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Abstract Systems of second-order ordinary differential equations admitting a Lagrangian formulation are
perturbed requiring that the extended Lagrangian preserves a fixed subalgebra of Noether symmetries of the
original system. For the simple Lie algebra sl(2,R), this provides nonlinear systems with two independent
constants of the motion quadratic in the velocities. Pinney-type equations are characterized as the most general
sl(2,R)-preserving perturbation of the time-dependent (damped) harmonic oscillator. The procedure is gen-
eralized naturally to higher dimensions. In particular, it is shown that any perturbation of the time-dependent
harmonic oscillator in two dimensions that preserves an sl(2,R) subalgebra of Noether symmetries is equiva-
lent to a generalized Ermakov–Ray–Reid system that satisfies the Helmholtz conditions of the Inverse Problem
of Lagrangian Mechanics. Application of the method to determine perturbations of the free Lagrangian in RN

is illustrated for the canonical chain of subalgebras of the Lie algebra sl(2,R) ⊕ so(N ).

1 Introduction

The Lie symmetry analysis of differential equations, originally applied to physical problems mainly in the
context of (quantum) mechanical systems, constitutes nowadays a standard method in a wide spectrum of
physical situations, ranging from classical mechanics over quantum phenomena or nonlinear optics to cosmo-
logical problems (see, e.g., [1–7] and references therein). Among the systems of ordinary differential equations
(ODEs) analyzed for their symmetry properties and relevant to physical applications, (generalized) Ermakov
systems occupy a distinguished position for their various interesting structural properties, such as the existence
of a nonlinear superposition principle. This has motivated intensive studies of such systems [8–14]. Besides the
classical Ermakov systems, related to the time-dependent harmonic oscillator, various types of generalizations
have been proposed, nowadays known as Ermakov–Ray–Reid systems or ERR systems in short, along with
their multidimensional analogues, which have been proven to be of interest in soliton theory [15]. In the context
of the symmetry analysis, it has been shown that point symmetries of ERR systems are closely related to the
simple Lie algebra sl(2,R) [16]. The existence of a Hamiltonian formalism for ERR systems has been further
studied in [17], showing that the Noether approach is not yet exhausted. The problem of analyzing dynamical
systems possessing a (given) Noether symmetry has already been considered by some authors in the context
of the geometric reformulation of the Noether theorem [18,19], suggesting a symmetry-based classification
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of dynamical systems. All these approaches connect with recent work on generic symmetries of systems of
ODEs and their relation to certain types of integrable systems [3,5,20–26].

In this work, we develop a somewhat inverse procedure, basing on a “symmetry-preservation” procedure
applied to Lie algebras of Noether symmetries, and formally related to the geometric approaches proposed
in [18,19]. Starting with a Lagrangian L associated to a generic linear homogeneous second-order ODE, we
determine the most general forcing term G(t, x) such that the extended Lagrangian preserves a subalgebra of
Noether symmetrieswith identical generators. This enables towrite a constant of themotion as a combination of
the invariant of the original equation and a part corresponding to the forcing term. It follows from this approach
that the Pinney-type equation ẍ + p(t)ẋ + q(t)x +C

(
exp(

∫
p(t)dt)

)−2
x−3 = 0 can be characterized as the

most general perturbation of theODE ẍ+ p(t)ẋ+q(t)x = 0 that preserves a subalgebra ofNoether symmetries
isomorphic to sl(2,R). This implies that for such nonlinear equations, point symmetries are always Noether
symmetries. The special case g1(t) = 0 provides an additional explanation for the relation between the time-
dependent harmonic oscillator and the Pinney equation [8,12,27], hence suggesting a connectionwith Ermakov
systems. The procedure is then considered for systems in two dimensions, starting with an uncoupled system
of damped oscillators. Here, forcing terms can depend on the velocities, giving rise to a more ample class of
perturbed nonlinear systems. It follows in particular that the most general perturbation of the time-dependent
harmonic oscillator in two dimensions preserving an sl(2,R)-subalgebra of Noether symmetries corresponds
to a Ermakov–Ray–Reid system that satisfies the Helmholtz conditions of the Inverse Problem in Lagrangian
Mechanics [28,29]. Finally, the case of perturbations of the free Lagrangian in RN is studied for the canonical
chain of subalgebras of the Lie algebra sl(2,R) ⊕ so(N ), enabling us to find a relation between perturbations
of free Lagrangians in different dimensions.

We stress the fact that, in contrast to the geometrical constructions of dynamical systems possessing a given
Noether symmetry, as developed, e.g., in [18,19], we are interested in determining nonlinear systems obtained
by perturbation of a given Lagrangian system and preserving a certain subalgebra of Noether symmetries,
in order to compare the constants of the motion of the resulting system with respect to the original one.
The requirement on the subalgebra is imposed in order to obtain information on the possible integrability of
nonlinear systems.

1.1 Point symmetries of second-order ordinary differential equations

To describe point symmetries of differential equations, we use the standard formulation in terms of differential
operators [30]. It is well known that a system of N ≥ 1 second-order ordinary differential equations

ẍi = ωi (t, x, ẋ) , 1 ≤ i ≤ N (1)

is formulated in equivalent form in terms of the partial differential equation

A f =
(

∂

∂t
+ ẋi

∂

∂xi
+ ωi (t, x, ẋ)

∂

∂ ẋi

)
f = 0. (2)

We call a vector field X = ξ (t, x) ∂
∂t + η j (t, x) ∂

∂x j
∈ X

(
R
N+1

)
a Lie point symmetry of the equation(s) (1)

if the prolongation Ẋ = X + η̇ j (t, x, ẋ) ∂
∂ ẋ j

satisfies the commutator

[
Ẋ ,A

] = −dξ

dt
A (3)

where η̇ j = −dξ

dt ẋ j + dη j

dx .
For N = 1, given arbitrary functions g1(t), g2(t), it is straightforward to verify that a second-order linear

homogeneous differential equation
ẍ + g1 (t) ẋ + g2 (t) x = 0 (4)

possesses an algebra of point symmetries L isomorphic to sl (3,R) (see, e.g., [30]). Three of the symmetry
generators of L are immediate and can be taken as

Y1 = x
∂

∂x
, Y2 = U1 (t)

∂

∂x
, Y3 = U2 (t)

∂

∂x
(5)
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where the general solution of (4) is given by

x (t) = λ1U1 (t) + λ2U2 (t) ; λ1, λ2 ∈ R. (6)

1.2 Noether symmetries and constants of the motion

An important problem in dynamics is whether a given system of second-order ODEs (1) follows from a
variational principle, i.e., if there exists a Lagrangian function L(t, x, ẋ) such that the so-called Helmholtz
conditions

d

dt

(
∂L

∂ ẋ j

)
− ∂L

∂x j
= fi j (t, x, ẋ) (ẍi − ωi (t, x, ẋ)) , 1 ≤ i, j ≤ N (7)

are satisfied [28]. The Inverse Problem in Lagrangian Mechanics, for both holonomic and non-holonomic
systems, has been studied in detail by many authors, and many interesting problems emerge in this context,
like the non-uniqueness of the Lagrangian formalism and the arising ambiguities in the interpretation of the
correspondence between constants of the motion and symmetries [29,31–33].

