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Abstract A stable and accurate Smoothed Particle Hydrodynamics (SPH) method is proposed for solving
elastodynamics in solid mechanics. The SPH method is mesh-free, and it promises to overcome most of
disadvantages of the traditional finite element techniques. The absence of a mesh makes the SPH method
very attractive for those problems involving large deformations, moving boundaries and crack propagation.
However, the conventional SPH method still has significant limitations that prevent its acceptance among
researchers and engineers, namely the stability and computational costs. In approximating unsteady problems
using the SPH method, attention should be given to the choice of time integration schemes as accuracy and
efficiency of the SPH solution may be limited by the timesteps used in the simulation. This study presents an
attempt to reconstruct an unconditionally stable SPH method for elastodynamics. To achieve this objective we
implement an explicit Runge–Kutta Chebyshev scheme with extended stages in the SPH method. This time
stepping scheme adds in a natural way a stabilizing stage to the conventional Runge–Kutta method using the
Chebyshev polynomials. Numerical results are shown for several test problems in elastodynamics. For the
considered elastic regimes, the obtained results demonstrate the ability of our new algorithm to better maintain
the shape of the solution in the presence of shocks.

1 Introduction

Developing efficient numerical methods for solving solids and structures under large deformation has attracted
many researchers in the field of elastodynamics. The emphasis in most of these techniques is on accurate sim-
ulations of deformation for complex engineering applications, see for example [2,5,15,33,40]. The numerical
treatment of the elastodynamic equations often presents difficulties due to the presence of advective terms and
the coupling between the stress and displacement. In many elastodynamic problems, the advective term is a
source of computational difficulties and nonphysical oscillations. It is known that standard Eulerian methods
do not handle advective terms very well unless small timesteps and highly refined grids are used in simulations.
Most of these methods use explicit time stepping, incorporate some upstream weighting in their formulations
to stabilize the numerical procedure and are relatively easy to formulate and to implement.

Mesh-based techniques such as finite element and finite volume methods have been widely used for
solving partial differential equations governing solid mechanics. However, the accuracy of these methods

L. He (B) · M. Seaid
School of Civil Engineering and Architecture, Nanchang University, Nanchang, Jiangxi Province, 330031, China
E-mail: lisha.he@outlook.com

M. Seaid
E-mail: m.seaid@durham.ac.uk

L. He
School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-016-1603-8&domain=pdf


1814 L. He, M. Seaid

is affected by the quality of meshes, which hinders their applications to solving real problems in complex
domains and with moving boundaries. Recently, some significant developments in meshless methods for
solving linear and nonlinear partial differential equations have been achieved. For instance, the meshless
local Petrov–Galerkin and local boundary integral equations methods were studied in [4,21,31]. These two
methods basically transformed the original problem into a local weak formulation, and the shape functions
were constructed from using the moving least-squares approximation to interpolate the solution variables.
The Smoothed Particle Hydrodynamics (SPH) method was first developed in [10,20]. In this method, the
continuum domain is discretized into particles carrying the field variables. These variables are calculated from
the contribution of the neighboring particles by means of a kernel function. The SPH is a truly meshless
method based on the transformation of differential equations into integral ones which are then discretized
using a distribution of moving particles. The SPHmethod has been traditionally applied in computational fluid
dynamics. In recent years, there has been a growing interest in applying SPH method to a wide variety of
problems in solid mechanics [19]. The main feature of the SPH method is that it is a particle-based technique
and does not require any underlying grid structure to represent the problemgeometry. This avoids the difficulties
associated with traditional mesh-basedmethods such as maintaining the integrity and quality of themesh under
large deformation. The mesh-free nature of the SPHmethod makes it ideally suited to modeling processes that
involve large deformations and discontinuities such as fracture, fragmentation andmetal forming among others.
It has given relatively good results in many applications in both fluid and solid dynamics. Application of the
SPHmethods to steady and time-dependent models has also been investigated, see for example [1,6,11,39,41].

