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Abstract The work is devoted to investigate the interaction between the special rotational deformation and
interface collinear cracks in nanocrystalline bi-materials. As an illustrative example, the effect of the discli-
nation quadrupole produced by the special rotational deformation on the emission of lattice dislocation from
a finite interfacial crack tip in nanocrystalline bi-material is explored theoretically using the complex variable
method. The complex form expression of dislocation force and the critical stress intensity factors for the first
edge dislocation emission under remote mode I loadings and mode II loadings are deduced. And the influences
of material properties, grain size, disclination strength, disclination location and orientation, special rotational
deformation orientations, and crack length on the critical stress intensity factors are discussed in detail. The
results show that the special rotational deformation and the relative shear modulus of the upper the lower half
plane have great effect on the lattice dislocation emission from the interface collinear crack tip.

1 Introduction

Nanocrystalline (nc) materials have been widely used in various fields because of their outstanding mechanical
and physical performance, such as superior hardness, strength, and good wear resistance. But their low tensile
ductility and low fracture toughness considerably limit their practical utility [1–20]. Nevertheless, some exper-
imental studies have been performed for nc materials with the face-centered cubic (FCC) lattice, and it found
that the nc materials show a ductile-to-brittle transition with decreasing grain size, which is not the same as in
conventional coarse grain materials. Some other experiments display that several nc materials show consid-
erable tensile ductility at room temperature and super plasticity at elevated temperature. The difference of nc
materials lies in their certain special toughening mechanism caused by different structural features. Recently,
some specific deformation mechanism has been developed to explain the specific toughening mechanism in
nc materials, such as grain rotation, gain boundary sliding and migration, nanoscale deformation twinning,
diffusion-assisted creep, and shear banding [21–28].

Recently, much attention has been paid to the rotational deformation, especially the special rotational
deformation. It is formed in nanograin due to the formation of immobile wedge disclination quadrupole
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at nanograin boundary junctions, and the strengths of the immobile wedge disclinations gradually increase
during their formation process conducted by grain boundary sliding and diffusion, and a wedge disclination
that characterized by disclination strength represents a rotational line defect located at either a grain boundary
or a triple junction of gain boundaries.

Many researches are focussed on the contribution of special rotational deformation to the fracture toughness
of nc materials. In general, there will inevitably be various defects in nc materials, such as dislocations, cracks,
inclusions, and nanoholes. For nc solids with cracks, the experimental studies and theoretical derivations have
found that cracks can induce plastic shear by emission of lattice dislocations from crack tips as long as the
stress intensity factor of crack tips is large enough, thus hindering cracks growth and improving the toughness
of nc solids. So it is very meaningful to study the effects of special rotational deformation on the emission
of lattice dislocations from various crack tips [29–37]. Our group has theoretically investigated the effect of
special rotational deformation on the lattice dislocation emission from a line crack, a semi-elliptical blunt crack
tip, and an elliptical hole in nc materials and has obtained a series of important conclusions. In this work, we
are dedicated to quantitatively investigate the effect of special rotational deformation on the lattice dislocation
emission from an interface collinear crack tip in nc bi-materials.

2 Problem formulations

The problem to be considered is shown in Fig. 1. A deformed nc bi-material solid contains a series of interfacial
collinear cracks under remote model I and mode II loadings. The solid consists of nanoscale grains divided
by lots of grain boundaries and is supposed to be elastically isotropic. The cracks are considered as flat and
plane and the same along the coordinate axis z perpendicular to the xy plane, so the considered problem can
be simplified to a two-dimensional model, which can definitely reflect the key of the problem.

For the plane strain problem, stress fields (σxx , σyy , σxy) and displacement fields (ux , uy) can be expressed
in terms of two Muskhelishvili’ complex potentials [38,39]:

σxx + σyy = 2
[
Φ (z) + Φ (z)

]
, (1)

σyy − iσxy = Φ (z) + Φ (z) + zΦ ′ (z) + Ψ (z), (2)

