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Abstract Considering initial axial loads, dynamics and stability of an inner functionally graded cylindrical
shell conveying swirling fluid (i.e., water) in the annulus between the flexible inner shell and the identical
rigid outer shell are investigated by the traveling wave approach. Shell motions are described by Donnell’s
thin shell equations. The fluid forces associated with shell motions are treated in the frame of the potential
flow theory. The theoretical analysis is conducted by the zero-level contour method. The critical velocities of
losing stability are determined. The influences of angular flow on the critical axial velocity and axial flow on
the critical annular velocity are studied. Moreover, effects of the magnitude and the direction of initial axial
loads on the critical velocities are fully discussed.

1 Introduction

Studies on dynamic behavior of coaxial cylindrical shells subjected to annular flow are extensive as a result
of such structural elements application in many engineering systems. Tijsseling [1] presented reviews related
to the development of fluid–structure interaction in liquid-filled pipe systems. The overview of progress of
flow-inducted vibration problems in power plants is provided by Weaver et al. [2]. Dynamics and stability of
coaxial cylindrical shells conveying inviscid or viscous fluid were studied with the aid of Fourier transform
techniques [3–5]. It is found that annular flow renders the system instability at lower velocities than flow in the
inner shell. It is also found that steady viscous forces destabilize the system for annular flow and stabilize it
for internal flow dramatically. The effects of system parameters on stability were also discussed. Considering
unsteady viscous forces, Chebair et al. [6,7] preformed further studies on the same problem theoretically
and experimentally. Further work on the dynamic response of shells conveying fluid was extended to take
into account nonlinearity [8–10]. Based on the semi-membrane theory, an approximate theory of annular
flow-induced instability of coaxial cylindrical shells was presented [11,12]. Srinivasan [13] firstly studied the
aeroelastic stability of a thin cylindrical shell under external helical air flow based on the classical shell theory
and linear potential flow theory by travelling wave solutions. This study showed that the system loses stability
by coupled-mode flutter. And results obtained were compared with the experimental data [14]. The dynamic
behaviors of coaxial cylindrical shells subjected to axial flow were investigated by Bochkarev and Matveenko
[15–17], in which the effects of steady viscous forces, annular gaps and physico-mechanical properties of shells
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on the stability of shells were examined. Moreover, the effects of angular flow on the stability behaviors of
coaxial cylindrical shells were studied [18,19]. It is found that the combined action of both velocity components
tends to destabilize the system. Considering the circumferential tension caused by rotating shells, Bochkarev
and Matveenko [20–23] performed further studies on the same problem. They found that rotation of the shell
generally exerts a stabilizing effect in the case of the single shell, but simultaneous rotation of coaxial shells
and fluids inside them do not affect the loss of stability. Also, the effect of the elasticity of the outer shells on
the character of dynamic behavior of the system was examined. Dynamic stability of isotropic or composite
material cylindrical shell carrying a swirling fluid was given by Chen and Bert [24]. The principal finding of
their work was that fluid rotation severely decreases stability of the shell–fluid systems.

Functionally graded materials (FGM) have become popular [25] because of advantages of withstanding
high-temperature gradient changes and high strength, toughness. Based on the three-dimensional elasticity,
Chen et al. [26] developed the laminate approximate mode to investigate the frequency response of a fluid-
filled functionally graded shell. Iqbal et al. [27] studied the vibration frequency of the FGM circular shell by
using the wave propagation approach. It is found that the frequency of the fluid-filled FGM circular shell is
lower than that of the empty FGM circular shell. Furthermore, the influence of the elastic foundation on the
frequency was studied [28]. Silva et al. [29] investigated the nonlinear vibration of a fluid-filled FGM circular
shell taking into account a time-dependent lateral load and static preload. They found that the internal fluid
and compressive stress increase the softening effect of the shell.

Based on the first-order shear deformation theory, the dynamic response of a functionally graded shell
subjected to axial flow under thermo-mechanical loads was given [30,31]. The effects of loads, fluid velocity
on dynamic characteristics were determined. Shen et al. [32,33] studied the dynamic stability of periodic shells
based on the beam mode. It was found that a periodic shell structure enhances its stability.