When approximating unsteady solid mechanics using the SPH method, attention should be given to the
selection of the time integration scheme. A fully implicit integration of the governing equations often leads
to methods that are unconditionally stable however; this procedure involves the simultaneous solution of
a large number of coupled linear equations. Moreover, for accuracy reasons, the timestep cannot be taken
arbitrarily large, so these methods often become impractical. On the other hand, the limitation of standard
explicit numerical methods for elastodynamic equations is the stability restriction imposed on the timestep
by the Courant–Friedrichs–Lewy (CFL) conditions. For instance, the explicit first-order Euler, second-order
predictor–corrector, and the fourth-order Runge–Kutta methods have been widely used in SPH simulations,
see for example [7,11,14]. However, time truncation errors dominate the accuracy of the solutions obtained by
these methods and are subjected to the CFL condition, which put a severe restriction on the size of timesteps
taken in the numerical simulations. The Runge–Kutta Chebyshev (RKC)method was first proposed in [36] and
is suitable for time integration of semi-discretized unsteady partial differential equations, compare [35]. The
RKC method adds in a natural way a stabilizing stage to the explicit conventional Runge–Kutta method using
the Chebyshev polynomials. It is not subjected to CFL restrictions and generates accurate solutions without
oscillations and excessive numerical diffusion even if large timesteps are taken in simulations. The emphasis in
this work is on the time integration of the resultant system of ordinary differential equations (ODE) generated
from the SPH space discretization of the transient elastodynamic problems. To the best of our knowledge,
solving elastodynamics using combined SPH and RKC method is reported for the first time.

The remainder of the paper is organized as follows. In Sect. 2 we formulate the SPH method for elastody-
namics. This Section covers all relevant ingredients for the SPH method applied to elastodynamics. Then, we
introduce the RKC scheme and its implementation for solving the SPH equations for elastodynamic problems
in Sect. 3. Section 4 presents the results and application of our SPH algorithm. In particular, we consider
an elastodynamic problem with known analytical solution to quantify the accuracy of the new SPH method
and an elastic beam under oscillatory deformation. The proposed SPH method is also applied to simulate an
elastic plate with a void under compression. The presented results clearly show the overall performance of the
proposed Runge–Kutta Chebyshev SPH method. Finally, we conclude with some remarks in Sect. 5.

2 SPH method for elastodynamics

The principal idea of the SPHmethod is to approximate a generic variable f at the pointXi in the computational
domain using the contributions of the neighboring particles within a support domain V as

fi =
N∑

j=1

f jW ji�V j =
N∑

j=1

m j

ρ j
f jWi j (1)

where the subscript j indicates a neighboring particle to the considered particle i , N is the total number of
particles in the domain V, Wi j is the smoothing (kernel) function, �V = m/ρ represents the volume of each
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Fig. 1 Illustration of the support domain V and the smoothing function W used in the SPH approximation

particle inside the support domain V, and m and ρ are the mass and density, respectively. In general, the
smoothing function should be compact, normalized and satisfies delta conditions [18,19]. An illustration of
the smoothing function is shown in Fig. 1 where κh represents the radius of the support domain, where κ is a
constant and h is the smoothing length. In the present work, we use the B-spline function frequently applied
as a smoothing function in SPH simulations, see for example [24]. The B-spline function is defined as

W (ri j , h) = αd

⎧
⎪⎪⎨

⎪⎪⎩

2

3
− r̃2 + 1

2
r̃3, if r̃ < 1,

6(2 − r̃)3, if 1 ≤ r̃ < 2,
0, if r̃ > 2,

(2)

where αd = 1

h
,

15

7πh2
, and

3

2πh3
for one-, two-, and three-dimensional problems, respectively. Here ri j =

∣∣Xi − X j
∣∣, where Xi and X j represent, respectively, the coordinates of particle i and j , and r̃ denotes the

relative distance between particles i and j , i.e.,

r̃ =
∣∣Xi − X j

∣∣
h

.

Note that the radius of the support domain in this smoothing function is 2h, and when
∣∣ri j

∣∣ ≥ 2h the smoothing
function vanishes which means that there is no influence between particles i and j . It is therefore evident that
the smoothing length h significantly influences the accuracy and efficiency of SPH simulations. In the current
study, the smoothing length is set to h = 1.5�d , with �d is the initial spacing between particles.

