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Abstract Strain and stress concentrations are studied for elastomers at finite deformations. Effects of strain-
induced crystallization, filler reinforcement and deformation rate are also investigated, and micromechanical
descriptions are provided for the observed results. A simple problem is subjected to finite element simulations
to show the results evidently. Material parameters are obtained from experimental tests conducted on stan-
dard tensile samples of filled and unfilled natural rubber (NR) as well as styrene–butadiene rubber (SBR) as
crystallizing and non-crystallizing rubbers, respectively. In all simulations, the strain concentration factor KE
is shown to decrease monotonically where the reduction is more apparent as the filler content increases. At
enough large stretches, KE is higher for filled NRs compared to the unfilled NR which is not the case for SBR.
The stress concentration factor KS rises sharply by deformation of the samples. At large stretches, in the case
of SBR, filler reinforcement only shifts the maximum value of KS to a lower level of strain, while in the case
of NR, it reduces KS significantly. It is concluded that KS can rise from its theoretical value remarkably which
should be noticed in design purposes particularly for crystallizing elastomers. Furthermore, the effect of defor-
mation rate is investigated employing a visco-hyperelastic constitutive law along with an associated VUMAT
in ABAQUS/Explicit. It is observed that, at high deformation rates, KE decreases. Despite the reduction in
strain concentration, KS would be higher which is not desired in design of mechanical parts.

1 Introduction

Elastomers consist of long cross-linked polymeric chains with high flexibility and mobility in a three-
dimensional network configuration. The flexibility and mobility of the chains are associated with the most
outstanding property of thesematerials—i.e., high deformability—fromwhich the terminology of “Elastomer”
has been derived [1]. Stress can cause molecular chains of elastomers to adopt an extended configuration, and
upon removal of the stress the chains retract to their initial coiled configuration [2].
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Several engineering applications count on elastomeric materials, e.g., springs, bearings, dampers, belts
and tires. In most applications, it is necessary to join elastomeric parts to rigid materials to be bolted to
structural members. They are either adhered to metal parts by bonding during vulcanization [3,4] or by means
of mechanical joints which necessitate introduction of holes, shoulders, grooves, etc. The elementary stress
formulas are based on the members with constant cross sections or sections with gradual change of contour
which are hardly ever attained in actual applications [5]. Introduction of holes, shoulders, grooves, nicks, etc.
can modify distributions of strain and stress in mechanical parts and cause their localizations. Crack initiation
and propagation in structures often occurs from stress and/or strain concentration sites where the local stress
and/or strain exceeds a critical level [2,6].

In most studies, only the stress concentration factors are considered, while due to nonlinear mechanical
behavior of elastomers, strain and stress distributionsmaydiffer significantly.Yanget al. [7,8] realized that, even
for metals in three-dimensional stress states, stress concentration factor is different from strain concentration
factor and Poisson’s ratio affects strain concentration more than stress concentration.

Stress concentration factors can be determined analytically from the elasticity theory, computationally
from the finite element method, and experimentally from strain gauges or photoelasticity methods. In recent
decades, the universal availability and high efficiency of the finite element method has reduced the need for
analytical and experimental methods and also explicit use of stress concentration factors [5].

Lindley [3] studied the strain concentrations at the corners of stretched rubber sheets under conditions of
plane stress with focus on the effects of different shapes and size of the corners. Conveyor belts are typical
applications in which thin rubbery sheets are stretched. Fukahori and Seki made numerical stress and strain
analyses around spherical holes in elastomers. They also investigated the influence of adjacent holes on stress
and strain distribution around a spherical hole [9]. Troyani et al. [10,11] analyzed effects of length of elements
on stress concentration factor for rectangular sheets with circular hole at the center. They performed finite
element analyses on thin elements of varying lengths in uniaxial tension and found that if the length is less than
the width, the stress concentration factor available for elements of infinite length is of questionable accuracy.
Elmukashfi and Kroon studied dynamic crack propagation due to strain and stress concentrations in rubbers
using the finite element method. They obtained a minimum threshold stretch required for crack propagation
[6].

