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Abstract The present study is concerned with the theoretical investigation of pull-in phenomena and their
significance for assessing structural instability of aMEMS switch, modeled as electrostatically actuatedmicro-
cantilever beam coupled with a rigid plate. The essential factors such as geometric and inertial nonlinearities,
higher-order distribution of electrostatic pressure, and nonlinear squeeze film effect have been included in
the dynamic model to accurately predict the pull-in voltages. The limit of structural stability due to pull-
in behavior is numerically illustrated for both static and dynamic conditions of the device. The effects of
varying the electrode length, structural nonlinearity, air-gap thickness, and plate length on pull-in instability
are investigated. The pull-in voltage predicted numerically within the limit of operational voltage has been
validated with the findings in 3D modeling software. It is perceived that a highly deformable micro-system
loses its stability at high actuation voltage via static bifurcation due to pull-in instability. Furthermore, structural
stability appears observed to be high by reducing the size of the device as the pull-in occurrence is at high applied
voltage. The damping mechanism introduced into the device essentially stabilizes the device by switching the
pull-in voltage to a high value. However, the obtained outcomes enable the satisfactory predictions of pull-in
occurrence and subsequent understanding of structural instability and safe operating zones of the device.

1 Introduction

Nowadays, the use of electrostatically actuated micro-/nano-electromechanical systems has satisfactorily been
adopted for designing and developing various MEMS devices such as microswitches, micro-motors, micro-
relays, micro-grippers, micro-resonators, micro-mirrors, micro-pumps, micro-valves, and micro-filters [1].
Due to simplicity in design with low-cost fabrication, fast response, the ability to achieve rotary motion, and
low power consumption, the utilization of electrostatic actuation in MEMS applications has tremendously
escalated [2]. However, this actuation gives rise to a complex nonlinear phenomenon and often results in the
structural instability via bifurcation due to pull-in occurrence for the finite air-gap thickness of the order of
10−5 or higher. As the pull-in behavior restricts the stable travel range, evaluating the pull-in voltage plays a
decisive and inevitable factor in understanding the stable operation zones and revealing the causes of structural
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failure. However, the performance of electrostatically actuated MEMS devices is limited due to the existing
inherent pull-in instability. Here, the microswitch has been modeled as micro-cantilever beam coupled with
a rigid plate under electrostatic actuation. The present model comprises unique and distinct features with
compendious outcomes that contrive the clear portrait of possible existing pull-in instability when the design
parameters vary within a certain range.