The spatial derivatives of a generic variable f can be approximated by applying the derivative operator to
the approximation (1) and using the Gauss theorem to obtain

∇ fi =
N∑

j=1

m j

ρ j
f j∇Wi j . (3)

Obviously, for a particle near the boundary, the support domain lacks sufficient neighboring particles, compare
Fig. 2 for an illustration. To overcome this drawback we correct the approximation (1) using the kernel gradient
correction proposed in [32]. This correction procedure is based on the normalized form

N∑

j=1

m j

ρ j

(
X j − Xi

) ⊗ ∇Wi j = I,

where I is the diagonal unit matrix. The kernel gradient correction is calculated by multiplying the original
gradient of the smoothing function by an invertible matrix Li to restore first-order completeness as

∇̃Wi j = L−1
i ∇Wi j
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Fig. 2 Truncation of the support domain and the kernel function on the boundary

where

Li =
N∑

j=1

m j

ρ j
∇Wi j ⊗ (

X j − Xi
)
.

For two-dimensional problems, the reversible matrix is obtained by

Li =

⎛

⎜⎜⎜⎜⎜⎝

N∑

j=1

m j

ρ j
x ji

∂Wi j

∂xi

N∑

j=1

m j

ρ j
y ji

∂Wi j

∂xi
N∑

j=1

m j

ρ j
x ji

∂Wi j

∂yi

N∑

j=1

m j

ρ j
y ji

∂Wi j

∂yi

⎞

⎟⎟⎟⎟⎟⎠
.

Therefore, the approximation of the derivative of a function is given by

∇ fi =
N∑

j=1

m j

ρ j
f j ∇̃Wi j . (4)

Notice that the second derivative of the kernel function (2) is continuous and the leading truncation error term
is of order O(h2). The finite aspect of the kernel support means that only a limited number of neighboring
particles plays a role in all the sums in the conservation equations. In the current study, this step is achieved
by using the kd-tree searching method, see [13] among others.

2.1 Application to elastodynamic equations

In this Section we formulate the SPH method for the partial differential equations governing elastodynamics
in solid mechanics. These equations consist of the conservation of mass and momentum as

Dρ

Dt
= −ρ∇ · v,

Dv
Dt

= 1

ρ
∇σ + g (5)
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where ∇ =
(

∂

∂x
,

∂

∂y

)T

is the gradient operator, g is the acceleration due to body forces such as gravity, ρ is

the density, v = (
vx , vy

)T is the velocity, σ is the stress tensor, and
D

Dt
= ∂

∂t
+ ∇ · v is the total derivative.

Using the product rule of differentiation and the definition

∇ · σ =
{

∂σ xx

∂x
+ ∂σ xy

∂y

∂σ xy

∂x
+ ∂σ yy

∂y

}
,

the term
1

ρ
∇ · σ in (5) can be replaced by

1

ρ
∇ · σ = ∇ ·

(
σ

ρ

)
+ σ

ρ2∇
(
1

ρ

)
.

For elastodynamic problems considered in this work, the total strain rate is given by

ε̇ = 1

2

(
∇v + (∇v)T

)
, (6)

and according to the Hooke’s law, we can write stress tensor as

σ̇ = 2G ė + K
(
tr (ε̇)

)
I (7)

where ė = ε̇− 1

3
tr(ε̇)I is the deviatoric strain rate tensor and tr(ε̇) = ε̇xx + ε̇yy ; I is Kronecker’s delta tensor,

K is the elastic bulk modulus, and G is the shear modulus which can be represented by Young’s modulus E
and Poisson’s ratio ν as

K = E

3(1 − 2ν)
and G = E

2(1 + ν)
.

It should be stressed that when handling a large deformation problem, the Jaumann stress rate ˙̂σ , introduced
in [12] to account for the influence of rotation on the constitutive relations, is adopted in our simulations to
introduce the influence of rotation on the constitutive relations as

˙̂σ = σ̇ + σω − ωσ . (8)

Then, Eq. (7) becomes

σ̇ = 2G ė + K

(
tr(ε̇)

)
I − σω + ωσ (9)

where ω is the rotation tensor, and it can be represented by the velocity gradient as

ω = 1

2

(
∇v − (∇v)T

)
. (10)

The system (5) is to be solved in a bounded spatial domain and for a time interval (0, T ] endowed with given
initial and boundary conditions. In practice, these conditions are problem dependent, and their discussion is
postponed to Sect. 4 where numerical examples are discussed.