In this paper, variations of strain and stress concentration factors with respect to the applied deformation are
studied for elastomers. As a typical problem of local strain and stress concentration, a rectangular elastomeric
sheet with circular hole at the center is analyzed numerically. To find out the probable effect of strain-induced
crystallization on the distribution of strain and stress and consequently on concentration factors, the analysis
is performed on a crystallizing rubber (NR) and a non-crystallizing one (SBR). Then, the effect of filler
particles on the strain and stress concentration factors is investigated on both materials with focus on the
micromechanical effects of fillers on the materials molecular network. Furthermore, the concentration factors
have been analyzed for dynamic deformations from low to high strain rates over a wide range of strain to find
out how, if at all, the deformation rate affects the distributions of strain and stress.

2 Strain and stress concentrations in elastomeric rectangular sheets with circular hole at the center:
finite deformations

In order to investigate strain and stress distributions in elastomers at different levels of applied deformations,
the typical problem of uniaxial tension of a rectangular sheet with circular hole at the center is considered
in this section (Fig. 1). In the case of the linear elasticity theory, a two-dimensional stress distribution of a
homogenous elastic body is a function of the body geometry and does not depend on the material properties.
In this theory, for an infinite rectangular sheet with a small circular hole (compared with length and width of
the sheet), the stress components are as follows [12]:
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Fig. 1 The rectangular sheet with circular hole at the center under uniaxial tension

where R is the radius of the hole, σ is the applied stress to the edges of the sheet, and r and θ are the components
of polar coordinates measured from the center of the hole. At the edge of the hole r = R, one obtains:

σrr = 0,
σθθ = σ(1 − 2 cos 2θ),
τrθ = 0.

(2)

The maximum stress at the hole edge occurs for θ = π
2 , 3π

2 . Therefore, the stress concentration factor for a
finite sheet is calculated as ratio of the stress at critical point P to the average stress at the cross section EE:

KS = σθθ |P
σ ave

θθ

∣∣
EE

= 3σ
σw

w−2R

. (3)

Regarding the nonlinear mechanical behavior of elastomers, the strain and stress concentration factors are
expected to depend on the material properties and also vary with respect to the applied deformations even in
a two-dimensional stress state. To see how, if at all, these factors vary, finite element analysis is performed on
a rectangular sheet (160 × 120mm) of unfilled natural rubber (NR) with a circular hole (R = 3mm) at the
center subjected to uniaxial tensile deformation. The ratio of the calculated nominal strain (Cauchy stress) at
the critical point P to the average nominal strain (Cauchy stress) at the critical cross section (EE) is determined
numerically to determine variations of the concentration factor KE (KS) with respect to the applied strain. For
the specific geometry considered in the numerical finite element analysis, using Eq. (3) one obtains:

KS = 3σ
σw

w−2R

= 2.85. (4)

For numerical simulations, one requires to know material parameters of the material under study. Therefore,
a quasi-static uniaxial tension test is conducted on a dumbbell-shaped standard tensile sample to obtain the
stress–strain curve. The test is continued till rupture of the sample to obtain breakage strain (εbreak) of the
material. The primary loading curve as the most critical one is used to determine the material parameters.
Due to the Mullins effect, in the upcoming loadings some amount of softening would appear which partially
moderates the strain and stress concentrations. The experimental curve should be fitted bymeans of a nonlinear
hyperelastic model which gives satisfactory results in the considered large stretches [13]. Arruda–Boyce [14],
Pucci–Saccomandi [15] and Exp-Ln [16] hyperelastic models are examined as models which give reasonable
results in different modes of deformation [17,18]:
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Fig. 2 Stress–strain curve of the unfilled NR in uniaxial tension