There are studies of stability and dynamic behavior of isotropic material cylindrical shells subjected to
annular flow with only axial velocity component in the literature. However, the influence of a combined action
of the axial and the angular velocities of annular flow on stability and dynamic behavior of functionally graded
thin cylindrical shells under initial axial loads has not been clearly understood. The effects of initial axial loads
on the character of the dynamic behavior of such system and instability flow velocities are also unexplored.
In the present study, dynamic behavior of an inner FGM cylindrical shell carrying helical flow with the axial
and circumferential velocity components in the annulus between the two shells are studied in a traveling wave
solution form. Calculations are conducted by the zero-level contour method. The lowest flow velocities of
losing stability (referred to the critical flow velocity) are obtained, and relations of them are examined. These
studies will provide useful information for the engineering designs of nuclear reactors, space shuttle, heat
exchangers, and others.

2 Problem formulation

Figure 1 shows a schematic diagram of two coaxial FGM cylindrical shells of the same length L . The inner shell
with thickness hi and mean radius of ri is simply supported at both edges x = 0 and x = L . The outer circular
cylindrical shell with thickness ho and mean radius ro is located concentrically as a perfectly rigid shell. The
two coaxial shells with the same functionally graded materials are located in an orthogonal coordinate system
(O; r, θ, x), in which the origin O is located on the left end at the middle point of the inner shell. x, θ and
r are in the axial, circumferential, and radial directions, respectively. The fluid in the annular space between
the two shells is considered to be incompressible with the density ρf , flowing in x-, θ -directions with velocity
components Uo, �o.

2.1 Functionally graded cylindrical shells

The FGM shells are composed of ceramic and metal. The volume fractions of all constitutent materials are
related by

Vs + Vc = 1, Vc = Vc(z) =
(

2z + h

2h

)N

(1)

where s, c denote the metal (inner surface) and ceramic (outer surface) constituents; N is the power-law
exponent characterizing the metal variation through the shell thickness; z presents a displacement variable of
the radius direction. From Eq. (1), the effective elastic modulus E and the mass density ρ can be written as
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Fig. 1 Schematic diagram of the coaxial FGM cylindrical shells under consideration

E(z) = EsVs + EcVc = Es + (Ec − Es)

(
2z + h

2h

)N

, (2.1)

ρ(z) = ρsVs + ρcVc = ρs + (ρc − ρs)

(
2z + h

2h

)N

. (2.2)

Poisson’ ratio υ is assumed to be constant.

2.2 The governing equations

Based on the classic Donnell’s shell theory, the strain components can be represented by [34]

εx = ux + zkx = ∂u

∂x
+ zkx , (3.1)

εθ = us + zkθ = ∂v

r∂θ
+ w

r
+ zkθ , (3.2)

εxθ = uxθ + 2zkxθ = ∂u

r∂θ
+ ∂v

∂x
+ 2zkxθ (3.3)

kx = −∂2w

∂x2 , (4.1)

kθ = − ∂2w

r2∂θ2 , (4.2)

kxθ = − ∂2w

r∂x∂θ
(4.3)

where u, v and w are the displacements of the middle surface point of a shell along x, θ , and r direction,
respectively, and kx , kθ and kxθ are curvatures and twist of a shell. The forces resultants and bending moments
of an FGM cylindrical shell are expressed as⎡

⎢⎢⎢⎢⎢⎣

Nx
Nθ

Nxθ
Mx
Mθ

Mxθ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

K11 K12 0 K14 K15 0
K21 K22 0 K24 K25 0
0 0 K33 0 0 K36
K41 K42 0 K44 K45 0
K51 K52 0 K54 K55 0
0 0 K63 0 0 K66

⎤
⎥⎥⎥⎥⎥⎦

[ux us uxθ kx kθ 2kxθ ] (5)

where the stiffness matrix Ki j is given by

K11 = E1

1 − υ2 = K22, K12 = υE1

1 − υ2 = K21, K14 = E2

1 − υ2 = K25 = K41 = K52, K15 = υE2

1 − υ2

= K24 = K42 = K51,

K33 = E1

2(1 + υ)
, K36 = E2

2(1 + υ)
, K44 = E3

1 − υ2 = K55, K45 = υE3

1 − υ2 = K54, K63

= E2

2(1 + υ)
, K66 = E3

2(1 + υ)
(6)
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in which

E1 =
∫ h/2

−h/2
E(z)dz = Emh + Ec − Em

N + 1
h, E2 =

∫ h/2

−h/2
zE(z)dz = N (Ec − Em)