To discretize Eq. (5) in space, we first cover the computational domain with a set of particles, and the
velocity gradient is approximated as

∇vi =
N∑

j=1

m j

ρ j
v j ∇̃Wi j . (11)
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Since
∑N

j=1

m j

ρ j
∇̃Wi j = 0,

N∑

j=1

m j

ρ j
(v j − vi )∇̃Wi j =

N∑

j=1

m j

ρ j
v j ∇̃Wi j − vi

N∑

j=1

m j

ρ j
∇̃Wi j =

N∑

j=1

m j

ρ j
v j ∇̃Wi j ,

the approximation (11) reduces to

∇vi =
N∑

j=1

m j

ρ j
(v j − vi )∇̃Wi j . (12)

Hence, the spatial discretization of Eq. (5) using the SPH method results in

Dρi

Dt
= −ρi

N∑

j=1

m j

ρ j
(v j − vi ) · ∇̃Wi j ,

Dvi
Dt

=
N∑

j=1

m j

(
σ j

ρ2
j

+ σ i

ρ2
i

)
∇̃Wi j . (13)

The stress rate of small and large deformations (7) and (9) can also be expressed by the SPH approximation
of the velocity field as

Dσ i

Dt
= 2G ėi + K

(
tr(ε̇i )

)
I, (14)

and
Dσ i

Dt
= 2G ėi + K

(
tr(ε̇i )

)
I − σ iωi + ωiσ i , (15)

respectively. Here ε̇i and ωi are obtained by using the SPH approximation of the velocity field in Eqs. (6) and
(10) as

ε̇i = 1

2

⎛

⎜⎝
N∑

j=1

m j

ρ j
(v j − vi )∇̃Wi j +

⎛

⎝
N∑

j=1

m j

ρ j
(v j − vi )∇̃Wi j

⎞

⎠
T
⎞

⎟⎠ ,

ωi = 1

2

⎛

⎜⎝
N∑

j=1

m j

ρ j
(v j − vi )∇̃Wi j −

⎛

⎝
N∑

j=1

m j

ρ j
(v j − vi )∇̃Wi j

⎞

⎠
T
⎞

⎟⎠ ,

and the approximation of the deviatoric strain rate tensor is computed as ėi = ε̇i − 1

3
tr(ε̇i )I.

The implementation of boundary conditions for the SPH method is carried out using ideas presented in
[5,22,27,28,34], among others. More precisely, for slip and no-slip boundary conditions in our simulations,
we adopt the treatment reported in [5] using ghost particles. Here, we generate three layers of ghost particles
outside the solid boundary with a uniform distribution as real particles inside the domain. These particles are
located parallel to the solid boundary with the spacing distance �d/2 between first layer and solid boundary
as shown in Fig. 3. The ghost particles will have the same density and mass as the corresponding real particles.

2.2 Artificial viscosity

In many applications in elastodynamics for shock propagation in solids, the numerical solution obtained using
the SPH method may present nonphysical oscillations. This is mainly because the transition area for the
shock wave does not cover a sufficiently larger length than the particle spacing �d . As a consequence, the
system leads to unstable solutions unless a special treatment is accounted for in the SPH approximation of the



A Runge–Kutta–Chebyshev SPH algorithm 1819

Fig. 3 Treatment of boundary conditions using ghost particles in the SPH approximation

governing equations. In this study, to improve the stability of the SPHmethod and to damp out the nonphysical
oscillations, we introduce the artificial viscosity 
i j into the momentum equations as

Dvi
Dt

=
N∑

j=1

m j

(
σ j

ρ2
j

+ σ i

ρ2
i

− 
i j I
)

∇̃Wi j (16)

where the artificial viscosity 
i j is defined as [26]


i j =

⎧
⎪⎨

⎪⎩

−α
ci jφi j + β
φ2
i j

ρi j
, if vi j · ri j < 0,

0, if vi j · ri j ≥ 0

(17)

where ri j = ∣∣Xi − X j
∣∣ is the distance between the particles i and j , vi j = vi − v j is the difference between

the velocities of particles i and j , and the function φi j is defined by

φi j = hi jvi j · ri j∣∣ri j
∣∣2 + 0.01h2i j

where c is the wave speed in the material, and it can be calculated as

c =
√

E

ρ
. (18)

In (17), ci j , ρi j and hi j are the averaged wave speed, density and smoothing length between the particles
defined as

ci j = ci + c j
2

, ρi j = ρi + ρ j

2
, hi j = hi + h j

2
.