2μ
(
u′
x + u′

y

)
= (3 − 4υ)Φ (z) − Φ (z) − zΦ ′ (z) − Ψ (z) , (3)
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Fig. 1 The special rotational deformation in a plastic deformed nc bi-material containing collinear cracks and the dislocation
emission from an interfacial collinear crack tip. a Two-dimensional nc bi-material solid with interfacial collinear cracks. b The
magnified inset. c Calculation model
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where z = x + iy, u′
x = ∂ux/∂x , u′

y = ∂uy/∂x , Φ ′ (z) = d [Φ (z)]/dz, i = √−1, “—” represents the
complex conjugate. So the stress components σxx , σyy and σxy can be written as

σxx = Re[2Φ (z) − z̄Φ ′ (z) − Ψ (z)]
σyy = Re[2Φ (z) + z̄Φ ′ (z) + Ψ (z)]
σxy = Im[z̄Φ ′ (z) + Ψ (z)]

⎫
⎬

⎭
(4)

In the xy-plane, medium I with elastic properties μ1, ν1, and medium II with μ2, ν2 occupy the upper half
plane (s+) and the lower half plane (s_), respectively. A series of traction free interfacial collinear cracks
L j ( j = 0, 1, 2, . . .) with the tips at points a j , b j lie along the interface (x-axis) between two materials, and
L is the union of the crack segments L j while L ′ is the remainder of interface representing the complete
connection part of the two kinds of material. The boundary conditions of the displacement and stress for the
present problem can be expressed as follows [40]:

u+
x1 (t) + iu+

y1 (t) = u−
x2 (t) + iu−

y2 (t) t ∈ L ′, (5)

σ+
yy1 (t) − iσ+

xy1 (t) = σ−
yy2 (t) − iσ−

xy2 (t) t ∈ L ′, (6)

σ+
yy1 (t) − iσ+

xy1 (t) = 0 t ∈ L , (7)

σ−
yy2 (t) − iσ−

xy2 (t) = 0 t ∈ L , (8)

where the subscripts 1 and 2 denote the region s+ and s−, the superscripts + and − represent the boundary
values of the physical quantity as z approaches the interface from s+ and s−, respectively.

Introducing a polar system (r, θ) with the origin at the right endpoint of the crack L0, as shown in Fig. 1b.
A disclination quadrupole, representing the special rotational deformation of a grain, appears near the crack tip
in the upper half plane due to high stress concentration at the crack tip. It consists of two positive disclinations
with strength ω at z1 = b0 + r1eiθ1 and z3 = z1 + seiα + dei(α+π/2), and two negative disclinations with
strength −ω at z2 = z1 + seiα and z4 = z1 + dei(α+π/2) in the medium I, respectively. Here s and d are the
quadrupole arms, namely the grain size, α is the special rotational deformation orientation representing the
angle between the crack plane and one of the quadrupole arms s.

For the problem shown in Fig. 1c, the complex potentialsΦω
1 (z) andΨ ω

1 (z) in the medium I can be written
as [41–45]

Φω
1 (z) = Φω

10 (z) + Φω
1∗ (z) z ∈ s+, (9)

Ψ ω
1 (z) = Ψ ω

10 (z) + Ψ ω
1∗ (z) z ∈ s+, (10)

where the first items Φω
10 (z) and Ψ ω

10 (z) denote that a wedge disclination quadrupole lies in the infinite upper
plane with no crack embedded in, and the second items Φω

1∗ (z) and Ψ ω
1∗ (z) represent the interaction between

cracks and wedge disclination quadrupole, and they are holomorphic in the region z ∈ s+. According to the
work of Fang, we have [40]

Φω
10 (z) = D1ω

2

4∑

k=1

(−1)k+1 ln (z − zk) z ∈ s+, (11)

Ψ ω
10 (z) = −D1ω

2

4∑

k=1

(−1)k+1 z̄k
z − zk

z ∈ s+. (12)

Here we only consider the typical case of a finite crack in interface, whichmay have some practical importance.
Without loss of generality, we assume that the two ends of the crack are located at a0 and b0 on the interface.
Adopting the results in thework of Fang and using the principle of superposition, the solutions to the interaction
between a wedge disclination quadrupole in the upper half plane and a collinear interface crack can be obtained
as [40,41]

Φω
1 (z) = D1ω

2
· 1 − g + h

1 − g

4∑

k=1

(−1)k+1
[
ln

z − zk
z − z̄k

− z − zk
z − z̄k

]
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−D1ω

2
· hX0 (z)

1 − g
·

4∑

k=1

(−1)k+1

{
ln (z − zk)

