22 = (
b∗
13 − λc∗

13

)
α2 + (

b∗
32 − λc∗

32

)
β2 + (d11 − 3λe11) + {(

b∗
12 − λc∗

12

)
α3

+ [(
b∗
11 − b∗

31

) − λ
(
c∗
11 − c∗

31

)]
αβ2} G3,

l23 = [(
b∗
14 + b∗

33

) − λ
(
c∗
14 + c∗

33

)]
αβ + {(

b∗
12 − λc∗

12

)
α3 + [(

b∗
11 − b∗

31

) − λ
(
c∗
11 − c∗

31

)]
αβ2} G4,

l31 = (
b∗
26 − λc∗

26

)
β3 + [(

b∗
25 + b∗

34

) − λ
(
c∗
25 + c∗

34

)]
α2β

+ (d22 − 3λe22) β + {(
b∗
21 − λc∗

21

)
β3 + [(

b∗
22 − b∗

31

) − λ
(
c∗
22 − c∗

31

)]
α2β

}
G5,

l32 = [(
b∗
23 + b∗

32

) − λ
(
c∗
23 + c∗

32

)]
αβ + {(

b∗
21 − λc∗

21

)
β3 + [(

b∗
22 − b∗

31

) − λ
(
c∗
22 − c∗

31

)]
α2β

}
G3,

l33 = (
b∗
33 − λc∗

33

)
α2 + (

b∗
24 − λc∗

24

)
β2 + d21 − 3λe21 + {(

b∗
21 − λc∗

21

)
β3

+ [(
b∗
22 − b∗

31

) − λ
(
c∗
22 − c∗

31

)]
α2β

}
G4,

s1 = G5
32α2β2

3mnπ2 δmδns2 = −8α2β2

3mnπ2

(
b∗
12

a∗
22

+ b∗
21

a∗
11

)
δmδn, s3 = −1

16

(
β4

a∗
22

+ α4

a∗
11

)
, s4 = 16

mnπ2 δmδn,

s5 = −8αβ2

3mnπ2

(
b∗
12 − λc∗

12

a∗
22

)
δmδn, s6 = −8α2β

3mnπ2

(
b∗
21 − λc∗

21

a∗
11

)
δmδn .



2400 D. V. Dung, N. T. Nga

References

1. Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M., Reddy, J.N.: Buckling analysis of isotropic
and laminated plates by radial basis functions according to a higher-order shear deformation theory. Thin Walled Struct. 49,
804–811 (2011)

2. Samsam Shariat, B.A., Eslami, M.R.: Buckling of thick functionally graded plates under mechanical and thermal loads.
Compos. Struct. 78, 433–439 (2007)

3. Khabbaz, R.S., Manshadi, B.D., Abedian, A.: Nonlinear analysis of FGM plates under pressure loads using the higher-order
shear deformation theories. Compos. Struct. 89, 333–344 (2009)

4. Duc, N.D., Tung, H.V.: Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates
on elastic foundations. Compos. Struct. 93, 2874–2881 (2011)

5. Javaheri, R., Eslami, M.R.: Buckling of functionally graded plates under in-plane compressive loading. J. Appl. Math. Mech.
82, 277–283 (2002)

6. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40, 162–169 (2002)
7. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates based on the higher order theory. J. Therm. Stress

25, 603–25 (2002)
8. Na, K.S., Kim, J.H.: Three-dimensional thermo–mechanical buckling analysis for functionally graded composite plates.

Compos. Struct. 73, 413–422 (2006)
9. Lanhe, W.: Thermal buckling of a simply supported moderately thick rectangular FGM plate. Compos. Struct. 64, 211–218

(2004)
10. Kiani, Y., Eslami, M.R.: An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos. B

Eng. 45, 101–110 (2013)
11. Hui, D., Du, I.H.Y.: Initial postbuckling behavior of imperfect antisymmetric crossply cylindrical shells under torsion. J.

Appl. Mech. ASME 54, 174–180 (1987)
12. Zhang, X., Han, Q.: Buckling and postbuckling behaviors of imperfect cylindrical shells subjected to torsion. Thin Wall.

Struct. 45, 1035–1043 (2007)
13. Jiang, Q., Wang, X., Zhu, Y., Hui, D., Qiu, Y.: Mechanical, electrical and thermal properties of aligned carbon nan-

otube/polyimide composites. Compos. B Eng. 56, 408–412 (2014)
14. Bagherizadeh, E., Kiani, Y., Eslami,M.R.:Mechanical buckling of functionally gradedmaterial cylindrical shells surrounded

by Pasternak elastic foundation. Compos. Struct. 93, 3063–3071 (2011)
15. Najafov, A.M., Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and stability of functionally graded orthotropic cylindrical

shells on elastic foundations. Meccanica 48, 829–840 (2013)
16. Sofiyev, A.H., Avcar, M.: The stability of cylindrical shells containing a FGM layer subjected to axial load on the Pasternak

foundation. Engineering 2, 228–236 (2010)
17. Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and buckling of the cylindrical shell with functionally graded coatings

surrounded by an elastic medium. Compos. B Eng. 45, 1133–1142 (2013)
18. Sofiyev, A.H.: The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler-

Pasternak foundations. Int. J. Press. Vessels Pip. 87, 753–761 (2010)
19. Sofiyev, A.H.: Non-linear buckling behavior of FGM truncated conical shells subjected to axial load. Int. J. Nonlinear Mech.