2(N + 1)(N + 2)
h2,

E3 =
∫ h/2

−h/2
z2E(z)dz = Emh3

12
+ (Ec − Em)h3

[
1

4(N + 1)
− 1

(N + 2)
+ 1

(N + 3)

]
. (7)

Considering initial axial loads, the motion equations of an FGM cylindrical shell conveying ideal fluid are
written as

∂Nx

∂x
+ 1

R

∂Nxθ

∂θ
+ P

∂2u

∂x2 = ρs
∂2u

∂t2 , (8.1)

∂Nxθ

∂x
+ 1

R

∂Nθ

∂θ
+ P

∂2v

∂x2 = ρs
∂2v

∂t2 , (8.2)

∂2Mx

∂x2 + 2
∂2Mxθ

R∂x∂θ
+ ∂2Mxθ

R2∂θ2 − Nθ

R
+ P

∂2w

∂x2 = ρs
∂2w

∂t2 + p (8.3)

where ρs = ∫ h/2
−h/2 ρ(z)dz = ρsh+ ρc−ρs

N+1 h. t is time. P represents the axial load. p is the perturbation pressure
acting on the shells which will be formulated in Sect. 2.3.

Substituting Eq. (5) into Eq. (8.1), the motion equations of an inner shell can be rewritten in one linear
matrix operator,

ζ

⎡
⎣ ui/o

vi/o
wi/o

⎤
⎦ =

⎡
⎣ 0

0
p

⎤
⎦ , (9)

where

ζ =
⎡
⎣ ζ11 ζ12 ζ13

ζ21 ζ22 ζ23
ζ31 ζ32 ζ33

⎤
⎦ (10)

in which 	 = ∂2

∂x2 + 1
r2

∂2

∂θ2 ,

ζ11 = E1

1 − υ2

[
(1 + P)

∂2

∂x2 + 1 − υ

2r2

∂2

∂θ2 − ρs
1 − υ2

E1

∂2

∂t2

]
, ζ12 = E1

1 − υ2

[
1 + υ

2r

∂2

∂x∂θ

]
,

ζ13 = E1

1 − υ2

[
υ

r

∂

∂x
− E2

E1

∂3

∂x3 − E2

r2E1

∂3

∂x∂θ2

]
, ζ21 = E1

1 − υ2

[
1 + υ

2r

∂2

∂x∂θ

]
,

ζ22 = E1

1 − υ2

[
(1 + P)

1 − υ

2

∂2

∂x2 + 1

r2

∂2

∂θ2 − ρs
1 − υ2

E1

∂2

∂t2

]
,

ζ23 = E1

1 − υ2

[
1

r2

∂

∂θ
− E2

r E1

∂3

∂x2∂θ
− E2

r3E1

∂3

∂θ3

]
,

ζ31 = E1

1 − υ2

[
υ

r

∂

∂x
− E2

E1

(
∂3

∂x3 + 1

r2

∂3

∂x∂θ2

)]
, ζ32 = E1

1 − υ2

[
1

r2

∂

∂θ
− E2

r E1

(
∂3

∂x2∂θ
+ 1

r2

∂3

∂θ3

)]
,

ζ33 = E1

1 − υ2

[
−P

∂2

∂x2 + E3

E1
		 + ρs

1 − υ2

E1

∂2

∂t2 + 1

r2 − 2υE2

r E1

∂2

∂x2 − 2E2

r3E1

∂2

∂θ2

]
.