The coefficients α
 and β
 appearing in (17) are used to control the artificial viscosity in the SPH approxi-
mation, see for example [26]. Selection of the values for α
 and β
 is problem dependent, for the purpose of
this study we consider the values α
 = β
 = 2.5 suggested for SPH simulation of solid mechanics in [17].
Note that the artificial viscosity (17) has been widely used in the literature to improve the numerical stability
and prevent the penetration between particles during the compression.
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2.3 Tensile instability

For many elastodynamic problems, the numerical instability in SPH results are more serious for the case under
tension than its compression counterpart, see for example [12]. The author in [30] performed theFourier analysis
for turbulence simulations and obtained the conclusion that this instability is caused by the property of the
kernel functions. Several techniques have been proposed to overcome this difficulty in the SPH approximation.
In [30], another smoothing function is used to avoid particle clumping in the forced turbulence problem using
the well-known Wendland kernel. In [8,9,29], an approach based on the stress points has also been presented
to remove this numerical instability. A total Lagrangian formalism for the SPH method is proposed in [38] to
remove the instability. Authors in [23] proposed an artificial repulsive force to prevent neighboring particles
clump together under tension. This technique has been improved in [12] by accounting for signs of principal
stresses in the artificial repulsive force. This repulsive force is assumed to be increased as two neighboring
particles are moving closer. In this work, we consider this latter algorithm to deal with the tensile instability
in our SPH approximation. Hence, the momentum equation (16) is replaced by

Dvi
Dt

=
N∑

j=1

m j

(
σ j

ρ2
j

+ σ i

ρ2
i

− 
i j I + f ni j
(
Ri + R j

) )
∇̃Wi j (19)

where n is an exponent which dependents on fi j , and it is set to n = 4 in our simulations as suggested in [23].
The repulsive factor fi j is specified to represent effects of the distance between two neighboring particles, and
it is defined as

fi j = Wi j

W (�d)
.

Note that since �d is the initial spacing of particles, W (�d) is a constant. The above term ensures that when
the distance between two neighboring particles becomes smaller than �d , the repulsive force term (Ri +R j )
turns to be more effective. According to [12], the components of the artificial stresses can be determined by the
principal stresses of the corresponding particle. In two-dimensional problems, the components of the artificial
stresses can be represented by the standard transformations. For instance, the rotation angle θi is calculated as

tan (2θi ) = 2σ xy
i

σ xx
i − σ

yy
i

. (20)

The stress tensor is transformed into principal stress, and its components are expressed as

σ̄ xx
i = cos2 (θi ) σ xx

i + 2 sin (θi ) cos (θi ) σ
xy
i + sin2 (θi ) σ

yy
i ,

σ̄
yy
i = sin2 (θi ) σ xx

i − 2 sin (θi ) cos (θi ) σ
xy
i + cos2 (θi ) σ

yy
i (21)

The principal stress is also applied to identify the diagonal components of the artificial stress as

R̄xx
i =

⎧
⎨

⎩
−ε

σ̄ xx
i

ρ2
i

, if σ̄ xx
i > 0,

0, if σ̄ xx
i ≤ 0,

(22)

where ε is a parameter with values in [0, 1] and the minus sign in (22) is used to cancel part of the stress in
the case of tension (here σ xx

i > 0 indicates the state of tension). As suggested in [12] for solid mechanics, we
use ε = 0.3 in the numerical results presented in this study. The remaining term R̄ yy

i can be simply calculated
by changing the subscript xx to yy in Eq. (22). Finally, to transform the diagonal components of the artificial
stress to the original coordinates, we use