For the scalar case N = 1 the answer is always in the affirmative, and we can find functions f (t, x, ẋ) and
L (t, x, ẋ) such that (7) is satisfied. For an ODE of type (4), an admissible Lagrangian L is given by

L (t, x, ẋ) = ϕ (t)
(
ẋ2 − g2 (t) x2

)
/2, (8)

where ϕ (t) is defined in terms of the WronskianW = W {U1 (t) ,U2 (t)} of (4) as ϕ(t) = −1/W.
The resulting ODE can be seen as the equation of motion of a one-dimensional time-dependent damped

oscillator [34].
An obvious advantage of having a dynamical system derived from a Lagrangian resides in the possibility

of studying point symmetries arising from a variational principle [14]. Recall that a point symmetry X is a
Noether symmetry of a Lagrangian L(t, x, ẋ) if there exists a function V (t, x) such that the identity

Ẋ (L) + A (ξ) L − A (V ) = 0 (9)

is satisfied. As a consequence, the quantity

ψ = ξ (t, x)
[
ẋi

∂L

∂ ẋi
− L

]
− ηi (t, x)

∂L

∂ ẋi
+ V (t, x) (10)

is always a constant of the motion of the system [5,18,31].
As the ODE (4) possesses maximal symmetry sl(3,R), it has exactly five independent Noether symmetries

[30]. It is immediate to verify that the symmetries Y2 and Y3 of (5) satisfy the Noether symmetry condition
(9) for the function V (t, x) = ϕ (t) xU̇k(t), k = 1, 2. The conserved quantities deduced from them are
Ik = ϕ (t)

(
xU̇k(t) − ẋUk (t)

)
. As shown in [35], the Lie point symmetries of linear equations of type (4),

as well as of linear n-systems, can be described generically in terms of the general solution of the equations,
leading to realizations of sl(n+2,R) in terms of special functions. In particular, this approach can be applied to
the subalgebra of Noether symmetries. For the equation under discussion (4), it follows that the three remaining
Noether symmetries are described in terms of the general solution (6) of the ODE. To this extent, we observe
that the function ϕ defined above satisfies the first-order equation

R2 := dϕ

dt
− g1 (t) ϕ (t) = 0. (11)

Proposition 1 For arbitrary functions g1 (t) , g2 (t), the vector fields

Xk = ϕ (t)U 2
k (t)

∂

∂t
+ x ϕ (t)Uk(t)U̇k (t)

∂

∂x
, k = 1, 2 (12)

are independent Noether symmetries of the linear homogeneous ODE (4).
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The detailed proof of this property can be found in [35]. It further follows that the vector field

X3 := [X1, X2] = −2ϕ(t)U1(t)U2(t)
∂

∂t
− ϕ(t)

(
U1 (t) U̇2(t) +U2 (t) U̇1(t)

)
x

∂

∂x
(13)

is also a Noether symmetry of the equation. These three symmetries generate a subalgebra isomorphic to
sl (2,R), with the two additional Noether symmetries Y2, Y3 transforming according to the two-dimensional
irreducible representation of sl (2,R). We observe that the structure constants of LNS are independent of the
particular form of the solutionsUk(t) of (4). The constants of the motion associated to the symmetries X1, X2,
given, respectively, by

Jαβ = 1

2
Iα Iβ, α, β = 1, 2; (14)

are functionally dependent on the invariants associated with Y2 and Y3.

1.3 Perturbations by means of symmetry-preserving forcing terms

The close relation between the time-dependent harmonic oscillator

ẍ + ω2 (t) x = 0 (15)

and the Pinney equation

ρ̈ + ω2 (t) ρ = α

ρ3 (16)

has been discussed extensively in the literature (see [9,25,36] and references therein), from a geometrical point
of view, as well as in the context of the physical interpretation of the (generalized) Lewis invariant [8,12,37]
and its generalization to higher dimensions [34].

We provide a complementary approach to the problem, namely considering perturbed Lagrangians that
preserve exactly a fixed subalgebra of Noether symmetries. For a differential equation of type (4),1 we compute
themost general forcing or perturbation termGε (t, x) such that the sl (2,R)-subalgebra ofNoether symmetries
is preserved, implying that the latter nonlinear equation has an algebra of point symmetries coincident with
that of Noether symmetries. Two of the resulting constants of the motion quadratic in the velocities will be
independent and not obtainable from linear invariants, as these correspond to Noether symmetries that are not
preserved.

The starting point for the ansatz is to consider the extended Lagrangian

L̃(t, x, ẋ) = L0(t, x, ẋ) + ε 
 (t, x) = ϕ (t)

(
ẋ2

2
− g2 (t)

2
y2 − Gε(t, x)

)
(17)

where L0(t, x, ẋ) is the Lagrangian given in (8) and 
(t, x) = −ϕ (t)Gε(t, x) for some function Gε (t, x)
such that limε→0 Gε(t, x) = 0. The corresponding equation of motion is given by

d

dt

(
∂ L̃

∂ ẋ

)
− ∂ L̃

∂x
= d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
− ∂


∂x
= ϕ (t)

(
ẍ + g1 (t) ẋ + g2 (t) x + ∂Gε

∂x

)
= 0.

Discarding the common term, the equation

ẍ + g1 (t) ẋ + g2 (t) x + ∂Gε

∂x
= 0 (18)

describes the motion of a particle with both damping and forcing terms.
Having in mind the relation (11) defined previously, we impose the conservation of the Noether symmetries

X1 and X2 for the (generally nonlinear) Eq. (18).