2.3 Perturbation pressure

Note that the fluid is inviscid and incompressible and the flow is assumed to be a potential flow. The potential 

consists of two components: the steady state potential of the fluid which is characterized by the axial constant
velocity Uo and tangential constant velocity Vo = �o × r and unsteady component � associated with shell
motions. Thus,


 = Uox + Voθ + �. (11)
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A perturbation potential � satisfies the Laplace equation ∇2� = 0.∇2 denotes the Laplace operator. The
solution of the Laplace equation is given in the form of the traveling wave � = �(r) exp[−i(λx + nθ − ωt)].
Here, i = (−1)1/2.λ, n, and ω are the axial wavenumber, circumferential wavenumber, and frequency.

Substituting the traveling wave solution into the Laplace equation, one can arrive at

�(r) = AIn(λr) + BKn(λr) (12)

where In and Kn are the modified Bessel functions of the first and second kind and order n. A, B are constants
which will be determined subsequently.

It is noted that though the present paper is concerned with dynamic stability of the inner cylindrical shell,
the analysis to be presented here involves the inner shell and outer shell in order to utilize nonpenetration
conditions of the two shells’ interaction with fluid.

Based on the condition of impermeability on the fluid–shell interfaces, the radial velocity of the flow must
be equal to the radial velocity of the shell wall,

Vri = ∂�/∂r = Dwi/Dt = ∂wi

∂t
+ Vo

r

∂wi

∂θ
+Uo

∂wi

∂x
(r = ri), (13.1)

Vro = ∂�/∂r = Dwo/Dt = ∂wo

∂t
+ Vo

r

∂wo

∂θ
+Uo

∂wo

∂x
(r = ro) (13.2)

where the subscripts i and o indicate the inner shell and the outer shell, respectively.
Allowing for Eq. (12), introducing the traveling wave solution � in Eqs. (13.1, 13.2), the flowing equations

are obtained

A1 I
′
n(λri) + B1K

′
n(λri) = ∂wi

∂t
+ Vo

r

∂wi

∂θ
+Uo

∂wi

∂x
, (14.1)

A1 I
′
n(λro) + B1K

′
n(λro) = ∂wo

∂t
+ Vo

r

∂wo

∂θ
+Uo

∂wo

∂x
(14.2)

where the prime denotes the differentiation with respect to the argument of the primed function;

A1 = 1

�

[
K ′
n(λro)

(
∂wi

∂t
+ Vo

r

∂wi

∂θ
+Uo

∂wi

∂x

)
− K ′

n(λri)

(
∂wo

∂t
+ Vo

r

∂wo

∂θ
+Uo

∂wo

∂x

)]
, (15.1)

B1 = 1

�

[
I ′
n(λri)

((
∂wo

∂t
+ Vo

r

∂wo

∂θ
+Uo

∂wo

∂x

))
− I ′

n(λro)

(
∂wi

∂t
+ Vo

r

∂wi

∂θ
+Uo

∂wi

∂x

)]
, (15.2)

� = I ′
n(λri)K

′
n(λro) − I ′

n(λro)K
′
n(λri). (15.3)

After certain manipulations, the potential � can be rewritten as

� = 1

�
�1

(
∂wi

∂t
+ Vo

r

∂wi

∂θ
+Uo

∂wi

∂x

)
+ 1

�
�2

(
∂wo

∂t
+ Vo

r

∂wo

∂θ
+Uo

∂wo

∂x

)
(16)

where �1 = In(λr)K ′
n(λro) − I ′

n(λro)Kn(λr), �2 = I ′
n(λri)Kn(λr) − In(λr)K ′

n(λri).
Based on Eq. (8.1), the velocity components of the flow field are given by

Vx = Uo + ∂�

∂x
, Vθ = Vo + ∂�

r∂θ
, Vr = ∂�

∂r
. (17)

The perturbation pressure is determined from the Bernoulli equation,

∂�

∂t
+ 1

2
V 2 + P ′

ρ
= Ps

ρ
, (18)

where V = V 2
x + V 2

θ + V 2
r . Ps is the stagnation pressure. P ′ = P + p. P and p are the mean pressure and the

perturbation pressure, respectively.
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Substituting the quantities V, P ′ into Eq. (18) and neglecting second-order terms—by considering motions
of the shell to be small—Eq. (18) yields

Ps = p + 1

2
ρ

(
U 2

o + V 2
o

)
, (19.1)

p = −ρf

(
∂

∂t
+ Vo

r

∂

∂θ
+Uo

∂

∂x

)
�. (19.2)