Rxx
i = R̄xx

i cos2 (θi ) + R̄ yy
i sin2 (θi ) ,

Ryy
i = R̄xx

i sin2 (θi ) + R̄ yy
i cos2 (θi ) ,

Rxy
i = (R̄xx

i − R̄ yy
i ) sin (θi ) cos (θi ) . (23)

The term R j can be calculated in a similar manner by replacing the subscript i with j in Eqs. (20)–(23). Note
that this approach only becomes effective when the particles clump together under tension.
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3 Runge–Kutta Chebyshev scheme

The solution procedure for Eq. (5) is complete when a time integration of the semi-discrete SPH equations is
selected. This stage can be handled by any implicit ODE solver, since they are computationally without risk by
virtue of their accuracy and unconditional stability. This allows for larger timesteps in the integration process.
However, due to the large set of linear systems of algebraic equations at each timestep, these methods may be
computationally inefficient. As an alternative, we use a class of explicit Runge–Kutta methods. Applied to the
system (5), the SPH discretization can be reformulated in a compact system of ODEs as

DU
Dt

= F (t,U) , t ∈ (0, T ] (24)

where U = (vx , vy, σ xx , σ yy, σ xy, r x , r y)T , the right-hand side function F (t,U) is defined for each particle
i by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑

j=1

m j

( σ xx
j

ρ2j

+ σ xx
i

ρ2i

− 
xx
i j + f ni j (R

xx
i + Rxx

j )

)
∂W̃i j

∂x
+

N∑

j=1

m j

( σ
xy
j

ρ2j

+ σ
xy
i

ρ2i

+ f ni j (R
xy
i + Rxy

j )

)
∂W̃i j

∂y

N∑

j=1

m j

( σ
yx
j

ρ2j

+ σ
yx
i

ρ2i

+ f ni j (R
yx
i + Ryx

j )

)
∂W̃i j

∂x
+

N∑

j=1

m j

( σ
yy
j

ρ2j

+ σ
yy
i

ρ2i

− 

yy
i j + f ni j (R

yy
i + Ryy

j )

)
∂W̃i j

∂y

N∑

j=1

m j

ρ j

(
D11v

x
j − D11v

x
i

)
∂W̃i j

∂x
+

N∑

j=1

m j

ρ j

(
D12v

y
j − D12v

y
i

)
∂W̃i j

∂y

N∑

j=1

m j

ρ j

(
D21v

x
j − D21v

x
i

)
∂W̃i j

∂x
+

N∑

j=1

m j

ρ j

(
D22v

y
j − D22v

y
i

)
∂W̃i j

∂y

N∑

j=1

m j

ρ j

(
D33v

y
j − D33v

y
i

)
∂W̃i j

∂x
+

N∑

j=1

m j

ρ j

(
D33v

x
j − D33v

x
i

)
∂W̃i j

∂y

vxi

vyi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Di j are the entries of the elastic matrix D for plane stress, i.e.,

D = E

(1 − ν2)

⎛

⎜⎜⎜⎝

1 ν 0

ν 1 0

0 0
1 − ν

2

⎞

⎟⎟⎟⎠ .

To integrate the Eq. (24), we divide the time interval into subintervals [tn, tn+1] with duration �t = tn+1 − tn
for n = 0, 1, . . .. We use the notation wn to denote the value of a generic function w at time tn .

Difficulties often appear when the Jacobian of F, ∂F/∂U has large eigenvalues. This may give rise to
numerical stiffness. Thus, time integration schemes for (24) depend strongly on the spectral radius ρ (∂F/∂U),
and for these reasons it is preferable that these schemes have to be either implicit or explicit with large
stability regions. In the current work, we consider the Runge–Kutta Chebyshev (RKC) method studied in
many references, see for example [35–37]. To solve the system (24), the RKC scheme takes the form

U(0) = Ũn ,

U(1) = U(0) + μ̃1F(0),

U( j) = μ jU( j−1) + ν jU( j−2) + (1 − μ j − ν j )U(0) + μ̃ jF( j−1) + γ̃ jF(0), 2 ≤ j ≤ s ,

Un+1 = U(s) (25)

where Ũn is the solution computed from theLagrangian fractional step,F( j) denotes the termF
(
tn+c j�t,U( j)