1 More precisely, for the Lagrangian (8) associated with the equation.
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Proposition 2 For k = 1, 2 the vector fields

Xk = ϕ (t)U 2
k (t)

∂

∂t
+ x ϕ (t)Uk (t) U̇k(t)

∂

∂x
(19)

are Noether symmetries of the equation of motion (18) only if the forcing term has the form

Gε (t, x) = ε

ϕ (t)2 x2
, ε ∈ R. (20)

We prove the assertion evaluating directly the symmetry condition (9). For the Lagrangian L̃ and the
prolongation Ẏk , the evaluation of the symmetry condition (9) reduces to the following expression:

ϕ (t)

2
U 2
k (t) R2 ẋ

2 + ẋ

{
x ϕ2 (t)

(
U̇k(t)

2 + Ük(t)Uk (t) + g1 (t)Uk (t) U̇k(t)
) − ∂V

∂x

}

− x2

2
Uk (t) ϕ2 (t)

{
4g2 (t) U̇k(t) +

(
2g1 (t) g2 (t) + dg2

dt

)
Uk (t)

}
− ϕ2 (t)U 2

k (t)
∂Gε

∂t
(21)

−x ϕ2 (t)Uk (t) U̇k(t)
∂Gε

∂x
− ∂V

∂t
− 2ϕ2 (t)Uk (t)

(
g1 (t)Uk (t) + U̇k(t)

)
Gε (t, x) ,

using the relation (11). As R2 = 0, the term in ẋ2 vanishes. The function V (t, x) is obtained from the term in
ẋ as

V (t, x) = x2

2
ϕ (t)2

(
Ük(t)Uk (t) + U̇ 2

k (t) + g1(t)Uk (t) U̇k(t)
)
. (22)

Inserting this expression into (21) and simplifying, the Noether symmetry condition reduces to

−ϕ2 (t)Uk (t)

(
Uk (t)

∂Gε

∂t
+ xU̇k(t)

∂Gε

∂x
+ 2

(
Uk (t) g1(t) + U̇k(t)

)
Gε (t, x)

)
(23)

because of R2 = 0 andUk (t) being a solution of (4). This surviving term corresponds to the partial differential
equation that must be satisfied by the forcing term Gε (t, x) if it preserves the symmetry Xk :

Uk (t)
∂Gε

∂t
+ xU̇k(t)

∂Gε

∂x
+ 2

(
Uk (t) g1 (t) + U̇k(t)

)
Gε (t, x) = 0. (24)

As the latter equation should be satisfied simultaneously for the independent solutions U1 (t) and U2 (t), we
can rewrite the condition in terms of the Wronskian as

W
(

∂Gε

∂t + 2g1 (t)Gε (t, x)
x ∂Gε

∂x + 2Gε (t, x)

)
= 0. (25)

As W �= 0, Gε(t, x) must satisfy the equations

(
∂Gε

∂t
+ 2g1 (t)Gε (t, x)

)
= 0,

(
x
∂Gε

∂x
+ 2Gε (t, x)

)
= 0. (26)

The solution to this system is easily found to be

Gε (t, x) = ε

ϕ2 (t) x2
, ε ∈ R. (27)

Therefore, the nonlinear ODE

ẍ + g1 (t) ẋ + g2 (t) x − 2ε

ϕ2 (t) x3
= 0 (28)



1946 R. Campoamor-Stursberg

possesses at least the three Noether symmetries X1, X2 and X3 inherited from the associated homogeneous
equation (4).2 We observe that no forcing terms G(t, x, ẋ) with ∂Gε

∂ ẋ �= 0 can exist, as follows at once from
the symmetry condition (9).

Lemma 1 For arbitrary functions g1 (t) and g2 (t), the Lie algebra L of point symmetries of the ODE (28) is
isomorphic to sl (2,R) and coincides with the algebra of Noether symmetries.

From the symmetry condition (3), a routine computation shows that a symmetry generator X must have
the shape

X = ξ (t)
∂

∂t
+ 1

2

ξ̇ (t) ϕ (t) − ξ (t) ϕ̇ (t)

ϕ (t)
x

∂

∂x
. (29)

In order to satisfy the symmetry condition, the function ξ (t) must be a solution to the third-order ODE

d3ξ

dt3
+

(
4g2 (t) − g21 (t) − 2

dg1
dt

)
dξ

dt
+

(

2
dg2
dt

−
(
dg1
dt

)2

− g1 (t)
dg1
dt

)

ξ = 0. (30)

Now, as the vector fields X1, X2 and [X1, X2] are point symmetries of (28) for being Noether symmetries, for
any constants λ1, λ2, λ3 the function

ξ (t) = ϕ(t)
(
λ1U

2
1 (t) + λ2U1 (t)U2 (t) + λ3U

2
2 (t)

)
(31)

is a solution of (30), and since U1 (t) and U2 (t) are independent, it follows that (31) is the general solution of
the equation, proving the assertion.

As the homogeneous ODE (4) and the nonlinear equation (28) share the same subalgebra of Noether
symmetries with identical generators (and function V (t, x)), this implies that the corresponding constant of
the motion satisfies

ψ = ξ

[
ẋ
∂ L̃

∂ ẋ
− L̃

]
− η

∂ L̃

∂ ẋ
+ V (t, x) = ξ

[
ẋ
∂L0

∂ ẋ
− L0

]
− η

∂L0

∂ ẋ
+ V (t, x) + εξ

ϕ(t) x2
. (32)

Now ψ0 = ξ
[
ẋ ∂L0

∂ ẋ − L0

]
− η ∂L0

∂ ẋ + V (t, x) corresponds to the constant of the motion of the homogeneous

equation (4) with the Lagrangian L0 of (8), while the last term of (32) is the genuine contribution of the forcing
term. We can also use the well-known Lewis invariant [8,12,36] to express (32) in compact form. As x is a
solution of equation (28), ψ can be simplified to

ψ = ϕ2 (t) (ρ̇x − ρ ẋ)2 + βx2

ρ2 − 2ερ2

x2
. (33)

In particular, for g1(t) = 0 and g2(t) = ω(t)2, this method shows how the Pinney equation arises as the
only perturbation of the (time-dependent) harmonic oscillator that preserves a sl(2,R)-subalgebra of Noether
symmetries.

It is to be observed that there is a certain ambiguity in the notion of perturbation, as the latter depends
essentially on the Lagrangian L and not on the resulting equations of motion. An alternative Lagrangian is
likely to provide different symmetry-preserving forcing terms and hence different perturbations. However,
whenever there is no ambiguity on the Lagrangian L used, we will simply use the term perturbation.

2 Perturbations in N = 2 dimensions and generalized Ermakov–Ray–Reid systems

As a natural generalization of the scalar case, we can consider the perturbation problem for (linear) systems of
ODEs possessing at least an sl(2,R)-subalgebra of Noether symmetries. Here forcing terms depending on the
velocities are possible, providing amore ample class of nonlinear systems. Considering first the time-dependent
(damped) harmonic oscillator in two dimensions, we determine those perturbations that preserve an sl (2,R)-
subalgebra. It is further shown that these perturbations actually correspond to a subclass of (generalized) ERR
systems that admit a Hamiltonian formalism [17].