X0 (zk)
+ g (zk − z̄k) − 1

X0 (z̄k)

[
z − zk
z − z̄k

+ ln (z − z̄k)

]}
, (13)

Φω′
1 (z) = D1ω

2
· 1 − g + h

1 − g

4∑

k=1

(−1)k+1
[

1

z − zk
− 2

z − z̄k
+ z − zk

(z − z̄k)2

]

−D1ω

2
· hX

′
0 (z)

1 − g
·

4∑

k=1

(−1)k+1
{
ln (z − zk)

X0 (zk)
+ g (zk − z̄k) − 1

X0 (z̄k)

[
z − zk
z − z̄k

+ ln (z − z̄k)

]}

−D1ω

2
· hX0 (z)

1 − g

4∑

k=1

(−1)k+1
{

1

X0 (zk) (z − zk)
− 1

X0 (z̄k)

[
2

z − z̄k
− z − zk

(z − z̄k)2

]}
, (14)

Ψ ω
1 (z) = −Φω

1 (z) − zΦ̄ω′
1 (z) − Φ̄ω

1 (z)

= −Φω
1 (z) − zΦ̄ω′

1 (z) − D1ω

2
· 1 − g + h

1 − g

4∑

k=1

(−1)k+1
[
ln

z − z̄k
z − zk

− z − z̄k
z − zk

]

+D1ω

2
· hX0 (z)

1 − g

4∑

k=1

(−1)k+1
{
ln (z − z̄k)

X0 (zk)
+ g (z̄k − zk) − 1

X0 (z̄k)

[
z − z̄k
z − zk

+ ln (z − z̄k)

]}
,

(15)

where D1 = μ1
2π(1−ν1)

, g = −μ2+μ1(3−4ν2)
μ1+μ2(3−4ν1)

, h = − 4μ2(1−ν1)
μ1+μ2(3−4ν1)

, β = ln|g|
2π , X ′

0 (z) = dX0(z)
dz , X0 (z) =

(z − a0)−0.5−iβ (z − b0)−0.5+iβ .

3 Dislocation emission from the interfacial crack tip

Let us consider the emission of lattice dislocation from the interfacial crack tip. For simplicity, we just focus on
the situation that the dislocation is of edge character and their Burgers vectors lie along the slip plane making
an angle θ0 with x-axis. The first edge dislocation is located at z0 = b0+r0eiθ0 in the medium I and its Burgers
vector is set as b = bx − iby . Referring to the work of Ref. [39], the elastic fields of edge dislocation can be
calculated by the following complex potentials Φe

1 (z) and Ψ e
1 (z):

Φe
1 (z) = Φe

10 (z) + Φe
1∗ (z) z ∈ s+, (16)

Ψ e
1 (z) = Ψ e

10 (z) + Ψ e
1∗ (z) z ∈ s+, (17)

where Φe
10 (z) = γ1

z−z0
, Ψ e

10 (z) = γ̄1
z−z0

+ γ1 z̄0
(z−z0)2

, γ1 = μ1
4π(1−υ1)

(
by − ibx

)
.

Without loss of generality, we just consider the typical case of the interface with a finite crack and assume
that the two ends of the crack are located at a0 and b0 on the interface. The specific expressions of Φe

1 (z) and
Ψ e
1 (z) can be written as

Φe
1 (z) = h1

[
γ1

z − z0
− γ1

z − z̄0
− γ̄1 (z0 − z̄0)

(z − z̄0)2

]
+ h2

X0 (z)

X0 (z0)

γ1

z − z0
+ h2 (1 − g) γ1X0 (z)

+h2
X0 (z)

X0 (z̄0)

[
γ1

z − z̄0
− γ̄1 (z̄0 − z0)

(z − z̄0)2
− z̄0 − 1

2 (a0 + b0) + iβ (a0 − b0)

(z̄0 − a) (z̄0 − b)

γ̄1 (z̄0 − z0)

(z − z̄0)

]

, (18)

Φe′
1 (z) = h1

[
− γ1

(z − z0)2
+ γ1

(z − z̄0)2
+ 2γ̄1 (z0 − z̄0)

(z − z̄0)3

]
+ h2

X ′
0 (z)

X0 (z0)

γ1

z − z0
− h2

X0 (z)

X0 (z0)