However, in this Subsection, a brief state of the art of the research on electrostatically actuated MEMS
devices has been discussed. Adams et al. [3] showed the behavior of a micromechanical device when the linear
and nonlinear stiffness coefficients are tuned independently. Kim et al. [4] studied the mechanical behavior of
a micro-cantilever based on the intrinsic strain during deposition of MEMS structures. Shenthilkumar et al. [5]
dealt with pull-in instability of electrostatically actuated beams having the configurations of cantilever beam,
fixed–fixed beam and modified beam structures with perforations of square, rectangular and circular shapes
using COMSOL 4.3 software. Lee et al. [6] analyzed nonlinear dynamic responses of a micro-cantilever for
atomic forcemicroscopy numerically as well as experimentally. The frequency response function of an initially
excited micro-cantilever on a squeeze film was developed by Lee [7] using the mode superposition method.
In [8,9], vibration characteristics of a moving part, the switching speed and long-term reliability of MEMS
switch have been investigated, and the effect of maximum toggle rate ofMEMS due to the resonant frequencies
of a micro-cantilever has been reported. Several methods have been used to calculate the pull-in stability of
electrostatically actuated MEMS devices as the operational range of electrostatic devices is usually limited
[10–12]. Dynamic pull-in voltage and behavior are necessitated and are a significant factor in operating the
electrostatically MEMS devices beyond the actuation voltage, i.e., voltages exceeding the pull-in [13]. Abdel-
Rahman et al. [14] investigated the effect of geometric nonlinearity on the pull-in conditions, while Haluzan et
al. [15] controlled the pull-in voltage by adjusting the gap shape in an electrostatically actuated cantilever and
fixed–fixed beams. Dominicus et al. [16] developed a single-element approach for the electrostatic actuation,
and they modeled an air-gap capacitor as lumped spring–mass system to determine its behavior. Mojahedi et
al. [17] studied the nonlinear vibrations of multilayer micro-plates subjected to the electric field. Some of the
researchers as Busta et al. [18] introduced a conductive shield with an opening between the movable MEMS
component and substrate to control pull-in forces and to increase pull-in voltages. Zhang and Meng [19]
simulated the resonant amplitude frequency responses of an electrostatically actuated micro-cantilever under
combined parametric and forced excitations using the harmonic balancemethod. Similar research has also been
carried out by Liu et al. [20] using Poincaré mapping to characterize the nonlinear dynamic behavior and to
find the region of bi-stability for the closed loop at low gain. Li and Aluru [21] proposed meshless techniques
for effective simulation of linear and nonlinear behavior in electrostatic MEMS. Ashby [22] suggested an
approach to select materials for the design of macroscale structures. Gabbay et al. [23] developed reduced-
order dynamic macro-models of MEMS devices to capture the device behavior for rapid circuit and system
simulation. Furlani [24] investigated the effects of nonlinearity on the behavior of parametric resonance of
a micro-machined oscillator. They have also shown analytically how the nonlinearity changes the stability
characteristics of parametric resonance significantly. Krylov and Mainom [25] studied the nonlinear behaviors
near the pull-in voltage of an electrically actuated micron-scale beam using the Galerkin procedure. Chao et al.
[26] investigated the precise predictions of the DC dynamic pull-in voltages of a clamped–clampedmicrobeam
based on a distributed model. A step function of voltage has been considered to introduce the DC dynamics
for analyzing the pull-in phenomenon. Chatterjee and Pohit [27] formulated a comprehensive model of an
electrostatically actuated micro-cantilever beam separated from the ground plane by a relatively larger gap
accounting for the nonlinearities of the system arising out of electric forces, geometry of the deflected beam, and
the inertial terms. The higher-order correction of electrostatic forces has been incorporated into the dynamic
model for analyzing the pull-in phenomenon. Pratiher [28] demonstrated the stability and bifurcation analysis
of a highly nonlinear electrically drivenMEMS resonator derived by using Hamilton’s principle and Galerkin’s
method considering both transverse and longitudinal displacement of the resonator. Kivi et al. [29] investigated
both static and dynamic behaviors of a fully clamped functionally graded piezoelectric microbeam when it is
subjected to simultaneous electrostatic and piezoelectric actuations. Authors have shown that tunability of the
bending stiffness due to piezoelectric actuation can be used to stabilize the system from the pull-in instability.
Moreover, the effect of surface traction as described by Casimir force or van der Waals force due to molecular
interaction between two surfaces plays an important role in determining the pull-in deflection in microswitches
depending on the gap between the electrodes [30,31]. Moeenfard et. al [32] investigated the effect of van der
Waals force on the calculation of pull-in voltage of an electrostatically coupled two-degree-of-freedom model
which considers both bending and torsion of the supporting torsion beams. They showed that for relatively low
stiffness ratio, i.e., ratio of bending stiffness to the torsion stiffness, the bending moment is considered to be
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the dominant instability mode. Ramezani and Alasty [33] studied the pull-in voltage of cantilever arrays with
the combined electrostatic and Casmir or Van der Waals interactions between the neighboring beams. Wang
et al. [34] determined the deflection of microfabricated rectangular membrane strips driven electrostatically
with the attractive Casimir force between the conducting surfaces under consideration. It has been shown in
the paper that the influence of Casimir forces on the deflection is dependent on the values of the initial gap
between the structures. Recently, Duan et al. [35] investigated the pull-in instability of a cantilever nano-
actuator model incorporating the effects of the surface, the fringing field, and the Casimir attraction force by
selecting a quartic polynomial as the shape function of the beam obtained by satisfying all of the four boundary
values.

Regardless of other aspects of MEMS modeling, the effect of the squeeze film is inevitable for accurately
estimating the dynamic performance ofMEMS devices, and its availability in the dynamicmodel accomplishes
meticulous outcomes for designing such devices [25,36,37]. McCarthy et al. [38] considered the effect of a
squeeze film for obtaining the transient behavior near the critical voltage of two different electrostatically
actuated microswitch configurations using finite difference analysis. Rocha [39] proposed a novel technique
for measuring the damping constant at different gap sizes that lead to the further improvement in accuracy of
the squeeze film models. Veijola [40] developed a compact model in evaluating the dynamic characteristics of
the device considering the effect of the squeeze film.

Nonetheless, a number of researchers were investigating the pull-in instability under electrostatic actu-
ation for the MEMS devices models based on either Euler–Bernoulli beam with small deformation theory
or combination of discrete spring–mass–damper components. It has also been glimpsed that almost all the
researchers have considered parallel approximation theory even after accounting for geometric nonlinearity
due to mid-pane stretching in their mathematical models. A limited number of researchers have considered
geometric as well as inertial nonlinearities in their respective mathematical models for calculating the pull-in
voltage. However, the geometric nonlinearity may introduce a higher-order electrostatic force and can be an
inevitable factor in computing the pull-in behavior when the microsystem undergoes large elastic deformation
[27,28]. While AC potential difference has been considered in [28], a bias DC voltage has been chosen in [27]
for investigating the pull-in phenomena. In both of these works, the effect of squeeze film damping was not
considered, which cannot be ignored for the microsystemwith a smaller air-gap thickness. In addition, squeeze
film damping is unavoidable when the microsystem undergoes large motions. Considering air damping in the
dynamic model and its effect on dynamic pull-in have been studied in [25,36–40]. The effect of AC potential
on the characteristics of the pull-in phenomenon has been studied in [13]. It has been obtained that a new
switch uses a voltage much lower than the traditionally used DC voltage.