2 Equation (28) should not be confused with the so-called damped Pinney equation.
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Let g1 (t) , g2 (t) be arbitrary functions and consider the uncoupled two-dimensional damped oscillator

ẍi + g1 (t) ẋi + g2 (t) xi = 0, i = 1, 2 (34)

obtained from the time-dependent Lagrangian

L = 1

2
ϕ (t)

(
ẋ21 + ẋ22 − g2 (t)

(
x21 + x22

))
. (35)

Using the symmetry condition (9), a routine computation shows that a Noether symmetry X = ξ (t, x) ∂
∂t +

η j (t, x) ∂
∂x j

has the following form (1 ≤ j ≤ 2, k �= j):

ξ (t, x) = ξ (t) ,

η j (t, x) = 1
2

(
ξ̇ (t) − g1 (t) ξ (t)

)
x j + λkj xk + ψ j (t)

(36)

where ξ (t) satisfies Eq. (30) andψ j (t) is a solution of (4) for j = 1, 2. The Lie algebra of Noether symmetries
LNS has thus dimension 8. A basis of LNS can be easily chosen as

Xk = ϕ (t)U 2
k (t)

∂

∂t
+ ϕ (t)Uk (t) U̇k(t)

(
x1

∂

∂x1
+ x2

∂

∂x2

)
, k = 1, 2;

X3 = [X1, X2] ; X12 = x1
∂

∂x2
− x2

∂

∂x1
; Ykj = Uk (t)

∂

∂x j
, 1 ≤ j, k ≤ 2. (37)

Clearly, the Levi subalgebra of LNS is isomorphic to s = sl (2,R)⊕ so (2), while the generators Yi j transform
according to the representation � ⊗ � 1

2
of s, where � is the standard representation of so (N ) and � 1

2
the

two-dimensional irreducible representation of sl (2,R). From this we easily conclude that LNS is isomorphic
to the unextended Schrödinger algebra S (2).3

For systems of this type, the computation of the most general forcing term G(t, x, ẋ) that can be added
to the Lagrangian L in (35) and preserving the sl(2,R)-subalgebra of Noether symmetries is quite similar
to the previous case. For technical reasons, it is, however, convenient to separate the case of forcing terms
independent and dependent on the velocities.

2.1 Velocity-independent forcing terms

We require that the extended Lagrangian

L̃ = ϕ (t)

(
1

2

(
ẋ21 + ẋ22 − g2 (t) (x21 + x22 )

) − Gε (t, x)
)

(38)

preserves the Noether symmetries X1, X2, X3 of (37). In analogy with the scalar case, the symmetry condition
(9) for Xk is only satisfied if the forcing term Gε (t, x) is a solution of the PDE

Uk (t)
∂Gε

∂t
+ U̇k(t)

(
x1

∂Gε

∂x1
+ x2

∂Gε

∂x2

)
+ 2

(
U̇k(t) + g1 (t)Uk (t)

)
Gε (t, x) = 0. (39)

Imposing that the latter PDE is satisfied simultaneously for k = 1, 2, and using again that the Wronskian W
does not vanish, it follows after some computation that the general solution is given by

Gε (t, x) = ε F

(
x2
x1

)
x−2
1 ϕ−2 (t) . (40)

As before, it follows that for the nonlinear system

ẍi + g1 (t) ẋi + g2 (t) xi + ∂Gε

∂xi
= 0, 1 ≤ i ≤ 2 (41)

3 This clearly follows from the fact that the equivalence class of (34) is that of the free particle system and hence possesses
sl(4,R)-symmetry [38].
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the Lie algebra of point symmetries L coincides with that of Noether symmetries LNS , isomorphic to sl(2,R).
We further observe that for generic choices of F , the equations are coupled non-trivially.

If we now introduce two functions F1
(
x2
x1

)
, F2

(
x1
x2

)
that satisfy the constraint x1

(
F1

(
x2
x1

)
+ F2

(
x1
x2

))
+

x2F
(
x2
x1

)
= 0, F

(
x2
x1

)
being the generic function from (40), the solution of (39) can be written as

Gε (x1, x2) = − ε

x1x2ϕ2 (t)

(
F1

(
x2
x1

)
+ F2

(
x1
x2

))
. (42)

This enables to write the partial derivatives as

∂Gε

∂x1
= ε

x1x2
(
F1

(
x2
x1

)
+F2

(
x1
x2

))
−x21 F

′
2

(
x1
x2

)
+x22 F

′
1

(
x2
x1

)

x31 x
2
2ϕ2(t)

= ε

x21 x2ϕ
2(t)

H1

(
x2
x1

)
, (43)

∂Gε

∂x2
= ε

x1x2
(
F1

(
x2
x1

)
+F2

(
x1
x2

))
+x21 F

′
2

(
x1
x2

)
−x22 F

′
1

(
x2
x1

)

x21 x
3
2ϕ2(t)

= ε

x1x22ϕ2(t)
H2

(
x1
x2

)
. (44)

The system possesses two independent constants of the motion quadratic in the velocities. Either using formula
(10) for the Xi or the preceding equations of motion, it is easily shown that one invariant is

J1 = ϕ2 (t)

2
(x2 ẋ1 − x1 ẋ2)

2 +
∫ x2/x1

H1 (z) dz +
∫ x1/x2

H2 (z) dz, (45)

while the second can be expressed as4

J2 = ϕ2 (t)

(
ẋ1 ẋ2 +

∫ x1x2
g2(z)dz

)
−

∫ (
ϕ2 (t) g1 (t)

∫ x1x2
g2(z)dz

)
dt + K ε

x21

− ε

x21

∫ x2/x1 H1(z)

z
dz. (46)

The independence of J1 and J2 is straightforward, as J2 depends explicitly on g1 (t) and g2 (t).
In particular, for equations with g1 (t) = 0 the function ϕ(t) reduces to a constant, and the preceding

constants of the motion are not explicitly dependent on time. This situation generalizes the systems obtained
from the particular choice g2 (t) = ω2 (t) and ε = 1, where the system (41) constitutes a special case of
the generalized Ermakov systems introduced in [10].5 This shows that perturbations of the two-dimensional
time-dependent harmonic oscillator [with respect to the Lagrangian (35)] that preserve the sl (2,R)-subalgebra
correspond to a subclass of the generalized Ermakov systems with velocity-independent potentials (hence, this
subclass admits a Hamiltonian).