γ1

(z − z0)2

+ h2
X ′
0 (z)

X0 (z̄0)

[
γ1

z − z̄0
− γ̄1 (z̄0 − z0)

(z − z̄0)2
− z̄0 − 1

2 (a0 + b0) + iβ (a0 − b0)

(z̄0 − a) (z̄0 − b)

γ̄1 (z̄0 − z0)

(z − z̄0)

]
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+ h2 (1 − g) γ1X
′
0 (z)

+ h2
X0 (z)

X0 (z̄0)

[

− γ1

(z − z0)2
+ 2γ̄1 (z̄0 − z0)

(z − z̄0)3
+ z̄0 − 1

2 (a0 + b0) + iβ (a0 − b0)

(z̄0 − a) (z̄0 − b)

γ̄1 (z̄0 − z0)

(z − z̄0)2

]

,

(19)

Ψ e
1 (z) = −Φe

1 (z) − zΦ̄e′
1 (z) − Φ̄e

1 (z)

= −Φe
1 (z) − zΦ̄e′

1 (z) + h1

[
γ̄1

z − z̄0
− γ̄1

z − z0
− γ1 (z̄0 − z0)

(z − z0)2

]

+ h2
X0 (z)

X0 (z0)

γ̄1

z − z̄0
+ h2 (1 − g) γ1X0 (z)

+ h2
X0 (z)

X0 (z̄0)

[
γ̄1

z − z0
− γ1 (z0 − z̄0)

(z − z0)2
− z0 − 1

2 (a0 + b0) − iβ (a0 − b0)

(z0 − a) (z0 − b)

γ1 (z0 − z̄0)

(z − z0)

]

, (20)

where h1 = 4μ1(1−ν2)
μ1(1−ν2)+μ2(1−ν1)

, h2 = 4μ2(1−ν1)
μ1(1−ν2)+μ2(1−ν1)

.
The force acting on the edge dislocation consists of three parts: the image force, the force produced by the

wedge disclination quadrupole, and the external force.
First, the image force can be obtained by using the Peach–Koehler formula as [43]

fimage = f ex − i f ey =
[

�
σ xybx + �

σ yyby
]

+i
[

�
σ xxbx + �

σ xyby
]

== μb2

4π (1 − ν1)

(
Φ∗

e (z0) + Φ∗
e (z0)

γ1
+ z̄0Φ∗′

e (z0) + Ψ ∗
e (z0)

γ̄1

)

, (21)

where
�
σ xx ,

�
σ yy , and

�
σ xy are the components of the perturbation stress, and Φ∗

e (z0) = limz→z0[
Φe

1 (z) − Φe
10 (z)

]
, Φ∗′

e (z0) = limz→z0
d[Φe

1(z)−Φe
10(z)]

dz , Ψ ∗
e (z0) = limz→z0

[
Ψ e
1 (z) − Ψe0 (z)

]
.

Second, the force produced by wedge disclination quadrupole representing the special rotational deforma-
tion can be obtained as [43]

fwedge = f ω
x − i f ω

y = [
σxy (z0) bx + σyy (z0) by

] + i
[
σxx (z0) bx + σxy (z0) by

]

= μb2

4π (1 − ν1)

(
Φω (z0) + Φw (z0)

γ1
+ z̄0Φ ′

ω (z0) + Ψω (z0)

γ̄1

)

, (22)

where σxx , σyy , and σxy are the components of the stress field produce by wedge disclination quadrupole
representing the special rotational deformation.

Finally, the external force acting on the edge dislocation can be denoted as

f� = bσrθ , (23)

where rrθ is the in-plane stress due to the remote mode I and mode II stress intensity factors and σrθ =(
σy − σx

)
sin θ cos θ + σxy

(
cos2 θ − sin2 θ

)
.

For the linear elastic analysis of plane cases, conventional approaches have been soundly established by
Muskhelishvili and Radok (1953) and Neuber (1985). On the basis of this analysis, Irwin obtained his well-
known equations of the stress fields near a sharp crack, considering the first terms of series expansion. Then,
the similar solutions to the present problem have been derived as [47]

⎧
⎨

⎩

σx
σy
σxy

⎫
⎬

⎭
= KI app√

2πr
cos

θ

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − sin
θ

2
sin

3θ

2
1 + sin

θ

2
sin

3θ

2
sin

θ

2
cos

3θ

2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ KII app√
2πr

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)

sin
θ

2
cos

θ

2
cos

3θ

2

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (24)
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where KI app and KII app are the generalized mode I and mode II stress intensity factors produced by the remote
loadings.