The dynamic model neglecting the nonlinearities arising strongly due to mid-plane starching was devel-
oped under the frame of parallel plate approximation for constructing the electrostatic force in most of existing
research works. However, the development of small-size MEMS devices often leads to a moderately large
gap ratio typically of the order of 10−3 or even higher. For such conditions, the parallel approximation theory
is improper in calculating the pull-in voltage since the nonlinear higher-order electrostatic force exists for a
larger air gap between the electrodes. In addition, the structural nonlinearity must be accounted for when the
deformable electrode undergoes large elastic deformation. This type of nonlinearity furnishes both geometric
and inertial nonlinearities and must be considered in the mathematical model. While geometric nonlinearity
controls the static pull-in voltage, both geometric and inertial nonlinearities influence dynamic pull-in volt-
age. However, in [27,28] the effect of these nonlinearities on pull-in characteristics for cantilevered-based
microsystems has been investigated without considering the squeeze film damping and a rigid plate attached
at the end.

In the present work, an attempt has been made to illustrate the pull-in voltage and its negative influences on
structural stability of a microbeam coupled with rigid plate-based microswitch under the disparity of several
design parameters. This configuration is fruitful and worthwhile while designing themicrosystemwhich works
to alternate ON and OFF conditions across the bias pull-in voltage. Here, most of the important features to
develop an accurateMEMS device have been introducedwhich remained unexplored by the researchers earlier.
Here, the geometric and inertial nonlinearities have been included along with nonlinear squeeze film damping
to originate an error-free model, which was not developed earlier. Hence, the pull-in voltage and its liability on
structural instability via bifurcation have been investigated for a microswitch modeled as a micro-cantilever
beam coupledwith a rigid plate actuated electrostatically. In themathematical model, higher-order electrostatic
pressure, geometric and inertial nonlinearities, and nonlinear squeeze film damping along with linear viscous
dampinghavebeen considered.The authors are here striving earnestly to appropriately reestablish the objectives
articulated earlier in [25] for investigating the pull-in behaviors. Here, a micro-cantilever coupled with a rigid
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plate at the end subjected to electrostatic actuation has been preferred as compared to the works [27,28]. The
couple ofmicrobeamwith rigid platemay effectively reduce the dynamic pull-in voltage so that themicroswitch
can efficiently run at a relatively small applied voltage. Further, the effect of squeeze film damping has been
incorporated in contrast to the developments [27,28]. Hence, the results obtained in this work are absolutely
different from the results obtained in previously published works [25–28]. The loss of stability due to pull-in
has been exhaustively portrayed, and an in-depth analysis of pull-in occurrences has been given.

2 Mathematical approximation

A schematic diagram of a cmicroswitch is characterized by a micro-cantilever coupled with a rigid micro-
plate subjected to higher-order distribution of electrostatic pressure as shown in Fig. 1. The concept of the
Euler–Bernoulli theorem has been adopted for deriving the equation of motion that governs the dynamic
characteristics and its pull-in behavior under a bias DC potential. The electrostatic force has been assumed
to be uniform across the width and small strain of the microbeam under the statutory of large deformation
via the consideration of nonlinear curvature. Transverse v(x, t) and axial u(x, t) displacement components
occur along the inertial directions (z,x) of the beam centroid axis under the potential difference. The relation
between the variables v(x, t) and u(x, t) is constituted by a constraint equation

(
1 + u′)2 + v′2 = 1 of the

beam known as an inextensibility condition. Hence, the longitudinal displacement u(x, t) can explicitly be

written as u (ξ, t) =
ξ∫

0

√
1 − v′2dx − ξ in terms of the transverse deflection v(x, t). However, the total kinetic

energy of the structure consisting of the microbeam and rigid plate is expressed as

PlateMicrobeam

Electrode
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Y 

Z 

(a)

(b)

Fig. 1 Graphical representation of a cantilever-based microstructure coupled with a rigid plate
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Prime ()′ and ()• are denoting the differential with respect to space and time. Here, M , lc, ρ, A, Lb, and
J are mass of rigid plate, distance from the beam end to centroid of rigid plate, mass density of the beam
element, cross-sectional area of the beam element, length of the beam and rotational moment of the rigid plate
around the beam end, respectively.

By the definition of slope, sin φ = v′, radius of nonlinear curvature (k) = ∂φ
∂x = φ′ and corresponding

bending moment M (x) = E Iv′′/
(√

1 − v′2
)
, the potential energy due to large elastic deformation stored in

the microbeam element has been expressed since the potential energy of the rigid body is negligible as

V =
Lb∫

0

E I · k2dx =
Lb∫

0

E I · (
v′′2 + v′′v′2)dx . (2)

Here, E and I are Young’s modulus and area moment of inertia, respectively. The potential energy generated
due to electrostatic actuation between the microbeam and grounded plate has been expressed [25] neglecting
the fringing effect,

Ve = ε0bV 2

2

Lb∫

0

1

(d0 − v)

{

1 + 1

3L2
b

(d − v)′2
}

H (x − L1) H (x − L2) dx . (3)

Here, the permittivity of the vacuum ε0 is equal to 8.856× 10−1C2N−1m−2. Also, b, V , L1, and L2 are width
of the microbeam, applied voltage, mass of rigid plate, location of the starting point and ending point of the
electrode from the fixed end, respectively. A stepwise function H (x) has been used to denote the area-wise
effect of electrostatic pressure. The work done by the non-conservative damping force due to the squeeze film
effect for (d0 − v) � Lb has been expressed as

δWnc = −
Lb∫

0

Fs
∂

∂t
(d − v)δv + HOF. (4)