Table 1 Material parameters of different models for the unfilled NR

Hyperelastic model Material parameters

Arruda–Boyce μ = 0.33, N = 121.3
Pucci–Saccomandi μ = 0.311, Jm = 394.4,C2 = 0.15
Exp-Ln A = 0.152, a = 0.0044, b = 0.05

where μ, N , Jm , C2, A, a and b are material parameters. β, I1 and I2 are inverse Langevin function, the first
and second invariants of the left Cauchy–Green deformation tensor B, respectively. The equilibrium Cauchy
stress tensor (σ equ) can be calculated as follows [19]:

σ equ = −peI + 2
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∂We
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)
B − 2

∂We

∂ I2
B2 (8)

where pe is a hydrostatic pressure and I is the second-order identity tensor. The experimental stress–strain
curve along with the fitted curves is exhibited in Fig. 2, and the material parameters are reported in Table 1.
It is observed that the Exp-Ln model gives a slightly better fitting. Moreover, its parameters have been shown
to be related to the physical properties of the material molecular network, i.e., cross-link density and average
length of chain segments; thus, by determination of the parameters from uniaxial tension data one can obtain
reasonable results for other modes of deformation [17,18]. Consequently, in the rest of the paper we will utilize
this model for our simulations.

It should be noted that there are some problems in fitting experimental data by hyperelastic models to find
the parameter set accurately and uniquely. The situation is worse when the parameters do not have physical
descriptions [20]. The Exp-Ln model includes only three material parameters, which reduces the possibility of
the existence of several optimal sets. On the other hand, the roles of parameters are completely independent (for
more detailed discussions, one may refer to [16]). Therefore, performing the fitting process by using several
algorithms, start points and different levels of accuracy for acquiring any other parameters set, no other optimal
set was found.

Owing to the symmetry, only one quarter of the sheet is modeled. The finite element mesh is constructed
with 4-node bilinear plane stress quadrilateral elements (CPS4) in ABAQUS as shown in Fig. 3. The analysis
is continued until the maximum principal strain achieves the breakage value (εbreak). Though there is a full
3D strain state at the critical points, the maximum principal strain at critical points is not allowed to go beyond
εbreak . It is obviously not an accurate method for anticipating the failure but estimation.
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Fig. 3 The finite element mesh used in the numerical simulations

a

b

Fig. 4 Variations of a the strain and b stress concentration factors for the unfilled NR

The strain and stress concentration factors for the unfilled NR are shown in Fig. 4a, b. We note that at
small deformations both factors have the calculated value from the elasticity theory (i.e., 2.85). These values
are equal because of the approximately linear behavior of the material at small deformations.

As shown in Fig. 4a, by an increasing amount of the applied deformation, KE reduces monotonically. This
reduction is due to the local alignment of the material molecular chains at the critical area (around point P)
which leads to a local stiffening. This phenomenon prevents straining of the material at this area, while far-field
areas show less resistance to the deformation. It is to be noted that, in reality, stretches in mechanical parts
hardly reach the considered large values. However, investigating variations of the concentration factors even
in such extreme values is of great importance from scientific view.

In Fig. 4b, it is shown that KS exhibits a small drop followed by a sharp raise. The drop is due to the
decrease in KE , whereas the alignment of the chains has not been completed at the critical area, yet. A further
increase in the applied deformation results in more alignment of the molecular chains which leads to more
stiffening and finally to strain-induced crystallization of the material at the critical area. Onset of crystallites
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Fig. 5 Stress–strain curve of the unfilled SBR in uniaxial tension

raises the material stiffness locally, while far-field points have not been crystallized yet. Therefore, a sharp
raise of KS is observed for unfilled NR at large deformations.

Generally in FEM analysis for problems involving stress concentrations, refining the mesh makes the
Gauss points closer to the edges and it affects the numerical values of strain and stress components. Refined
meshes (compared to those shown in Fig. 3) were tried, and it was observed that the changes in strain and
stress components were not so notable to change the trend of the concentration factors. Consequently, the mesh
size slightly alters the results quantitatively but not qualitatively. In the following sections, it will be shown
that type of material, amount of filler content and rate of deformation have more remarkable effects on the
numerical values of the concentration factors. Thus, the trends of these factors should be more focused than
their exact numerical values.