The two constants of the motion (45) and (46) reduce to

J1 = 1

2
(x2 ẋ1 − x1 ẋ2)

2 +
∫ x2/x1

H1 (z) dz +
∫ x1/x2

H2 (z) dz (47)

and

J2 = ẋ1 ẋ2 + K

x21
+

∫ x1x2
ω(z)2dz − 1

x21

∫ x2/x1 H1(z)

z
dz. (48)

The first integral J1 corresponds to the well-known ERR invariant, while J2 coincides with the additional
invariant found in [39].

4 This expression follows using the relation (11), as well as from the fact that H1 and H2 are actually dependent functions, as
given in (43)–(44).

5 In fact, the constraint satisfied by F1 and F2 corresponds to the sufficiency condition for the ERR system to arise from a
Lagrangian in two dimensions, i.e., to satisfy the Helmholtz conditions (7).
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2.2 Velocity-dependent forcing terms

We now analyze the more general case of perturbations of the Lagrangian (35) with forcing terms of the form
Gε (t, x, ẋ), starting from

L̃ = L − ϕ (t) Gε (t, x, ẋ) . (49)

Evaluating the Noether symmetry condition for the vector fields X1, X2 leads, after some algebraic manipu-
lation and simplification, to the following PDEs:

Uk(t)U̇k(t)

(
2∑

l=1

(
xl

∂Gε

∂xl
− ẋl

∂Gε

∂ ẋl

)
+ 2Gε (t, x, ẋ)

)

+ U̇2
k (t)

2∑

l=1

xl
∂Gε

∂ ẋl
+U 2

k (t)
∂Gε

∂t

+U 2
k (t)

(

2g1 (t) Gε (t, x, ẋ) − g1 (t)
2∑

l=1

ẋl
∂Gε

∂ ẋl
− g2 (t)

2∑

l=1

xl
∂Gε

∂ ẋl

)

= 0, k = 1, 2. (50)

Basing on the fact that the Wronskian W does not vanish, we can consider linear combinations of the latter
equations that reduce them to an equivalent form that, however, do not involve the Uk explicitly. Proceeding
like this, it can be shown that the solution to the system (50) is equivalent to the solution of the following
system:

x1
∂Gε

∂ ẋ1
+ x2

∂Gε

∂ ẋ2
= 0, (51)

x1
∂Gε

∂x1
+ x2

∂Gε

∂x2
− ẋ1

∂Gε

∂ ẋ1
− ẋ2

∂Gε

∂ ẋ2
+ 2Gε (t, x, ẋ) = 0, (52)

∂Gε

∂t
+ 2g1 (t) Gε (t, x, ẋ) − g1 (t)

(
ẋ1

∂Gε

∂ ẋ1
+ ẋ2

∂Gε

∂ ẋ2

)
= 0. (53)

Solving successively these equations, after a lengthy but routine computation, we find as general solution to
this system

Gε (t, x, ẋ) = ε F

(
x2
x1

, ϕ (t) (ẋ2x1 − ẋ1x2)

)
x−2
1 ϕ−2 (t) . (54)

If g1 (t) = 0, the function G simplifies to

Gε (x, ẋ) = ε F

(
x2
x1

, (ẋ2x1 − ẋ1x2)

)
x−2
1 . (55)

Introducing the auxiliary variables r = x2x
−1
1 and W = x1 ẋ2 − ẋ1x2 as in [9], the equations of motion for

the extended Lagrangian

L̃ = ϕ (t)

2

(
ẋ21 + ẋ22 − g2 (t)

(
x21 + x22

)) − ε

x21ϕ (t)
F (r, ϕ (t)W ) (56)

are explicitly given by

ẍ1 + g1 (t) ẋ1 + g2 (t) x1 + 2εṙ

ϕ (t) x1

∂F

∂W
+ ε r

ϕ (t)2 x31

(
ϕ (t)W

∂2F

∂r∂W
− ∂F

∂r

)
− 2ε F

ϕ (t)2 x31

+ε r
(
Ẇ + g1 (t)W

)

x1

∂2F

∂W 2 = 0, (57)

ẍ2 + g1 (t) ẋ2 + g2 (t) x2 + ε

∂F
∂r − ϕ (t)W ∂2F

∂r∂W

ϕ (t)2 x31
− ε

(
Ẇ + g1 (t)W

)

x1

∂2F

∂W 2 = 0. (58)

It is straightforward to verify that this system is equivalent to the original two-dimensional oscillator if F is
a linear function of W . For nonlinear functions in W , the Lie algebra L of point symmetries of (57), (58)
coincides once more with that of Noether symmetries, isomorphic to sl(2,R). In this case, as expected from
the presence of a damping term g1(t), the two constants of the motion derived from the Noether symmetries
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X1 and X2 adopt in general a rather complicated (explicitly time-dependent) integral form, for which reason
we skip their detailed expression.

As an elementary example illustrating the latter situation, let g1 (t) = 1 and g2 (t) = 0. We consider
the forcing term given by the function Gε (t, x, ẋ) = εW 2. The equations of motion of the Lagrangian

L = 1
2e

t
(
ẋ21 + ẋ22 + εW 2x−2

1

)
can be brought to the form

ẍ1 + ẋ1 − (1 + ε)W 2

x31
(
(1 + ε) + εr2

) = 0, ẍ2 + ẋ2 − ε2r W 2

x31
(
(1 + ε) + εr2

) = 0. (59)

A first invariant can be found easily. Multiplying the first equation by x2W−1 and the second by x1W−1, the
difference of the equations leads, after integration, to the conserved quantity

I1 = et W
√(

(1 + ε) + εr2
) = et (ẋ2x1 − x2 ẋ1) x

−2
1

√(
(1 + ε)x21 + εx22

)
. (60)

A second independent invariant is more complicated to find, although for this purpose the explicit Noether
symmetries can be used. With this method, and after some lengthy calculation, the following invariant can be
found:

I2 = et

2

(

ẋ21 + (1 + ε)ẋ22 + x1 ẋ1 + x2 ẋ2 − εx2 ẋ1 (2ẋ2x1 − x2 ẋ1)

x21

)

. (61)

We further observe that I1 I
−1
2 provides an invariant that does not explicitly depend on time.

At this stage, the natural question that arises in this context is whether for the case g1(t) = 0 the perturbed
system (57), (58) also corresponds to a generalized Ermakov–Ray–Reid system (with velocity-dependent
potential) that allows a two-dimensional Lagrangian. We prove this assumption to be correct.