Introducing Eq. (16) in Eq. (19.2), the perturbation pressure on the inner shell or outer shell is given by

pi = −ρf

�

(
∂

∂t
+ Vo

r

∂

∂θ
+Uo

∂

∂x

)2 {[
In(λri)K

′
n(λro) − I ′

n(λro)Kn(λri)
]
wi

+ [
I ′
n(λri)Kn(λri) − In(λri)K

′
n(λri)

]
wo

}
, (20)

po = −ρf

�

(
∂

∂t
+ Vo

r

∂

∂θ
+Uo

∂

∂x

)2 {[
In(λro)K

′
n(λro) − I ′

n(λro)Kn(λro)
]
wi

+ [
I ′
n(λri)Kn(λro) − In(λro)K

′
n(λri)

]
wo

}
. (21)

When one of the two coaxial shells is perfectly rigid, the expression (21) can be simplified.
(i) elastic inner and perfectly rigid outer shells. In this case, the condition wo is zero. The perturbation

pressure on the inner shell is rewritten as

pi = −ρf

�

(
∂

∂t
+ Vo

r

∂

∂θ
+Uo

∂

∂x

)2 [
In(λri)K

′
n(λro) − I ′

n(λro)Kn(λri)
]
wi. (22.1)

(ii) elastic outer and perfectly rigid inner shells. Here, the condition wi equals zero. The perturbation pressure
on the outer shell is rewritten as

po = −ρf

�

(
∂

∂t
+ Vo

r

∂

∂θ
+Uo

∂

∂x

)2 [
I ′
n(λri)Kn(λro) − In(λro)K

′
n(λri)

]
wo. (22.2)

2.4 Dynamics and stability analysis

An inner shell with simply supported boundary conditions is considered; the boundary conditions at two edges
x = 0, L are:

v = w = Nx = Mx = 0. (23)

Displacement components u, v, and w of the inner shell fulfilling approximately simply supported boundary
conditions can be expanded in the form of the traveling wave [35],

⎡
⎣ ui/o

vi/o
wi/o

⎤
⎦ =

⎡
⎣ umn exp[−i(λx + nθ − ωt)]

vmn exp[−i(λx + nθ − ωt)]
wmn exp [−i (λx + nθ − ωt + π/2)]

⎤
⎦(

λ = mπ

L

)
. (24)

In order to make the dimensionless analysis, the follow dimensionless quantities are defined:

τ = ri

√
ρs(1 − υ2)

E1
, t = t

τ
, h = h

ri
, x = x

ri
, L = L

ri
, r = r

ri
, p = τ 2

ρsr2
i

p,

Uo = Uoτ

ri
, Vo = Voτ

ri
, k = ro − ri

ri
, ω = ωτ,

⎡
⎣ ui/o

vi/o
wi/o

⎤
⎦ = 1

ri

⎡
⎣ ui/o

vi/o
wi/o

⎤
⎦ . (25)
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Note that the outer shell is perfectly rigid, allowing for Eqs. (22.1), (24), (25), and (9) is reformulated in the
dimensionless form

ζ

⎡
⎣ ui

vi
−iwi

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ (26)

where the entries ζi, j in the operator matrix ζ are given by

ζ11 = −
[

1 + 1 − υ2

E1
P

]
λ2 − 1 − υ

2
n2 + ω2, ζ12 = −1 + υ

2
λn, ζ13 = −iυλ − E2

E1
iλ3 − E2

E1
iλn2,

ζ21 = −1 + υ

2
λn, ζ22 = −

[
1 − υ

2
+ 1 − υ2

E1
P

]
λ2 − n2 + ω2, ζ23 = −in − E2

E1
iλ2n − E2

E1
in3,

ζ31 = −iυλ − E2

E1
iλ3 − E2

E1
iλn2,

ζ32 = −in − E2

E1
iλ2n − E2

E1
in3, ζ33 = 1 − υ2

E1
Pλ2 + 1 + E3

E1

(
λ2 + n2)2 − ω2 + 2

E2

E1
υλ2

+2
E2

E1
n2 + �1

�

1

h

ρf

ρs

(
ω − λUo − nV o

)2
, (27)

Considering the condition for a nontrivial solution of Eq. (26), the determinant of the operator matrix must be
equal to zero.

|ζ | = 0 (28)

The left hand side of Eq. (28) is a sixth-order polynomial of variable ω. The dispersion relation is evaluated
by the zero-level contour method. For a given value of Vo

(
or U0

)
, the contour plot of ω versus U0

(
or V0

)
is

realized by the method.