Since strain-induced crystallization occurs only in certain elastomers, it is important to investigate the
variation of KE (KS) in non-crystallizing elastomers, too. Styrene–butadiene rubber (SBR) is a synthetic non-
crystallizing rubber which is used extensively in several applications due to its peculiar properties such as good
abrasion resistance [21]. The experimental stress–strain curve obtained from a uniaxial tensile test is shown
in Fig. 5 for an unfilled SBR along with the fitted curve of Exp-Ln model. The material parameters for this
material are reported in Table 3.

The same numerical analysis is done on the unfilled SBR. Because of relatively low breakage strain for
the unfilled SBR, the analysis could be done for a narrower range of strain. The results are shown in Fig. 6
where it is observed that KE and KS have a same value (equal to the result of the elasticity theory) at small
deformations. KE reduces monotonically with a similar manner to the unfilled NR. KS experiences a small
drop due to the decrease in KE followed by a raise due to the local alignment of the molecular chains at the
critical area. The remarkable point is that, because of the non-crystallizing nature of SBR, further raise of KS
is not expected by more increase in the applied deformation. Therefore, more or less all regions of the sample
stiffen due to the molecular chains alignment, and so, KS finally decreases.

3 Effect of fillers on the strain and stress concentrations

Filler particles are generally added to elastomers in order to improve the mechanical properties of these mate-
rials. The reinforcement of elastomers by fillers has been extensively studied based on continuum mechanics
as well as micromechanics [22–24]. Though type and degree of reinforcement substantially depend on the
properties of filler particles (e.g., chemical composition, size and shape of particles, surface area, and reaction
agents on particles) and the gum, adding fillers usually increases elastomers stiffness, tensile strength, tear
strength and wear resistance [25]. For example, adding 40 phr carbon black to NR can cause an increase in
shear strength and tensile strength by as much as tenfold [1].
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a

b

Fig. 6 Variations of a the strain and b stress concentration factors for the unfilled SBR

Fig. 7 Stress–strain curves of the filled NRs in uniaxial tension

Filler particles can bond with elastomeric chains and act as cross-links. Therefore, by reinforcement of
elastomers, the density of molecular chain segments in unit volume increases, whereas the average length of
the segments decreases; thus, the physical parameters of the material molecular network are altered by adding
fillers. Furthermore, filler particles may bond to each other physically (and even sometimes chemically) to
form aggregates and agglomerates. Formation of the filler network in the material can alter the mechanical
properties of the material significantly [26].

Regarding the aforementioned issues, one may expect a remarkable effect of filler content on the strain and
stress distribution and consequently dependence of KE and KS on type and amount of added filler particles.
To examine the effect of filler particles on KE and KS , the analysis is repeated for NR containing 20 and
50phr carbon black (CB). Uniaxial tensile tests are conducted on the filled samples (Fig. 7) to determine the
breakage strain and also the material parameters as reported in Table 2.
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Table 2 Material parameters of the NRs

A[MPa] a[−] b[−] εbreak (%)

Unfilled NR 0.152 0.0044 0.05 1430
20-phr CB–NR 0.404 0.0063 0.04 1080
50-phr CB–NR 0.691 0.012 0.03 760

a

b

Fig. 8 Variations of a the strain and b stress concentration factors for the filled NRs

Elastomers exhibit a stress softening phenomenon called Mullins effect, in first cycles of loading. This
phenomenon has been studied extensively [27–30] and is more pronounced in filled elastomers rather than in
unfilled ones. We study the first cycle of loadings for our filled samples because the worst situation of the stress
concentration would occur in the first cycle. It means that, in the subsequent cycles, the stress concentration
will be equal to or less than the first cycle. It should be noted that, due to the Mullins-softening, the molecular
network of the material undergoes significant alterations which would affect the material parameters of any
hyperelasticmodel used in fitting the experimental data. The constitutivemodels with parameters built based on
the physical properties of the material molecular network (e.g., Arruda–Boyce, Gent and Exp-Lnmodels) have
the advantage of predictability for alteration of their parameters during the network alteration. One may refer
to [28,31] and references therein for more detailed discussions on the evolutions of the material parameters
due to the Mullins-induced network alterations.