Such a generalized ERR system, as first introduced in [11], has the generic form:6

ẍ1 + ω2 (t) x1 − 1

x32

∂F1
∂r

+ W

x32

∂2F1
∂r∂W

+ Ẇ

x2

∂2F1
∂W 2 = 0, (62)

ẍ2 + ω2 (t) x2 + 1

x22 x1

∂G1

∂r
− W

x22 x1

∂2G1

∂r∂W
− Ẇ

x1

∂2G1

∂W 2 = 0, (63)

where F1 and G1 are arbitrary functions of r and W . Using the Helmholtz conditions (7) (see also [28,29]), a
long but routine computation shows that (62), (63) correspond to the equations of motion of a two-dimensional
Lagrangian if the following constraints are satisfied:

∂2G1

∂W 2 − r2
∂2F1
∂W 2 = 0, (64)

3
∂F1
∂r

+ 1

r2
∂G1

∂r
− 3w

∂2F1
∂r∂W

− W

r2
∂2G1

∂r∂W
+ r

∂2F1
∂r2

− 1

r

∂2G1

∂r2
− rw

∂3F1
∂r2∂W

+W

r

∂3G1

∂r2∂W
= 0. (65)

Integrating the first equation and using the method of characteristics [40], we can write the solution to this
system as

F1 (r,W ) = G1 (r, w)

r2
+ f1 (r) w + C

r2
(66)

whereG1 (r,W ) is still an arbitrary function.Now, inserting the latter expression into (62)–(63) and simplifying,
the equations of motion adopt the form

ẍ1 + ω2 (t) x1 + 2G1

x31
− 2W

x31

∂G1

∂W
− 1

x21 x2

∂G1

∂r
+ W

x21 x2

∂2G1

∂r∂W
+ x2Ẇ

x21

∂2G1

∂W 2 = 0, (67)

6 The only formal difference with respect to [11] is that we have skipped the explicit use of the variable r̃ = r−1 in the equations
of motion.
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ẍ2 + ω2 (t) x2 + 1

x22 x1

∂G1

∂r
− W

x22 x1

∂2G1

∂r∂W
− Ẇ

x1

∂2G1

∂W 2 = 0. (68)

These equations are rather similar to those in (57)–(58) with g1 (t) = 0 and ϕ (t) = 1. In fact, if we define the
forcing term as Gε (t, x, ẋ) = −εG1

( 1
r , −W

)
and consider the Lagrangian

L = 1

2

(
ẋ21 + ẋ22 − g2 (t)

(
x21 + x22

)) + 1

x21
Gε

(
1

r
, −W

)
, (69)

it is immediate to verify that the equations of motion are exactly those given in (67)–(68) with ε = 1.
Jointly with the result obtained in the preceding paragraph for the velocity-independent forcing terms, we

conclude that perturbations of the two-dimensional time-dependent oscillator with respect to the Lagrangian
(35) give rise to generalized ERR systems. This can be formulated in compact form as follows:

Proposition 3 For g1 (t) = 0and g2 (t) = ω2 (t), any sl(2,R)-preservingperturbationof the two-dimensional
time-dependent oscillator (34) corresponds to a generalized ERR system (62)–(63) satisfying the constraints
(64)–(65). Conversely, any ERR system admitting a Hamiltonian is obtained as a perturbation of the two-
dimensional time-dependent oscillator.

For g1(t) �= 0, the systems can be seen as a further possible generalization of ERR systems, albeit for
generic choices of the forcing term, the Lagrangian and the constants of the motion of the systemwill generally
be explicitly depending on time. The perturbations can provide, however, additional examples of integrable
systems with dissipative terms.

3 Perturbations of the free Lagrangian in R
N

There is no formal difficulty in generalizing the results to systems in N dimensions. The uncoupled system

ẍi + g1 (t) ẋi + g2 (t) xi = 0, i = 1, . . . , N (70)

obtained from the Lagrangian L = 1
2ϕ (t)

∑N
i=1

(
ẋ2i − g2 (t) x2i

)
is always linearizable, and hence, the

subalgebra of Noether symmetries is isomorphic to the Schrödinger algebra S(N ) with Levi subalgebra
sl (2,R) ⊕ so (N ). In particular, the sl(2,R) subalgebra is generated by the vector fields

Xk = ϕ (t)U 2
k (t)

∂

∂t
+

N∑

l=1

ϕ (t)Uk (t) U̇k(t) xl
∂

∂xl
, k = 1, 2. (71)

Like before, the most general forcing term Gε (t, x, ẋ) preserving the sl(2,R)-symmetry is given by

Gε (t, x, ẋ) = ε F

(
x2
x1

, . . . ,
xN
x1

, ϕ (t) (ẋ2x1 − ẋ1x2) , . . . , ϕ (t) (ẋN x1 − ẋ1xN )

)
x−2
1 ϕ−2 (t) . (72)

In analogy to the low-dimensional cases, for generic choices of F , the point symmetry algebra of the system
is also isomorphic to sl(2,R), and hence, the system is genuinely nonlinear.

Imposing invariance by additional symmetries (or subalgebras) further restricts the form of the functions
Gε (t, x, ẋ), allowing the existence of supplementary constants of the motion and eventually leading to a
characterization of Lagrangians in terms of subalgebras of the Schrödinger algebra S(N ). The main difficulty
in this approach is of technical nature, namely in obtaining the general solution of a large system of partial
differential equations.

An illustrative case to the procedure is the restriction to perturbations of the freeLagrangian in N dimensions
(such that ϕ(t) = 1 holds). It can be easily verified that the only Lagrangians that preserve the complete Levi
subalgebra so(N ) ⊕ sl(2,R) of the (unextended) Schrödinger algebra S (N ) are given by

L̃ = 1

2

(
ẋ21 + ẋ22 + · · · + ẋ2N

) − ε

F

((∑N
i=1 x

2
i

) (∑N
i=1 ẋ

2
i

)
−

(∑N
i=1 xi ẋi

)2)

(
x21 + x22 + · · · + x2N

) (73)
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where F is a an arbitrary function of the argument. We observe that invariance with respect to any other
Noether symmetry of the free Lagrangian would imply the existence of cyclic coordinates. If the forcing term
Gε (t, x, ẋ) does not depend explicitly on the velocities, it reduces to

Gε (t, x) = ε
(
x21 + x22 + · · · + x2N

) , ε ∈ R. (74)

This fact suggests that the interesting subalgebras of S (N ) to be analyzedwith respect to symmetry preservation
are the subalgebras of the Levi factor sl(2,R) ⊕ so(N ). In particular, we have the canonical chain

sl (2,R) ⊕ so (N ) ⊃ · · · ⊃ sl (2,R) ⊕ so (3) ⊃ sl (2,R) ⊕ so (2) ⊃ sl (2,R) . (75)