3 Results and discussion

3.1 Validation

Based on the shell mode, few detailed reports on stability and dynamics of swirling fluid-conveying FGM
cylindrical shells taking into account initial loads are available in the literature; an exact comparison of the
present results with existing results is difficult. In order to obtain a comparison with existing results, FGM
cylindrical shells can be simplified to the homogenous shells subjected to annular flow. The relevant geometric
and material parameters for the system are as follows:

L = 1 m, ro = 0.1 m, hi = ho = 5 × 10−4 m, k = r0 − ri/ri, ri = 9.091 × 10−2 m (k = 0.1),

E = 2.0 × 1011 Pa, υ = 0.3, ρs = 7800 kgm−3, ρf = 1000 kgm−3.

In this case, the outer shell is perfectly rigid, and the annular flow between the two shells has only an axial
velocity component.

Omitting initial loads, the operator matrix ζ in Eq. (26) is rewritten, and the entries are:

ζ11 = −λ2 − 1 − υ

2
n2 + ω2, ζ12 = −1 + υ

2
λn, ζ13 = −iυλ,

ζ21 = −1 + υ

2
λn, ζ22 = − 1 − υ

2
λ2 − n2 + ω2, ζ23 = −in,

ζ31 = −iυλ, ζ32 = −in, ζ33 = 1 + h
2

12

(
λ2 + n2)2 − ω2 + �1

�

1

h

ρf

ρs

(
ω − λUo

)2
. (29)

These results obtained for of the simply supported inner shell are listed in Table 1 and are compared with those
in the literature. From Table 1, it can be noted that the present results are in reasonable agreement with existing
results.
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Table 1 Comparison of dimensionless critical axial velocities of shells with simply supported boundary conditions

Gap ratio k Critical velocity (by divergence) Critical velocity (by flutter)

Uo Uo [present] Uo Uo [present]

0.1 0.0102 [12] 0.0110 0.0540 [12] 0.0570

To verify the present algorithm, the critical angular velocity of an inner shell interacting with an annular
flow with a rigid outer shell is calculated. The following geometric and material properties are adopted:

L = 2.42 m, ro = 0.305 m, ri = 0.1 m, hi = 5 × 10−4 m, ho = 8 × 10−4 m, k = r0 − ri/ri = 2.05,

Ei = 7.0 × 1010 Pa, υ = 0.33, ρs = 2750 kgm−3, ρf = 245 kgm−3.

The angular critical velocity calculated (1736 min−1) is in good agreement with the velocity value(1800 min−1)
in the literature [14].

In order to ascertain the nature frequency obtained, comparisons are carried out for a fluid-filled FGM
shell with existing results [27]. In this case, the FGM shell is simply supported with the following geometric
properties: L/R = 20, h/R = 0.002.

The type II FGM shells are composed of nickel at the inner surface and stainless steel at the outer surface.
The materials properties adopted are:

E1 = 2.07788 × 1011 Pa, E2 = 3.8 × 1011 Pa, υ1 = 0.317756, υ2 = 0.3100,

ρ1 = 8166 kgm−3, ρ2 = 8900 kgm−3, ρf = 1000 kgm−3, c = 1500 ms−1.