Results of the analysis for variations of KE and KS with respect to the applied deformation are shown in
Fig. 8 in comparison with the results for the unfilled NR. It is observed that, at small deformations, the filler
particles have no notable effect on the strain and stress concentration factors because the material is in the
linear regime; thus, the filler network and also interactions of the filler particles with the rubbery chains are
not so affected. By increasing the deformation, KE decreases for the filled samples as occurred for the unfilled
material. The rate of this decrease depends on the amount of the filler content. As discussed before, interaction
of filler particles with rubbery chains reduces the average length of chain segments and consequently their
limiting extensibility. This phenomenon causes the local stiffening of the critical area to occur in a lower level
of deformation. The early local stiffening resists against straining the critical area, and as a result, KE decreases
more rapidly for the filled samples. Furthermore, the existence of the filler particles confines slippage of the
chains through physical entanglements which may lead to locking of some entanglements. Wherever the level
of deformations is higher, more entanglements get locked. This locking is another source of the local stiffening
at the critical areas which experience higher levels of deformation compared with the far-field points.
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Fig. 9 Stress–strain curves of the filled SBRs in uniaxial tension

Table 3 Material parameters of the SBRs

A[MPa] a[−] b[−] εbreak (%)

Unfilled SBR 0.232 0.0027 0.01 360
20-phr CB–SBR 0.321 0.0065 0.008 970
35-phr CB–SBR 0.451 0.0107 0.005 880
50-phr CB–SBR 0.695 0.0131 0.003 640

At large deformations where the strain-induced crystallization occurs in the unfilled NR [32], the filler
particles prevent the complete alignment of the chains in the filled NRs. So, the amount of the crystallization
(i.e., the rapid local stiffening) is reduced significantly for these materials. Thus, in this regime, KE is slightly
higher for the filled NRs rather than for the unfilled one.

At small and moderate deformations, the variation of KS for the filled samples is similar to the unfilled
material, but the lower limiting chain extensibility of the filled NR causes KS to be higher (despite lower KE )
compared to the unfilled NR.

At large deformations, the filler particles prevent the material from crystallizing. By reaching the strain
at far-field areas to its limiting value, more or less stiffening occurs at all regions and KS does not increase
anymore. It is concluded that the existence of the filler particles confines KS at large deformations.

To investigate the effect of fillers on strain and stress distributions in non-crystallizing elastomers, the
analysis is repeated for SBR containing 20, 35 and 50 phr carbon black content. As shown in Fig. 9, uniaxial
tensile tests and fitting the experimental stress–strain curves are conducted to determine the breakage strains
and also the material parameters (as depicted in Table 3).

Addition of carbon black to SBR increases the breakage strain of the material [33]. This phenomenon
allows us to perform the analysis in a wider range of strain for the filled SBRs compared with the unfilled SBR
where results of the numerical simulations are shown in Fig. 10.

As observed, KE has a same value for all samples at small strains (i.e., in the linear regime) but decreases
by increasing amount of the deformation where the rate of decrease is higher for samples with higher filler
contents. In contrast to NR, at large deformations, due to the non-crystallizing nature of SBR, the higher the
filler content, the lower KE .