Here, Fs = μ b3

(d0−v)3
. Also, μ is the effective viscosity of the fluid flow in the air gap [36]. Using extended

Hamilton’s principle
t2∫

t1
(δK − δV + δWnc) dt = 0, δv (t1) = δv (t2) = 0, and procedures similar to theworks

[27,28] and eliminating the higher-order squeeze film damping effect, onemay obtain the following differential
equation of motion in terms of transverse deflection v:

ρA
∂2v

∂t2
+ cv̇ + E I

[
v′′ ′′ +

{
v′ (v′v′′)′}′] + ρA

⎡
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L
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(
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⎦

′

+ μb3
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∂
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2 (d0 − v)2

[

1 − 1

L3
b

{
v′2 + 2 (d0 − v) v′′}

]

{H (x − L1) H (x − L2)} (5)

With associated boundary conditions:

at x = 0 : v (0, t) = 0, v′ (0, t) = 0;
at x = L : E Iv′′′ (L , t) = M v̈ (L , t) + Mlcv̈

′ (L , t) ,

E Iv′′ (L , t) = −lcM v̈ (L , t) + 4Ml2c v̈
′/3 (L , t) . (6)
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The inertia force and moment due to the presence of a rigid plate at the end act at the end of the beam and
appear in the boundary condition at x = L . Substituting the non-dimensional parameters: s = (x/Lb), τ =
t
(
E I/ρAL4

b

)1/2
, w = (v/d0), β = (d0/Lb)

2, L1 = (L1/L), M = (M/ρALb), α = (
6ε0L4

b/Eh
3d30

)1/2
,

c = c(L4
b/E IρA)1/2, μ = μ(b/db)(ρAL4

b/E I )1/2, L2 = (L2/Lb), and Lc = (lc/Lb) into Eq. (5), one can
rewrite the equation of motion (5) into the non-dimensional form of equation of motion as follows:
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3
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H
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)
H

(
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)}
, (7)

ρA
∂2w

∂t2
+ cẇ + E I

[
w′′′′ + β { geometric nonl.}

]
+ β [inertial nonl.] + Non. Sq. Damping

= α

(1 − w)2

[
1 − β

3
{HOD Elect. Pressr.}

]
{
H

(
s − L1

)
H

(
s − L2

)}
. (8)

The boundary conditions are

at s = 0 : w = 0,
∂w

∂s
= 0,

at s = 1 : w′′′ = M
∂2w

∂τ2
+ MLc

∂3w

∂τ2∂s
, w′′ = −LcM

∂2w

∂τ2
− 4

3
ML

2
c

∂3w

∂τ2∂s
. (9)

It is observed that the influences of both geometric and inertial nonlinearities onto the pull-in occurrence are
strictly by the air-gap thickness (d) keeping the length of the beam constant. Furthermore, if β << 1, the
effect of structural nonlinearities is negligible, governed and the system can be brought to a simple linear
time invariant system where a parallel plate approximation can satisfactorily be applied to represent the
electrostatic pressure distribution. The time-dependent terms have a significant effect on the calculation of
dynamic pull-in voltage of the micro-devices, but do not influence the static pull-in behavior. Neglecting the
term

(
μb3/ (1 − w)3

)
∂
∂τ

(1 − w), the piecewise effect of electrostatic pressure and rigid plate attached at the
end, the present equation of motion (7) is similar to that expressed in [27,28]. Similarly, the present equation of
motion neglecting the terms of higher-order distribution of electrostatic pressure and nonlinear geometric and
inertial terms can also be similar to the equation obtained in [25] assuming parallel plate assumption accounting
for small deflection theory. Nonetheless, the outcomes obtained here are distinct and included various facets
of MEMS technology to develop an accurate mathematical model with pertinent quality assessment of pull-in
instability in electrostatically actuated MEMS devices.

3 Generalized decomposition: Galerkin’s principle

The motion configuration of the deflection of an electrostatical actuation microsystem can be written as:

w (s, τ ) =
n∑

n=1

γ j (s) e
iωτ , n = 1, 2, 3 . . .∞, 0 ≤ s ≤ 1. (10)

Here, eiωτ is the time modulation that results in varying the vibration amplitude with respect to time, and γ j (s)
is an admissible function that is obtained by satisfying the boundary conditions, both essential and forced,
and not necessarily the equation of motion. A single admissible trial function γ1(s) = γ (s) has been used for
solving the problem since the first mode is observed to be the dominant mode of the system. However, the
following admissible function similar to that of the eigen function of the cantilever beam with heavy tip body
has been used to calculate the pull-in behavior:

γn (s) = {cosh (βns) − cos (βns)} + �n (sinh (βns) − sin (βns)) . (11)
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Here,

�n = sin βns (1 − Mβ2
n L) − sinh βns (1 − Mβ2

n L) + (
Mβn

) {cosβns − cosh βns}
cos βns (1 − Mβ2
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n L) + (

Mβn
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.