Comparing (72) and (73), it stands to reason to suspect that the number of degrees of freedom in the forcing term
Gε (t, x, ẋ) is strongly dependent on the rank of the preserved semisimple algebra of Noether symmetries.7

To prove this assertion, for any 2 ≤ m ≤ N we define the auxiliary functions

J1 =
m∑

i=1

xi ẋi , J2 =
m∑

i=1

x2i , J3 =
m∑

i=1

ẋ2i (76)

and the variables

z j = xm+ j√
J2

, zN−m+ j = ẋm+ j J2 − xm+ j J1√
J2

, 1 ≤ j ≤ N − m. (77)

We further define the family of Lagrangians

L̃m = 1

2

(
ẋ21 + · · · + ẋ2N

) + Gε,m (t, x, ẋ) (78)

where

Gε,m (t, x, ẋ) = ε
F

(
J2 J3 − J 21 , z1, . . . , z2N−2m

)

J2
. (79)

Proposition 4 For any 2 ≤ m ≤ N − 1, L̃m is a perturbation of the free Lagrangian in R
N possessing a

Noether symmetry algebra isomorphic to sl (2,R) ⊕ so (m). In particular, if

∂Gε,m

∂ ẋk
= 0, 1 ≤ k ≤ N ,

then L̃m reduces to

L̃m = 1

2

(
ẋ21 + · · · + ẋ2N

) + ε
F (z1, . . . , zN−m)

J2
. (80)

The Noether symmetries of the free Lagrangian in RN corresponding to the generators of the Levi subalgebra
sl (2,R) ⊕ so (n) are easily seen to have the form

X1 = t2
∂

∂t
+

N∑

i=1

t xi
∂

∂xi
+

N∑

i=1

(xi − t ẋi )
∂

∂ ẋi
, X3 = ∂

∂t
,

X2 = − [X1, X3] , Xi, j = x j
∂

∂xi
− xi

∂

∂x j
, 1 ≤ i, < j ≤ N .

The vector fields form a basis of the Levi subalgebra, and hence, it follows at once that the system is complete
[41]. If we want to determine the most general perturbation that preserves an sl (2,R)⊕ so (m) subalgebra for
some 2 ≤ m < N , it is convenient to analyze first the symmetry condition (9) for the orthogonal Lie algebra
so (m). As the latter is generated by the vector fields

Xl,l+1 = xl+1
∂

∂xl
− xl

∂

∂xl+1
, 1 ≤ l ≤ m − 1 (81)

7 We recall that the rank of so(N ) ⊕ sl(2,R) is given by 1 + [ N
2

]
.
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it suffices to inspect the symmetry condition for these generators, as the remaining equations will be satisfied
by commutators. It is routine to verify that (9) reduces to the homogeneous system

Xl,l+1Gε,m (t, x, ẋ) = 0, 1 ≤ l ≤ m − 1

with general solution given by

Gε,m (t, x, ẋ) = ε F (t, J1, J2, J3, xN−m+1, . . . , xN , ẋN−m+1, . . . , ẋN ) . (82)

We now impose the invariance with respect to sl (2,R). The symmetry condition (9) leads to the equations

2t Gε,m (t, x, ẋ) + t2
∂Gε,m

∂t
+

N∑

i=1

t xi
∂Gε,m

∂xi
+

N∑

i=1

(xi − t ẋi )
∂Gε,m

∂ ẋi
= 0; ∂Gε,m

∂t
= 0 (83)

where we have omitted the equation corresponding to the generator X2, as it is satisfied whenever a solution
of (83) is given. Let further X̃1 denote the homogeneous part of the first equation in (83). Evaluating X̃1
successively for the variables of (82) leads to the reduced equation

t2
∂Gε,m

∂t
+ J2

∂Gε,m

∂ J1
+2t J2

∂Gε,m

∂ J2
+2 (J1 − t J3)

∂Gε,m

∂ J3
+

N∑

l=n−m+1

(
t xl

∂Gε,m

∂xl
+ (xl − t ẋl)

∂Gε,m

∂ ẋl

)
= 0.

The general solution to this equation is determined by means of the method of characteristics and equals

Gε,m(t, x, ẋ) = ε F

(
t√
J2

, J1 − J2
t

, J2 J3 − 2J1 J2
t

+ J 22
t2

,
xl√
J2

,
(xl − t ẋl)

√
J2

t

)

n−m+1≤l≤N

.

By (83), we are only interested in the variables that do not explicitly depend on t . After some algebraic
manipulation, we obtain that the variables J2 J3 − J 21 , z1, . . . , z2n−2m with zl defined as in (77) form an
integrity basis for the homogeneous part of the system (83). Taking into account the non-homogeneous term
in the system, the general solution is easily found, after some computation, to be given by the expression (79).
Now, as the solution involves all variables {x, ẋ}, it is straightforward to verify that no other Noether symmetry
of the free Lagrangian can satisfy the system (83), showing that the Lagrangian L̃m has Noether symmetry
algebra sl (2,R) ⊕ so (m).
Finally, if the perturbation term Gε,m (t, x, ẋ) does not explicitly depend on the velocities, then all variables
involving J1 and J3 must be discarded, and the solution adopts the simple form

Gε,m (t, x, ẋ) = ε
F (z1, . . . , zN−m)

J2
. (84)

These perturbation terms can thus be interpreted as those potentials for which the Lagrangian has the prescribed
symmetry.

For N = 3 and m = 2, and considering only forcing terms of the latter type, the perturbations of the free
Lagrangian possessing a Noether symmetry algebra isomorphic to sl (2,R) ⊕ so (2) have the following form:

L̃ = 1

2

(
ẋ21 + ẋ22 + ẋ23

) − ε
(
x21 + x22

) F

(
x3

x21 + x22

)

. (85)

Introducing cylindrical coordinates {x1 = ρ cos θ, x2 = ρ sin θ , x3 = ξ} and setting ε = 1, these Lagrangians
are rewritten as

L̃ = 1

2

(
ρ̇2 + ρ2θ̇2 + ξ̇2

) − ε

ρ2 F

(
ξ

ρ

)
, (86)
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showing that θ is a cyclic coordinate. It is immediate to deduce that J = ρ2θ̇ is a conserved quantity. Letting
ρ2θ̇ = α and substituting in (86), we can reduce our analysis to the two-dimensional Lagrangian