46, 711–719 (2011)
20. Sofiyev, A.H.: Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium. Int. J. Press. Vessels

Pip. 107, 38–49 (2013)
21. Shen, H.S.: Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties.

Int. J. Solids Struct. 41, 1961–1974 (2004)
22. Shen, H.S.: Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Int. J.

Mech. Sci. 49, 466–478 (2007)
23. Shen, H.S., Wang, Z.X.: Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations.

Compos. Struct. 92, 2517–2524 (2010)
24. Lal, A., Jagtap, K.R., Singh, B.N.: Postbuckling response of functionally graded materials plate subjected to mechanical

and thermal loadings with random material properties. Appl. Math. Model. 37, 2900–2920 (2013)
25. Akbari, M., Kiani, Y., Eslami, M.R.: Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge

supports. Acta Mech. 226, 897–915 (2015)
26. Mirzavand, B., Eslami, M.R.: A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with

temperature-dependent properties. Acta Mech. 218, 87–101 (2011)
27. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)
28. Steen, E.: Elastic buckling and postbuckling of eccentrically stiffened plates. Int. J. Solids Struct. 25, 751–768 (1989)
29. Bedair, O.K.: Influence of stiffener location on the stability of stiffened plates under compression and in-plane bending. Int.

J. Mech. Sci. 39, 33–49 (1997)
30. Bich, D.H., Dung, D.V., Nam, V.H.: Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical

panels. Compos. Struct. 94, 2465–2473 (2012)
31. Najafizadeh, M.M., Hasani, A., Khazaeinejad, P.: Mechanical stability of functionally graded stiffened cylindrical shells.

Appl. Math. Model. 33, 1151–1157 (2009)
32. Dung, D.V., Nam, V.H.: Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin

shells under external pressure and surrounded by an elastic medium. Eur. J. Mech. A/Solids 46, 42–53 (2014)
33. Dung, D.V., Hoa, L.K., Nga, N.T.: On the stability of functionally graded truncated conical shells reinforced by functionally

graded stiffeners and surrounded by an elastic medium. Compos. Struct. 108, 77–90 (2014)
34. Dung, D.V., Hoa, L.K.: Nonlinear torsional buckling and postbuckling of eccentrically stiffened FGM cylindrical shells in

thermal environment. Compos. B Eng. 69, 378–388 (2015)
35. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)



Buckling and postbuckling nonlinear analysis of imperfect FGM plates 2401

36. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)
37. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press LLC, Boca Raton

(2004)
38. Shen, H.S.: Functionally Graded Materials; Nonlinear Analysis of Plates and Shells. CRC Press LLC, Boca Raton (2009)
39. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates and Shells. McGraw-Hill, New York (1975)
40. Birman, V., Bert, C.W.: Dynamic stability of reinforced composite cylindrical shells in thermal fields. J. Sound Vib. 142,

183–190 (1990)
41. Thai, H.-T., Choi, D.-H.: Analytical solutions of refined plate theory for bending buckling and vibration analyses of thick

plates. Appl. Math. Model. 37, 8310–8323 (2013)
42. Reddy, J.N., Chin, C.D.: Thermo–mechanical analysis of functionally graded cylinders and plates. J. Therm. Stress 21,

593–626 (1998)


	Buckling and postbuckling nonlinear analysis  of imperfect FGM plates reinforced by FGM stiffeners  with temperature-dependent properties based on TSDT
	Abstract
	1 Introduction
	2 Eccentrically stiffened FGM plates (ES-FGM plates)
	3 Basic relations and governing equations
	4 Boundary conditions and Galerkin method
	5 Mechanical stability analysis
	6 Thermal stability analysis
	6.1 Uniform temperature rise
	6.2 Nonlinear temperature change across the thickness

	7 Thermo-mechanical stability analysis
	8 Numerical results and discussion
	8.1 Validation of the present approach
	8.2 Numerical results for ES-FGM plates on elastic foundations
	8.2.1 Effect of volume fraction indices k, k2, k3
	8.2.2 Effect of geometric parameters
	8.2.3 Effect of stiffeners
	8.2.4 Effect of elastic foundations
	8.2.5 Effect of temperature on postbuckling load--deflection curves of orthogonally stiffened FGM plates


	9 Conclusions
	Appendix I
	Appendix II
	References