Then, Eq. (23) can be written as

f� = bσrθ = b√
2πr0

(
l1KI app + l2KII app

)
, (25)

where l1 = 1
2 sin θ0 cos

θ0
2 , l2 = cos 3θ0

2 + sin2 θ0
2 cos θ0

2 .
Thus, the force acting on the edge dislocation can be obtained as

femit = fx cos θ + fy sin θ + f� = Re[ fimage + fwedge] cos θ − Im
[
fimage + fwedge

]
sin θ + f�. (26)

Substituting Eqs. (21), (22) and (25) into (26), we can get the expression of the dislocation emission force.

4 The critical stress intensity factors for the dislocation emission

We discuss the effects of the special rotational deformation on emission of lattice dislocations from crack tips.
A commonly accepted criterion for emission of dislocations from a crack tip is that the force acting on them
is equal to zero. Moreover, the dislocation distance to the crack surface must be equal to or larger than the
dislocation core radius [48]. Combining Eqs. (21)–(26) and femit = 0, the critical stress intensity factor K app

IC
and K app

IIC for the dislocation emission can be calculated as follows:

K app
II = 0, K app

IC =
√
2πr0
bl1

(
Im

[
fimage + fwedge

]
sin θ − Re

[
fimage + fwedge

]
cos θ

)
, (27)

K app
I = 0, K app

IIC =
√
2πr0
bl2

(
Im

[
fimage + fwedge

]
sin θ − Re

[
fimage + fwedge

]
cos θ

)
, (28)

where fimage + fwedge = μb2

4π(1−ν1)

{
2Re[Φ∗

e (z0)+Φw(z0)]
γ1

+ z̄0
[
Φ∗′
e (z0)+Φ ′

w(z0)
]
+[Ψ ∗

e (z0)+Ψw(z0)]
γ̄1

}

.

5 Numerical analysis

The critical stress intensity factors KICapp and K app
IIC for dislocation emission will be calculated by using Eqs.

(27) and (28) in the situation where the special rotational deformation forms near the crack in medium I,
as shown in Fig. 1. The critical stress intensity factors are normalized as K 0

IC = K app
IC /μ1

√
b and K 0

IIC =
K app
IIC /μ1

√
b, and the disclination strengths are set as ±ω. The special rotational deformation arms are defined

as s and d , let s = d . The special rotational deformation orientation is assumed as α, and the dislocation
position as r0 = b/2. The quadrupole arms are supposed to be much smaller than the crack length l. The
relative shear modulus is defined as u = μ2/μ1, and the nanocrystalline material is denoted as 3C-SiC, so
μ2 = 217GPa, ν2 = 0.23. Then, numerical examples of analysis are given to illustrate the effect of variable
parameters on the critical stress intensity factors for dislocation emission.

Let us assume that b = 0.25 nm, α = π/6, r1 = 0.15 nm, θ1 = π/36, θ0 = π/20, l = 2000 nm, d =
12 nm. The variations of the normalized mode I critical stress intensity factor with disclination strength for
different relative shearmodulus are depicted in Fig. 2. It can be seen that, if u < 1, K 0

IC increaseswith increasing
disclination strength ω, and if u ≥ 1, K 0

ICdecreases with increasing disclination strength ω. It is interested that
K 0
IC increases when the disclination strength is relatively big (ω = 5◦) and decreases when the disclination

strength is relatively small (ω = 1◦) as the increment of the relative shear modulus u. It is obvious that the
special rotational deformation will hinder the dislocation emission from interfacial crack tip if the upper half
plane is relatively rigid, and promote the dislocation emission if the upper half plane is relatively soft.