L̃ ′ = 1

2

(
ρ̇2 + ξ̇2

) + α2

2ρ2 − ε

ρ2 F

(
ξ

ρ

)
. (87)

We observe that the potential U (ρ, ξ) =
(
1
2α

2 − εF
(

ξ
ρ

))
ρ−2 is of the form �

(
ξ
ρ

)
ρ−2, from which we

conclude that (87) can be seen as a perturbation of the free planar Lagrangian L0 = 1
2

(
ρ̇2 + ξ̇2

)
. In particular,

it preserves the sl (2,R) -symmetry, and thus, two independent constants of the motion exist. These are given
by

Hr = 1

2

(
ρ̇2 + ξ̇2

) + 1

ρ2

(
εF

(
ξ

ρ

)
− α2

2

)
, (88)

I1 = 1

2

(
ξ ρ̇ − ξ̇ρ

)2 +
∫ ξρ−1 (

z
(
2εF (z) − α2) + ε

(
1 + z2

) dF
dz

)
dz. (89)

We observe that the constants of the motion associated to the orthogonal Lie algebra can be used to reduce the
number of degrees of freedom, and giving rise to symmetry-preserving perturbations in the reduced system.
For this example, the invariants can be further used to obtain, jointly with J , three independent constants of
the motion for the Lagrangian (86).

4 Conclusions

Basing on the comparison of the Noether symmetries of the time-dependent harmonic oscillator and the Pinney
equation, it has been shown that the latter arises as the most general perturbation of the former that preserves a
subalgebra isomorphic to sl(2,R). Perturbations have been generalized to arbitrary linear homogeneous ordi-
nary differential equations ẍ + g1(t)ẋ + g2(t)x = 0, and perturbations preserving a subalgebra isomorphic to
sl(2,R) have been obtained. The corresponding problem in two dimensions offers more general types of per-
turbations, specifically dependent on the velocities. In this context, it has been shown that sl(2,R)-preserving
perturbations of the time-dependent harmonic oscillator are characterized as generalized Ermakov–Ray–Reid
systems as introduced in [11], and admitting a Hamiltonian formalism. Within the classical interpretation of
Ermakov systems, this result was to be expected. In the general case with damping terms, no such charac-
terization is given, as the perturbed Lagrangians are usually explicitly time-dependent, a characteristic that is
carried over to the invariants of the system. For arbitrary dimensions, and starting from the free Lagrangian
in R

n , the perturbations preserving the canonical chain of subalgebras of the Levi factor of the Schrödinger
algebra have been computed, pointing out the relation existing between the rank of the symmetry algebra and
the number of degrees of freedom in the perturbation term.

The perturbation procedure, as developed in this work, can be seen as a natural extension or enlargement of
some recent work [23,35] concerning the generic structure of infinitesimal generators of Lie point symmetries
of systems of ordinary differential equations, in the context of the linearization problem.AsNoether symmetries
constitute a particular type of point symmetries, the generic symmetry description can be adapted to the case
of Lagrangian systems, providing an additional tool to analyze their properties and, in particular, the structure
of their invariants. As scalar linear ODEs are derivable from a variational principle [29], this leads to a
generalization of the Lewis invariant for arbitrary linear equations [35]. The next natural step in this analysis,
developed here, resides in preserving a relevant number of Noether symmetries, however “breaking” the point
symmetry algebra in order to ensure that the perturbation is no more a linearizable equation or system. This
preservation of only a proper subgroup constitutes the main difference with respect to the previous ansatz of
[23,35] and shows how techniques of linearizable systems can be applied, under certain assumptions, to the
integrability problem of genuinely nonlinear systems.

Albeit our analysis has been mainly focused on Euclidean Lagrangians related to the time-dependent
(damped) harmonic oscillator, the procedure is by no means restricted to these Lagrangians. Perturbations can
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be applied to any ODE or system and any subalgebra of Noether symmetries, in particular to non-trivially
coupled systems possessing a sufficient number of such symmetries.

As an example of non-Euclidean Lagrangian, consider for instance the system

ẍ1 + α

x31
= 0, ẍ2 − 3αr

x31
= 0

(
r = x2x

−1
1

)
. (90)

An admissible Lagrangian is given by
L = ẋ1 ẋ2 − αx2x

−3
1 . (91)

This Lagrangian can be seen as a perturbation of the free Lagrangian in the pseudo-Euclidean plane and admits
an sl (2,R) Lie algebra of Noether symmetries generated by the vector fields X = ξ (t) ∂

∂t + 1
2 x1ξ̇ (t) ∂

∂x1
+

1
2 x2ξ̇ (t) ∂

∂x2
, where ξ (3) (t) = 0. In this case, the auxiliary function is given by V (t, x) = 1

2 ẋ1 ẋ2ξ̈ (t).

Those potentials that preserve the sl (2,R)-symmetry have the generic form Gε (t, x) = εF
(
x2x

−1
1

)
x−2
1 =

εF (r) x−2
1 . The equations of motion for the perturbed Lagrangian L̂ = ẋ1 ẋ2 − αx2x

−3
1 + F (r) x−2

1 are

ẍ1 + α

x31
− ε

F ′ (r)
x31

= 0, ẍ2 − 3αr

x31
+ 2εF (r)

x31
+ r εF ′ (r)

x31
= 0. (92)

It is immediate to see that the Hamiltonian H = ẋ1 ẋ2 + α r
x21

− ε
F(r)
x21

is a constant of the motion. The second

invariant is given by

I1 = 1

2
W 2 − 2αr2 + 2rεF (r) . (93)

We observe that, incidentally, for F(r) = λ, the (perturbed) system is super-integrable, as it admits the
additional constant of the motion I2 = ẋ21 − αx−2

1 [42].
Clearly, the perturbation problem is strongly dependent on the Lagrangian chosen, as well as the fixed

subalgebra ofNoether symmetries. The form of symmetry-preserving forcing terms for alternative Lagrangians
giving rise to the same equations ofmotionmaydiffer radically, as can be expected from the existing ambiguities
in the Lagrangian formalism [31]. In this sense, it would be of interest to classify these perturbations according
to their equivalence class as systems of ODEs [19,38]. The imposition of the generators of the subalgebra to
remain unaltered by the perturbation, although not explicitly stated, constitutes a constraint that could be used
for such a classification. From the physical perspective, however, it seems more relevant to determine a precise
interpretation of the conservation laws of the resulting nonlinear system. For the case of systems admitting time-
dependent invariants, their asymptotic behavior could provide useful information on the intrinsic structural
properties of the system. Both problems present some interesting features that deserve to be inspected more
closely.
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