The characteristic value βn can be obtained from the following characteristic equation:

1 + 1

3
L2Mβ4
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1 − 1

3
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n

)
+ cosβn sinh βn
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Mβn − 4

3
L2Mβ3

n
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− cosh βn sin βn

(
Mβn + 4

3
L2Mβ3

n

)
− 2

4

3
LMβ2

n sinh βn sin βn = 0. (12)

The coefficient of the equation has been evaluated by using Galerkin’s technique
Lb∫

0
R (s, t) γn (s) ds = 0,

where R (s, t) is the residue operator, and γn (s) is an admissible function of nth mode considered to be the
same as that of the admissible function (11).

4 Results and discussion

The derived equation of motion has been used for analyzing the qualitative and quantitative assessment of
structural stability under static and dynamic pull-in behavior which was not thoroughly explored earlier. The
effect of electrode length, air-gap thickness, higher-order distribution of electrostatic pressure and structural
nonlinearity has been considered for estimating the critical pull-in voltage and realized the limit of applied
voltage for both beam and plate ends. Evaluating static pull-in voltage, also called as collapse voltage, is
essential to understand the stability losses for steady applied voltage, i.e., the rate of change of voltage is
assumed to be negligible, whereas the estimation of dynamic pull-in behavior is an important consideration
for dV �= 0 in designing an electrostatically actuated microsystem, and it reveals the limitation of applied
voltage at which the system loses its stability via dynamic pull-in phenomena. Here, dynamic motion of the
device plays a significant role to find out the pull-in voltage. However, a metallic beam with length 300µm,
width 20µm, thickness 2µm, and air-gap thickness 2µm is chosen, while length and width of the rigid plate
are chosen as 60µm, and 38µm, respectively. The thickness of the plate has been taken the same as that of
the beam.

4.1 Static analysis

Here, the deflection of the beam end and plate end has been depicted under steady-state voltage directly by
solving the boundary value problem (BVP) setting all time derivatives in Eq. (8) equal to zero. Since Eq. (8)
includes several nonlinear terms, the system may exhibit multiple approximate solutions, and the solutions are
dependent on the initial guess values. However, the only stable solutions are those practically realized by the
system. In static analysis, approximate solutions have been obtained for absolute and relative tolerances of the
order of 10−6.

The pull-in voltage has been obtained numerically using MATLAB 8.5 and verified with the findings
performed in 3D modeling software where an electrostatically actuated micro-cantilever beam coupled with
the plate has been developed and simulated. The entire device was assumed to be made of polysilicon with
Young’s modulus (E) = 169 GPa, Poisson’s ratio (ϑ) = 0.223, and air gap = 2µm and considering the relative
permittivity value equal to 1. Themicrobeam resides in an electrically insulated air-filled chamber, and the lower
side of the chamber has been considered as grounded electrode. While the micro-cantilever beam coupled with
the plate has been meshed using swept mesh, dividing the length of the beam into 20 elements, the electrodes
surface has been meshed using a free Quad type of element with maximum element size = 4µm and minimum
element size = 0.064µm. Figure 2 depicts the mesh of a cantilever-based microbeam coupled with a rigid plate
in 3D modeling software. The obtained non-dimensional results are then converted from the non-dimensional
deflection w to the dimensional variable v to compare it with the results obtained using modeling software.
As an example, the elastic deformed shape of the switch for a certain applied electrostatic actuation obtained
using 3D modeling software has been displayed in Fig. 2b where the red contour represents the maximum
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Fig. 2 a Meshing of cantilever-based microstructure coupled with rigid plate in COMSOL, b Deflection of cantilever-based
microstructure coupled with rigid plate in COMSOL under electric actuation

L Lb p
w

Lb
w

L Lb p
w

Lb
w

 COMSOL

w m
ax

V αα

w m
ax

(a) (b)

Fig. 3 a Maximum deflection of beam end (wLb ) and plate at end (wLb+L p ) under actuation voltage for (d0/Lb)
2 = 4.4e−5. b

Maximum deflection of beam end (wLb ) and plate at end (wLb+L p ) under electrostatic pressure for (d0/Lb)
2 = 4.4e−5

deflection. The deflection at the end points of microbeam and plate for various applied voltages is illustrated
in Fig. 3. However, the deflection at the plate end depicts the actual displacement perceived practically by the
system. For finding the deflection at plate end w|Lb+L p

,slope ∂w
∂s of the microbeam at the end point L · Lb

it is sufficient to multiply with the length of rigid plate since slope and geometric curvature built at tip of the
beam element remains the same for every point over the plate length shown in Fig. 1b. The effect of geometric
nonlinearity due to moderately large elastic deformation on the pull-in behavior has been investigated for
applied voltage starting from zero to the critical value. Figure 3 represents the maximum deflections (w) at
beam end and plate end, respectively, which are precisely computed until the applied voltage reaches to its
critical value at which the system becomes statically unstable as the electrostatic force exceeds the restoring
force. Since, in most of the communication and power circuits systems, the application of the electrostatically
actuated microswitch is largely devoted to alternate ON and OFF conditions by tuning a bias voltage across
the pull-in back and forth, it is hence desirable to design and develops an efficient and effective MEMS switch
which can operate at low actuation voltage for performing the suitable task.