In this case, the FGM shell is filled with stagnant fluid (ρf). The hydrodynamic pressure pii exerted on the
inwall of the FGM shell by the internal fluid can be expressed as

pii = −ρf
In(λ)

I ′
n(λ)

∂2wi

∂t2 . (30)

The operation matrix ζ in Eq. (26) is rewritten, and the entries are:

ζ11 = −λ2 − 1 − υ

2
n2 + ω2, ζ12 = −1 + υ

2
λn, ζ13 = −iυλ − E2

E1
iλ3 − E2

E1
iλn2,

ζ21 = −1 + υ

2
λn, ζ22 = − 1 − υ

2
λ2 − n2 + ω2, ζ23 = −in − E2

E1
iλ2n − E2

E1
in3,

ζ31 = −iυλ − E2

E1
iλ3 − E2

E1
iλn2,

ζ32 = −in − E2

E1
iλ2n − E2

E1
in3, ζ33 = 1 + E3

E1

(
λ2 + n2)2 − ω2 + 2

E2

E1
υλ2 + 2

E2

E1
n2

− 1

h

ρf

ρs

In(λ)

I′n(λ)
ω2, (31)

The results calculated are summarized in Table 2, where they are compared with those in the literature. The
maximum error is no more than 8 %. As can be seen, reasonable agreement is obtained in the comparisons.

3.2 Dynamics and stability analysis of the inner shell subjected to an annular flow

In this case, the outer shell is considered perfectly rigid; dynamics and stability of the outer shell subjected to
annular flow are analyzed without incorporating initial loads effects.

In each subsection below, the materials properties adopted are:

Em = 2 × 1011 Pa, Ec = 3.8 × 1011 Pa, υ = υm = υc = 0.3, ρm = 8870 kgm−3,

ρc = 4000 kgm−3, ρf = 1000 kgm−3.
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Table 2 Comparison of the frequency of the type II FGM shell with the simply supported boundary condition, N = 1

m n Uncoupled frequency Coupled frequency

1 2 4.4795 [27] 4.4731 [present] 0.9061 [27] 0.8786 [present]
1 3 4.1562 [27] 4.3932 [present] 0.9640 [27] 1.0384 [present]
1 4 7.0380 [27] 7.2688 [present] 1.8298 [27] 1.9170 [present]
1 5 11.2407 [27] 11.3425 [present] 3.2087 [27] 3.2750 [present]
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Fig. 3 Circumferential wave number against axial flow velocity (by divergence) at �o = 0, N = 1

Geometric parameters are given by

L = 1 m, ro = 1 × 10−1 m, hi = ho = 5 × 10−4 m, k = r0 − ri/ri, ri = 9.091 × 10−2 m (k = 0.1).

In this case, when the fluid flow has only an axial velocity component, the results obtained showing the
variation in the dimensionless frequency with the dimensionless axial flow velocity are plotted in Fig. 2 by
solving Eq. (28). For the ceramic–metal FGM shell at n = 5, it is noted that when the back traveling wave
crosses the frequency ω = 0 line at the point B, the system loses stability by divergence or buckling. The
forward and backward traveling wave frequencies meet at the point C where immediately after point C the
frequency becomes a complex conjugate pair, indicating a coupled-mode flutter of the system. Similar results
are given for different circumferential wavenumbers n in Fig. 2. It should be noted that the negative imaginary
part of the solutions of the Eq. (28) cannot merge when the system loses stability by divergence. The judgment
criterion of the instability by divergence is different from that in the literature [3]. In order to determine the
critical flow velocity associated with the mode, the flow velocities with different modes (m, n) are shown in
Figs. 3 and 4. It is found that when the mode (m, n) is (1, 2), the critical velocity by divergence isUo = 0.0082.
And the critical velocity by flutter is Uo = 0.0555 associated with the mode (2, 4). It is also found that the
value of the axial wavenumber m associated with the critical velocity of an FGM shell is different from the
corresponding value of an isotropic material shell (usually m = 1) [12].

In the case when the fluid flow has only an angular velocity component, Figs. 5 and 6 illustrate similar
results of the dimensionless frequency against the dimensionless angular flow velocity. It can be seen that the
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Fig. 4 Circumferential wave number against axial flow velocity (by flutter) at �o = 0, N = 1
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Fig. 6 Circumferential wave number against angular flow velocity (by flutter) at Uo = 0, N = 1

loss of stability of the system occurs first by divergence and then by flutter at the critical angular velocity
�o = 0.0584 associated with the mode (1, 3).