Figure 3 depicts the variations of the normalized mode I critical stress intensity factor with relative shear
model modulus for different disclination strengths when α = π/6. r1 = 0.15 nm, θ1 = π/36, θ0 = π/20,
l = 2000 nm, d = 12 nm. K 0

IC decreases with increasing relative shear modulus u when the special rotational
deformation vanishes (ω = 0◦), and it is obvious that the dislocation can emit easily from a softer part around
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Fig. 3 Dependences of the critical normalized SIF K 0
IC on u with different disclination strengths ω

the interface crack. K 0
IC firstly increases and then decreases with increasing relative shear modulus u when the

special rotational deformation occurs (ω 	= 0◦), so there exists an extreme of u0 making the normalized mode
I critical stress intensity factor a minimum value. The extreme of u0 corresponds to the most probable relative
shear modulus for dislocation emission.Moreover, K 0

IC decreases with increment of disclination strength when
u < 1, while increases when u > 1, which agrees with the result in Fig. 2.

The variations of the critical normalized SIFs with the emission angel for different relative shear modulus
are depicted in Fig. 4 when ω = 5◦, α = π/6, r1 = 0.15 nm, θ1 = π/36, l = 2000 nm, d = 12 nm. For the
mode I critical stress intensity factor in Fig. 4a, K 0

IC firstly decreases and then increases with increment of
edge dislocation emission, so there exits an extreme of θe corresponding to the minimum value of K 0

IC , which
indicates the most probable angle for dislocation emission. When u is specified as 0.4, 0.8, 1, 2, and 4, θe
is equal to 36.5◦, 28.5◦, 27.1◦, 26.9◦, and 29.5◦, respectively. It is obvious that θe increases with increasing
the relative shear modulus when u < 1; however, it changes the opposite when u > 1. And when u = 1,
meaning dislocation emitting from a sharp crack in a two-dimensional infinite nanograin, the variation laws
are in accord with that in Ref. [41].

For model II critical stress intensity factor in Fig. 4b, K 0
IIC increases from a positive to infinity and then

turns negative as the increasing of the dislocation emission angle. The sign of critical stress intensity factor is
determined by the direction of Burgers vector of emitting dislocation. So the most probable emission angel
for positive dislocation is always zero. In addition, the absolute value of the model II critical stress intensity
factor increases with the relative shear modulus.
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Fig. 4 Dependences of the critical normalized SIFs on the edge dislocation emission angle with different relative shear modulus
for a K 0

IC ; b K 0
IIC

Figure 5 depicts the dependences of the mode I critical normalized stress intensity factor K 0
IC on grain

size with different relative shear modulus for ω = 5◦, α = π/6, r1 = 0.15 nm, θ1 = π/36, θ0 = π/20,
l = 2000 nm. It can be seen that K 0

IC increases as the increment of relative shear modulus when the grain size
is determined, which is in accord with the result in Figs. 2 and 3. When u ≥ 1, K 0

IC first increases as the
increment of the grain size and then decreases as the further increase in the grain size, so there is a minimum
value named critical grain size corresponding to the maximum critical stress intensity factor, and K 0

IC reduces
with increasing grain size when u < 1. It can also be seen that there is another critical grain size d0 making
K 0
IC = 0, so as long as d > d0, dislocations can emit form interface crack tip without external load, and

the critical grain size increases with increasing relative shear modulus, illustrating that when the upper half
plane on which the dislocation is located is relatively soft, the critical grain size corresponding to dislocation
emission become large.

Figure 6 plots the variations of K 0
IC with respect to the crack length for different relative shear modulus

as ω = 5◦, α = π/6, r1 = 0.15 nm, θ1 = π/36, θ0 = π/20, d = 12 nm. It can be found that K 0
IC increases

as the increment of crack length and K 0
IC also becomes larger as increasing relative shear modulus for certain

crack length that is consistent with the previous conclusion.

In the following numerical analysis, taking the crack length as l = 2000 nm, the upper plane and the lower
plane of the materials are taken as the nanometer Ni and nanocrystal material 3C-SiC, so μ1 = 73GPa, ν1 =
0.31, μ2 = 217GPa, ν2 = 0.23 and the relative shear modulus μ = μ2

μ1
≥ 1.
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The variations of critical normalizedSIFswith disclination strength are shown inFig. 7whenα = π/6, r1 =
0.15 nm, θ1 = π/36, θ0 = π/20, d = 12 nm. It is seen that K 0

IC and K 0
IIC both increase as the increment of

disclination strength, and K 0
IIC < K 0

IC for certain disclination strength, demonstrating that dislocations are
more easily emitting under mode II loadings than mode I loadings. And K 0

IC and K 0
IIC get their own minimum

value when ω = 0◦, which shows that the presence of special rotational deformation can hamper dislocation
emitted from interfacial crack tip, thus reducing the toughness of material contributed by dislocation emission.