At small and moderate deformations, variations of KS for the filled SBRs are similar to the filled NRs,
but at large deformations, since no crystallization occurs in the SBRs, KS is confined for these materials. A
notable point is that an increase in the filler content leads to earlier drop of KS . The higher the filler content,
the lower the average length of the molecular chains (and lower the limiting chain extensibility); hence, at
relatively lower strains, approximately all points achieve their limiting strain. This phenomenon causes uniform
stiffening at all points, and consequently KS decreases.
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a

b

Fig. 10 Variations of a the strain and b stress concentration factors for the filled SBRs

4 Effect of rate of deformation on the strain and stress concentrations

Longmolecular chains of elastomers slide through each other during deformation. Readjustments, convolutions
and uncoiling of the chains take place during time and cause the material to exhibit a time-dependent (i.e.,
strain rate-dependent) behavior [34]. This aspect of elastomer behavior has been studied extensively by visco-
hyperelastic material models [35–38].

Due to the rate-dependent characteristic behavior of these materials, one may deduce that strain and stress
distributions in elastomeric materials would also depend on the rate of deformations. To investigate the effect
of the strain rate on the strain and stress concentrations, the stretching of the rectangular sheet with central
circular hole is simulated for another unfilled SBR at different strain rates. Hoo Fatt et al. [39] conducted
uniaxial tensile tests on this material. They used a tensile impact apparatus for stretching the material and
reported the stress–strain curves in 76–450s−1 strain rates in addition to the quasi-static curve.

The equilibriummaterial parameters are determined from fitting the experimental quasi-static curve by the
Exp-Ln hyperelastic model. To determine the viscous material parameters, the visco-hyperelastic constitutive
model proposed in [40] is employed and the parameters are reported in Table 4. This three-dimensional
nonlinear model utilizes a hyperelastic spring parallel to a Maxwell element as rheological model of the
elastomeric materials. Also, because of the similar nature of the equilibrium and the viscous responses, the
Exp-Ln strain energy function has also been used for the spring of the viscous element (W v) in the model
[41,42]:

W v = Ã

[
1

ã
exp(ã(I1 − 3)) + b̃(I1 − 2)(1 − ln(I1 − 2)) − 1

ã
− b̃

]
(9)

where Ã, ã and b̃ are viscous parameters of the material. Therefore, the total Cauchy stress is obtained as
follows:

σ = σ equ + σ vis = −peI + 2
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Table 4 Material parameters of the unfilled SBR

Material parameters Equilibrium parameters Viscous parameters

A[MPa] a[−] b[−] Ã[MPa] ã[−] b̃[−] ϕre f (s) η

0.22 0.006 0.0184 2.5 0.016 0.0 0.0058 0.25

Fig. 11 Stress–strain curves of the unfilled SBR in uniaxial tension at different strain rates

where pv is a hydrostatic pressure associated with the viscous response, and 	 is the relaxation time of
the material. Furthermore, concluded from the physics of the time-dependent mechanisms, a rate-dependent
relaxation time has been introduced to reduce the number of required material parameters and to avoid the
complex calibration process of several relaxation times [40]:

	 = 	
(∥∥Ċ∥∥) = ϕre f

∥∥Ċ∥∥−η
(11)

where ϕre f and η are material parameters and
∥∥Ċ∥∥ =

√
Ċi j Ċi j is the magnitude of the time rate of the right

Cauchy–Green deformation tensor C.
Results of the visco-hyperelastic model are shown in Fig. 11 in comparison with the experimental data at

strain rates of 0 s−1 (quasi-static), 76 s−1, 150 s−1 and 450s−1.
The numerical simulations are performed in quasi-static mode as well as 76 s−1, 150 s−1 and 450s−1 strain

rates using the user-defined material subroutine (VUMAT) introduced by Khajehsaeid et al. [41]. Variations
of KE and KS with respect to the applied deformation are shown in Fig. 12 at different strain rates.