In order to investigate the effect of fluid rotation on the critical axial velocity, the variation curves of the
frequency against the axial flow velocity are plotted in Fig. 7. It is seen that with the appearance of angular
rotation flow the frequencies of the forward and backward waves are different in magnitude at Uo = 0, and
the critical axial velocity decreases rapidly. It is also seen that when the angular flow velocity reaches a certain
value the system loses stability by flutter only. At the same time, with the appearance of axial velocity, the
critical angular velocity of losing stability reduced correspondingly. Figure 8 shows the correlations between
the critical axial velocity and angular velocity of losing stability. As can be observed, the stability boundary
line is established by assigning that one of the two velocity components is a fixed value and then searching for
the critical value of the other velocity.
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Table 3 Effect of power-law index N on the critical velocities

Critical flow velocities N = 0.5 N = 1 N = 2 N = 3 N = 4

Uo (�o = 0 by divergence) 60.57 (m/s) 57.71 (m/s) 54.75 (m/s) 53.23 (m/s) 51.52 (m/s)
Uo (�o = 0 by flutter) 436.52 (m/s) 390.57 (m/s) 354.14 (m/s) 338.09 (m/s) 328.96 (m/s)
�o (Uo = 0 by flutter) 461.03 (rad/s) 410.27 (rad/s) 373.67 (rad/s) 356.89 (rad/s) 322.14 (rad/s)
Uo (�o = 0.0022 by flutter) 273.61 (m/s) 245.60 (m/s) 224.79 (m/s) 215.90 (m/s) 211.47 (m/s)

With the same physical and geometric data, the effect of different values of power-law index N on the
critical flow velocity is summarized in Table 3. From Table 3, it can be seen that the critical flow velocities
decrease with the increase of N . This property reflects the real property of the ceramic–metal FGM shell,
because the higher value of N corresponds to a metal-richer shell which usually has less stiffness than a
ceramic-richer shell.

3.3 Effects of initial axial loads

In this calculation, the axial load is expressed as

P = T Pcr (32)

where Pcr = Emh2

ri

√
3(1−υ2)

indicates the static axial buckling load of the cylindrical shell [36] and T defines the

axial loading factor. The sign of the axial loading factor T is (‘−’), indicating the compressive load, but the
sign of the axial loading factor T is (‘+’), indicating the tensile load.

Figures 9 and 10 show the effects of the axial compressive load on the critical flow velocities. From
the two figures, it is observed that the axial compressive load decreases the critical flow velocities, i.e., the
system becomes more unstable. The critical axial compressive factor T is determined as shown in Fig. 11. It
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is observed that by increasing the value of T (‘−’) gradually the frequency becomes smaller till zero where
the corresponding axial compressive factor is the critical axial compressive factor. It is found that the axial
compressive factors for the different critical flow velocities are different in general.

Figure 12 shows the effects of a combined action of the axial flow and the angular rotation of flow on the
stability behavior of the system under initial axial loads. As can be seen, the variation tendency of the curves
under the different directions of axial loads is different. It is seen that the critical axial velocity decreases
rapidly with the increase in critical angular velocity. It is also seen that the overall velocity instability of the
system including the axial and angular velocity components reduces markedly as the direction of the axial
load changes from tensile (‘+’) to compressive (‘−’).
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4 Conclusions

Based on the shell model, dynamics and stability of the inner FGM cylindrical shell conveying a swirling flow
in the annular space between the two shells taking into account axial loads are investigated theoretically by
the zero-level method in the form of the traveling wave solution. The proposed method is simple and effective
by comparing it with the Fourier transform technique. But the purely imaginary roots cannot be obtained by
using the method in the calculations.

The results obtained show that the rotation of fluid lowers the critical axial flow speed. And the variation
relation of the critical angular velocity versus the critical axial velocity is given. When the axial load is
compressive, the overall velocity of losing stability reduces markedly with the increase in the value of the
axial load. When the axial load is tensile, the overall velocity of losing stability increases markedly with the
increase in the value of the axial load. It is clear that the combined action of the two velocity components and
the axial compressive loads makes stable zones become smaller.

The results obtained also show that with the increase of power-law index N the critical flow velocities
decrease accordingly.

Also, the critical compressive factors are obtained.
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