Figure 4 displays the effect of air-gap thickness (d) on the pull-in instability. It has been observed that
the electrostatically actuated MEMS switch with small d operates mainly at a low actuation voltage. Steady-
state amplitude of motion for every applied voltage has been observed until the applied voltage reaches a
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Fig. 4 a Effect of nonlinearity for a β = 2.2e−5, b β = 4.4e−5, and c β = 6.6e−5. b Effect of higher-order nonlinearity for
a β = 2.2e−5, b β = 4.4e−5, and c β = 6.6e−5
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ax

V

Fig. 5 Effect of electrode length on maximum deflection (wLb+L p ) of plate end for a L1 = 0.2, L2 = 0.9, b L1 = 0.2, L2 = 0.8,

and c L1 = 0.2, L2 = 0.7

critical value called as pull-in voltage. At this critical value, at a further increase in applied voltage, the system
approaches a state of unstable via static bifurcation.

The electrostatic microsystem with larger gap ratio experiences a pull-in occurrence at higher voltage, and
as a result, the system becomes statically unstable at a higher applied voltage. However, the gap ratio has here
been adjusted by changing the size of the microbeam, while the air-gap thickness remains the same. Therefore,
the small-scale size movable electrode introduces a higher gap ratio required to have high potential difference
to become statically unstable and may be collapsed onto the ground under a certain critical voltage. Hence, it
is noteworthy that the small-size electrostatically actuated switch performs satisfactorily in a relatively large
operating voltage without pull-in occurrence. Furthermore, it has been observed that the pull-in instability
which leads an unexpected collapse onto the ground electrode via bifurcation can easily be controlled by
introducing the higher-order structural nonlinearity as observed in Fig. 4b. Also, results obtained using 3D
modeling software (represented by solid circles) have been used to examine the correctness of the numerically
estimated results, and they have been found to be in very good agreement.

The result of varying the electrode length on the pull-in behavior has been illustrated in Fig. 5. With an
increase in electrode length (i.e., L2 − L1), the pull-in voltage decreases as the resultant electrostatic force
surplaces the restoring force with increase in electrode length. Hence, the pull-in voltage takes place at a
lower voltage for increasing the electrode length. It is also noteworthy that higher-order deformation leads to a
smaller electrostatic force and builds pull-in occurrence at a higher actuation voltage shown in Fig. 6. Hence,
it is therefore important to make a note that the loss of structural stability may take place at a moderately
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Fig. 7 Effect of plate length on pull-in voltage for electrode length 300µm and L1 = 0.0, L2 = 1.0

higher voltage when a higher-order correction factor of electrostatic force is included into the dynamic model.
Figure 7 demonstrates the effect of plate length on the static pull-in voltage. With increase in electrode length,
the pull-in voltage decreases as the effective area moment of inertia increases with an increase in plate length.
The pull-in voltage varies almost linearly with the electrode length as represented by the dotted line. A useful
understanding of the development of pull-in voltage in dynamic condition via possible bifurcation under linear
viscous and squeeze film damping domains is given in the following Subsection.

4.2 Dynamic analysis

For determining the static pull-in voltage, the transient part of the applied voltage is neglected by assuming the
fact that the rate of applied voltage is negligible. However, to accurately understand the benefits and limitation
of the electrostatically actuated device, it is improper only to estimate the static pull-in voltage when a bias
alternative voltage source exists. Hence, there is a need to calculate the pull-in voltage called as dynamic pull-in
voltage, considering the dynamics of the microbeam instead of static state only. Besides the components which
accumulate the strain energy for elastic deformation, inertia and dissipative elements play an influential role in
estimating the pull-in voltage in a dynamic condition. Here, the dynamic pull-in behavior has been depicted and
investigated for different conditions, i.e., pull-in conditions for the system with and without linear viscous and
squeeze film damping. The direct simulation using the well-known Runge–Kutta method has been performed
to numerically solve the reduced order governing Eq. (8) in calculating the full-order dynamic pull-in voltages.
In this process, dynamic pull-in voltage has been illustrated in the phase portrait, i.e., in the plane ofw ∝ ẇ for
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Fig. 8 Dynamic pull-in voltage of undamped system for electrode length 45 µm and L1 = 0.0, L2 = 1.0, and β = 4.4e−5

w

Fig. 9 Time history of the undamped system for electrode length 45µm and L1 = 0.0, L2 = 1.0, and β = 4.4e−5

every applied voltage within the range 0 < V ≤ Vstatic, knowing the fact that the dynamic pull-in voltage is
lower than that of the static counterpart. The dynamic pull-in voltage has been diagrammed for various control
parameters such as plate length, electrode length, order of nonlinearity, air-gap thickness, and squeeze film
damping on dynamic pull-in voltage. The trajectories have been drawn for the voltage starting from zero to
the voltage until it leads to an intersection of the orbits with the origin.

Figure 8 depicts the pull-in dynamics for an undamped system while keeping the electrode length equal
to the length of the microbeam. The dynamic pull-in voltage has been apprehended by the monoclinic orbits
passing through the saddle node or degenerate singularity point. The system becomes dynamically unstable
when a slight increase in voltage at the critical voltage VDPI = 4.262 happens, and it was found that the
dynamic pull-in voltage is well below the static pull-in voltage VSPI, i.e., nearly 75% of VSPI. For applied
voltage V < VDPI, the system is dynamically stable and exhibits closed periodic orbits with steady response
amplitude lower than the dynamic pull-in deflection. Hence, a periodic solution developed from an initial
guess for a certain voltage always builds a closed trajectory which represents a neutrally stable center as time
approaches infinity. Hence, for every applied voltage V < VDPI, the system shows an isolated stable closed
trajectory.