The variation of KE for the equilibrium simulation is similar to that presented in Sect. 2. In the dynamic
simulations, KE decreases more rapidly rather than the equilibrium simulation. As mentioned before, during
deformation the molecular chains slip through each other and also through entanglements. When the defor-
mation is quite slow, there is enough time for slippage mechanisms to take place, but in the case of fast
deformations, some entanglements lock and prevent the chains from slippage. As faster as the deformation,
more entanglements would lock due to the insufficient time for the slippage mechanisms. Since the amount of
the deformation and also its rate is higher in the critical areas, more entanglements lock there; hence, in the
dynamic deformations more stiffening occurs in these areas and it leads to faster decrease in KE in comparison
with the equilibrium deformation (as high as the deformation rate, faster decrease is observed for KE ). At large
stretches, since the chains of all areas achieve their limiting extensibility and also locking of the entanglements
occurs almost uniformly, more or less all areas stiffen and this prevents more decrease in KE . A notable point
is that, as high as the deformation rate, the universal stiffening occurs at lower strains.

The stress concentration factor has the same value for all rates at small deformations, but by increasing
amount of the applied deformation KS increases despite the reduction in KE . It is due to the increase in
stiffness of the critical areas. The increase in KS is more rapid for faster deformations where more locking
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a

b

Fig. 12 Variations of a the strain and b stress concentration factors for the unfilled SBR at different strain rates

occurs. Finally, at large stretches, when the uniform stiffening takes place, KS does not increase anymore and
even decreases at high strain rates.

5 Summary and conclusions

Strain and stress concentrations were studied for elastomers at finite deformations. As a typical problem of
strain and stress localizations, the investigations focused on elastomeric rectangular sheets with circular hole at
the center. The problem was simulated numerically using the material parameters obtained from experimental
tests conducted on 0, 20, 50phr carbon black-filled NR and 0, 20, 35, 50phr carbon black-filled SBR. It was
observed for all samples that at small strains (because of the linear behavior of the materials) the strain and
stress concentration factors have the same value which is equal to the result of the elasticity theory. For the
unfilled samples, it was shown that the strain concentration factor KE decreases monotonically by increasing
the applied deformation where the stress concentration factor KS rises sharply after a small drop. The raise
of KS was sharper for NR as a crystallizing rubber (up to KS = 5) compared to SBR as a non-crystallizing
rubber (up to KS = 3.5) because the strain-induced crystallization resulted from the alignment of molecular
chains in NR.

The effect of filler reinforcement on strain and stress concentrations was also analyzed. At small defor-
mations, filler particles had no notable effect on KE and KS . By increasing amount of the deformation, the
reduction in KE became faster as the filler content increased. At large deformations, because of filler’s preven-
tion of chains complete alignment (which can lead to crystallization), KE was higher for filled NRs compared
to the unfilled NR. But it was not the case for SBR because crystallization does not occur in SBR at all. The
presence of filler particles slightly raised KS at moderate strains, but at large strains, in the case of NR, the
fillers reduced KS significantly, while in the case of SBR the fillers only shifted the maximum value of KS to
a lower level of strain.

To investigate the effect of deformation rate, the problem was simulated for an unfilled SBR at different
strain rates. A visco-hyperelastic constitutive law along with an associated user-defined material subroutine
(VUMAT) in ABAQUS/Explicit was employed in the simulations. It was observed that increasing the rate of
deformation lowers KE due to the locking of physical entanglements at the critical areas. However, at higher
rates of deformations KS was higher despite the reduction in KE .

It is concluded that, at finite deformations, the strain and stress concentration factors vary with the amount
of the applied deformation. Particularly, in the case of crystallizing elastomers, the stress concentration factor
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can rise from its theoretical value remarkably which should be noticed in design purposes. Addition of carbon
black is recommended particularly for crystallizing elastomers because it prevents KS from growing when the
strains get larger. Furthermore, we conclude that due to the locking of entanglements, increasing the rate of
deformation concentrates stress substantially which is not desired in the design of mechanical parts. Though
the studied problem is a special case of strain and stress concentrations, the suggested physical explanations
might also hold for other problems involving strain and stress localizations in elastomers.
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