Figure 8 depicts the variations of critical normalized SIFs with the edge dislocation emission angle for
different disclination strengths when α = π/6, r1 = 0.15nm, θ1 = π/36, d = 12 nm. It can be seen that K 0

IC
and

∣
∣K 0

IIC

∣
∣ increase with increasing disclination strength that consistent with the results in Fig.7 (here u > 1).

K 0
ICfirst decreases as the increment of dislocation emission angle and then increases as the further increase in

dislocation emission angle, so there is a most easily emission angle θe. When ω = 0◦, namely the special rota-
tional deformation is not exist, the most easily emission angle is equal to 72.5◦, which is the same as the result
in Ref. [38]. And when the disclination strength is determined as 3◦, 5◦, 10◦, θe is equals to 33◦, 28.5◦, 25.5◦,
respectively. So the most easily emission angle decreases as the increasing of disclination strength.

The variations of normalized SIF K 0
IC of the grain size d with different special rotational deformation orien-

tations α are presented in Fig. 9 forω = 5◦, r1 = 0.15 nm, θ1 = π/36, θ0 = π/20. The figure indicates the nor-
malized SIF first increases then decreases with the increasing of the grain size d , so there will be a critical grain
sizemaking the critical normalized SIF equal to zero, and the critical grain size decreases as the increasing of α.
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The variations of normalized SIF K 0
IC with the position of the first wedge disclination are depicted in

Figs. 10 and 11. It can be seen that K 0
IC decreases with increasing r1 and finally tends to a constant when θ1

is determined. K 0
IC first decreases and then increases as the increasing of θ1 when r1 = 0.1 nm, but decreases

as the the increasing of θ1 when r1 = 0.5 nm or 1nm.

6 Conclusions

The effects of a disclination quadrupole produced by a nanograin’s special rotational deformation on the emis-
sion of edge dislocations from a finite interfacial crack tip in a nanocrystalline bi-material solid are theoretically
described using the complex variable method. The critical stress intensity factors for the first dislocation emis-
sion are given, and the influences of material properties, grain size, disclination strength, disclination location
and orientation, special rotational deformation orientations, crack length on the critical stress intensity factors
are discussed in detail. In summary, the following conclusions can be drawn:

1. The model I stress intensity factor increases as the increment of the relative shear modulus when the
special rotational deformation does not exist, which shows that dislocations can easily emit form inter-
face crack tips when the material is relatively soft. The model I stress intensity factor has its minimum
corresponding to an extreme relative shear modulus u0 that making dislocations the most easily emitted.
So choosing appropriate materials of the upper plane and the lower plane can reduce the critical stress
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intensity factor related to dislocation emission so as to facilitate a dislocation emission from the interface
crack, thus improving the toughness of the nc bi-material.

2. The model II stress intensity factor is smaller than the model I stress intensity factor under the same discli-
nation strength, showing that dislocations can move easily be emitted under model II loadings compared
to model I loadings. And the critical stress intensity factors get their minimumswhen the special rotational
deformation does not exist, and it is obvious that special rotational deformation will hinder dislocations
emission from interfacial crack tips so as to reduced the toughness of materials caused by dislocation
emission.

3. The model I critical stress intensity factor first decreases and then increases with increasing emission
angle, so there is a minimum of the most probable emission angle. The most probable emission angle
decreases with increasing relative shear modulus when u < 1, but increase when u > 1, and the most
probable emission angle reduces as the increasing of disclination strength. The model II stress intensity
factor may be negative or positive, which is determined by the direction of the Burgers vector of disloca-
tions emitting from interface cracks. The most probable emission angel of positive edge dislocation is 0◦,
and the absolute value of critical stress intensity factors increases with increasing relative shear modulus.

4. There is an critical grain size making model I critical stress intensity factor equal to zero. As long as
the grain size is larger than the critical value, dislocations can be emitted from the interfacial crack tip
without external loads. The critical grain size increases with the increment of relative shear modulus and
decreases with increasing dip angle of the disclination quadrupole arm, so when the upper plane of that
dislocation is relatively soft, the grain size corresponding to dislocation emission becomes larger.
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