On the contrary, the voltage for dynamic instability is well below that of the static counterpart, and hence,
it is advisable to keep the actuation voltage V < 4.262 to avoid uninterrupted performance of the device due to
pull-in phenomenon. The time history of the dynamic deflection is illustrated in Fig. 9, and it has been observed
that the pull-in deflection occurs at 0.56 for the undamped system. Similar to the pull-in voltage, the dynamic
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Fig. 10 Dynamic pull-in voltage of the under-damped system for plate length 45, β = 4.4e−5 and c = 0.91 Ns/m2

w

τ

Fig. 11 Time history of the under-damped system for electrode length 45, β = 4.4e−5 and c = 0.91 Ns/m2

deflection has been found to be a smaller value than the static tip deflection. The pull-in voltages estimated via
time history and phase portrait have been quantitatively compared and found to be in good agreement. Since
the fundamental natural frequency of the device decreases with an increase in actuation voltage, the time period
of the response hence increases with an increase in voltage. An unstable divergent motion encounters from a
periodic motion at a voltage equal to VDPI = 4.26, and as a result, the beam may catastrophically fail onto
the fixed electrode. However, the problem of pull-in instability can be attenuated by introducing the damping
mechanisms in the form of viscous and squeeze film damping.

Here, the dynamic pull-in voltage has been investigated for the system with damping for L1 = 0.0, L2 =
1.0. The dynamic pull-in voltage is found to be 4.48 for the system with damping factor (ζ ) equal to 0.465,
while the critical value of dynamic pull-in voltage for the system with squeeze film is observed to be 4.54 as
shown in Figs. 10 and 12. Hence, the pull-in voltage increases with the presence of air-damping mechanism
confined in the air gap between the electrodes. Also, pull-in performance materializes at a lower deflection
as compared to the deflection for the undamped system. Hence, the it has been found that the squeeze film
damping makes the system more stable dynamically (Figs. 11, 12).

The time history of the dynamic tip deflection for the under-damped system has been shown in Fig. 11,
while the time history of dynamic tip deflection for the system with squeeze film has been depicted in Fig. 13.
From these illustrations, it is clear that the amplitude of the responses decays exponentially for the system
with viscous damping, whereas squeeze film damping renders faster decaying of amplitude which results in
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Fig. 12 Dynamic pull-in voltage of under-damped system with squeeze film for electrode length 45µm, L2 − L1 = 1.0,
β = 4.4e−5, and µ = 1.86 × 10−5 Ns/m2

w

Fig. 13 Time history of under-damped system with squeeze film for electrode length 45µm, β = 4.4e−5, L2 − L1 = 1.0
and µ = 1.86 × 10−5 Ns/m2

a lower settling time. However, a clear picture of the variation of pull-in stability for all three cases has been
illustrated in Fig. 14.

Figure 15 depicts the effect of changing rigid plate length on the dynamic pull-in voltage for the undamped
system with β equal to 4.4×10−5, L1 = 0.0, and L2 = 1.0. It is noteworthy that with the increase in plate
length, the pull-in voltage decreases while the dynamic tip deflection increases with increase in plate length.
Since the inertia effect, i.e., a destabilizing factor of the microsystem, dominates with the increase in plate
size, the dynamic pull-in instability occurs at a lower voltage. Furthermore, the settling time of the responses
increases with increases in plate length since the natural frequency decreases with the increase in overall mass
of the beam-plate microsystem. Hence, because of the presence of the plate, the inertia force adds up with
the electrostatic force, and the effective destabilizing factor surpluses the overall restoring force. Therefore,
pull-in instability encounters at a low actuation voltage.

Figure 16 demonstrates the influence of geometric flexibility β on the dynamic pull-in voltage for the
undamped system. Here, the factor β has been obtained by changing the length of the microbeam while
keeping the air-gap constant. Similar to the static analysis, here also the system becomes dynamically unstable
at a higher applied voltage for relatively high structural nonlinearity as β = 2.2 × 10−4. For example, the
dynamic pull-in voltage was found to be 15.956 for β equal to 2.2× 10−4, while the dynamic pull-in voltage
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Fig. 15 Influence of rigid plate length on dynamic pull-in voltage for: A L p = 60µm, B L p = 45µm, and C L p = 30µm
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Fig. 16 Influence of gap–length ratio (d0/Lb) on dynamic pull-in voltage for L p equal to 45µm: A β = 4.4e−4, B β = 4.4e−5,

and C β = 4.4e−6
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Fig. 17 Influence of higher-order electrostatic force on dynamic pull-in voltage for plate length 45µm, a L1 = 0, L2 = 1.0 and
β = 4.4e−5
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Fig. 18 Influence of electrode length on dynamic pull-in voltage for plate length 45µm and β = 4.4e−5, for aL1 = 0, L2 = 1.0,
bL1 = 0.1, L2 = 0.9, and cL1 = 0.2, L2 = 0.8.

was observed to be 1.446 for β equal to 6.6× 10−6. Hence, it is worthy to note that a reduction in size of the
device establishes more structural stability as dynamic pull-in occurs at high actuation voltage. Operating the
system with high air-gap length (d) is safe under relatively high voltage input. Simultaneously, to develop an
efficient and effective electrical switch, the designer should always prefer to keep the air-gap length ratio at a
lower order which results pull-in instable at low actuation voltage for operating within ON andOFF conditions.

Figure 17 provides how the dynamic pull-in voltage gets influenced by the terms of order (1 − w)−2. Here,
the influence of both higher order comprising the first seven terms, i.e., 1 + 2w + 3w2 + · · · 7w6, and lower
order consisting of the first two terms, i.e., 1 + 2w, on the dynamic pull-in voltage has been investigated. It
has been observed that electrostatic pressure developed by considering the higher-order terms undergoes the
dynamic pull-in voltage at lower applied voltage as the effective electrostatic force exceeds the restoring force
at low actuation voltage, and it is found to be 3.86 < VDPI = 4.26.

The influence of electrode length on estimation of pull-in voltage has been investigated in Fig. 18. With
a decrease in electrode length, the pull-in instability occurs at a higher value. It has been observed that for
the electrode length equal to 0.9 times the length of the microbeam, the dynamic pull-in voltage occurs at a
value equal to 5.2. A similar trend has been observed when the electrode length is 0.8 times the length of the
microbeam, and, in this case, the pull-in voltage has come out to be 6.78. Therefore, the effective electrostatic
force relies on the effective length of the electrode as well as the location of the electrode. Also, the distribution
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Fig. 19 Time history at pull-in voltage for undamped, damped and system with squeeze film for electrode length 45µm keeping
the other parameters constant
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Fig. 20 Time history at pull-in voltage for undamped, damped and system with squeeze film for electrode length 60µm keeping
the other parameters constant

of the electrostatic pressure is significant when the electrode moves toward the end point of the beam. The
induced electrostatic force is found to be maximum when the ground electrode is positioned closest to the end
of the beam since (1 − w) becomes minimum at Lb.

Figures 19 and 20 demonstrate the time history obtained by integrating the equation of motion (8) at pull-in
voltage where the system loses its stability due to dynamic pull-in. A slight increase in voltage at V = VDPI,
a periodic motion, exhibits a divergent motion, which abruptly collapses the beam onto the electrode. The
divergent motion has been observed at dynamic pull-in voltage same as that estimated from the trajectories in
the phase plane for various situations. The periodic response has been seen before approaching into dynamic
pull-in instability for an undamped system. For a certain value of applied bias voltage, an aperiodic solution
may observe due to the fact of including an air-damping mechanism for small air-gap thickness as shown in
Fig. 20. It has been noted that the transient part of the time history has been reduced by adding a damping
parameter as the response amplitude gets exponentially decayed. Moreover, it has been revealed that a desired
performance can be established from the devices via introducing the dissipation (Fig. 21).

5 Conclusions

A cantilever-based microbeam coupled with a rigid plate has been used to mathematically model an electrosta-
tically actuated microswitch. To obtain a more accurate estimation of pull-in instability in static and dynamic
conditions, a comprehensive mathematical model has been developed accounting for structural nonlinearity
and resultant higher-order electrostatic pressure and nonlinear air film damping. The effect of various design
parameters on the estimation of static and dynamic pull-in behavior has been studied. The structural stability
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w t

Fig. 21 Time history of the system a undamped b under-damped c under-damped with squeeze film effect for the electrode length
is 45µm

of the switch has been critically assessed by the realization of pull-in voltage when the design parameter varies.
However, the following practical implication of microswitch by the realization of its behavior under the varied
bias voltage is:

(i) Dynamic pull-in voltage is observed to be lower than that of static pull-in voltage. The dynamic pull-in
instability takes place at a lower applied voltage when the higher-order terms of electrostatic force are
employed.

(ii) A high scaling factor of geometric and inertial nonlinearities (β) makes the microsystem statically and
dynamically stable. Unfortunately, a small scaling factor makes the microsystem more sensitive with
respect to pull-in instability for low applied voltage.

(iii) With the increase in electrode length, the pull-in voltage gets decreased while it becomes higher for
considering viscous and squeeze film damping. It is worthy to note that with the increase in plate length,
the pull-in voltage decreases while pull-in deflection occurs at a higher value with the increase in plate
length.

(iv) Structural stability improves the combined effect of squeeze film and linear viscous damping. Pull-in
behavior occurs at lower tip deflection compared to the static pull-in deflection due to the additional
effect of inertia.

(v) The microsystem requires high voltage to become dynamically unstable for relatively high structural
nonlinearities.

(vi) A closed trajectory of periodic response has been observed for the voltage less than the critical value
at which the system undergoes pull-in instability, whereas aperiodic response may be observed for the
system with damping mechanism.

(vii) The results from this research enable a significant understanding of pull-in operation under the variation
of several control parameters. These results are useful to an operator while dealing with the operation
of an electrostatically actuated microswitch.

Acknowledgments Authors thank Professor Ambesh Dixit, Department of Physics, Indian Institute of Technology Jodhpur, for
his support in providing COMSOL Multi-physics software.
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