)

andU( j) are internal vectors forRKCstages. The coefficients in (25) are available in analytical form for arbitrary
s from [35,36]. For convenience of the reader, we include the formulas for these coefficients. Consider the
Chebyshev polynomial of the first kind of degree j

Tj (z) = cos( jarccosz), −1 ≤ z ≤ 1.
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Then,

ε = 2

13
, q0 = 1 + ε

s2
, q1 = T ′

s (q0)

T ′′
s (q0)

,

b j = T ′′
j (q0)

(T ′
j (q0))

2 , (2 ≤ j ≤ s), b0 = b2, b1 = b2,

and

μ̃1 = b1q1, μ j = 2q0
b j

b j−1
, ν j = − b j

b j−2
, μ̃ j = 2q1

b j

b j−1
,

γ̃ j = (1 − b j−1Tj−1(q0))μ̃ j , (2 ≤ j ≤ s).

The coefficients c j are

c j = T ′
s (q0)

T ′′
s (q0)

T ′′
j (q0)

T ′
j (q0)

≈ j2 − 1

s2 − 1
(2 ≤ j ≤ s), c1 = c2

T ′
2(q0)

≈ c2
4

, cs = 1.

It should be pointed out that two criteria have been taken into consideration for the calculation of the above
coefficients namely, (i) the real stability boundary has to be as large as possible to obtain good stability
properties for the problem under study, and (ii) the application of the method with arbitrary number of stages
should not damage the convergence properties, that is, the accumulation of local errors does not grow without
bound. Thus, the number of stages s in our SPH method and the conventional RKC scheme varies with �t
such that, see [35],

s = 1 +
[[√

1 + ρ (∂F/∂U)

0.653

]]
(26)

where [[ x ]] denotes the integer part of x . In our case, an upper bound for ρ (∂F/∂U) is estimated once and for
all by using the Gerschgorin theorem, and the relation (26) is replaced by

s = 1 +
[[√

1 + c�t

0.131�d

]]
(27)

where c is the wave speed in the material defined by (18) and �d is the initial spacing of particles in the
computational domain.

4 Numerical results and examples

To demonstrate the performance of the proposed SPH method, several examples are presented. For the first
example, an exact solution is readily available which makes it ideal for a quantitative as well as qualitative
validation of the considered SPH method. We also compare numerical results obtained using different time
stepping schemes in SPHmethod for this example. As a second example, we consider an oscillatory beam, and
in the third example, we simulate an elastic plate with a void. For all these examples the material is assumed to
be Magnesium with density ρ = 1738 kg/m3, Young’s modulus E = 45× 109 Pa and Poisson ratio ν = 0.35.
In line with hyperbolic systems of conservation laws, we also define the CFL number as

CFL = c
�t

�d
,

and Eq. (26) becomes

s = 1 +
[[√

1 + CFL

0.131

]]
. (28)

In all the computations reported herein, the CFL is set to a given value, and the number of stages s in the RKC
scheme is adjusted according to the condition (28). The aim is to show that, using a reasonably low number of
particles and large CFL values, the proposed method reproduces the corresponding elastodynamic patterns and
accurately captures the deformation structures with little numerical diffusion, even after long time simulations.
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4.1 Shock wave problem

In this example, we solve the propagation problem of a shock wave in a Magnesium bar with a length of
L = 1 m. Initially the bar is at rest with the right end of the bar fixed, while a compression stress is applied
on the left boundary using a stress σ0 = 8.8436 × 106 Pa. The analytical velocity of the shock wave in this
problem can easily be calculated as v0 = σ0/

√
Eρ = 1 m/s. The wave propagates along the bar with the speed

c = √
E/ρ = 5.0884 × 103 m/s, and when the wave arrives at the fixed right end of the bar, the stress at this

point becomes 17.6872 × 106 Pa. Since the analytical solution is known, we evaluate the error function En at
time tn for any generic function W as

En
i = WExact (Xi , tn) − Wn

i

where WExact and Wn
i are the analytical and numerical solutions, respectively, evaluated at the particle i

and time tn . The aim of this test example is to assess the performance of the proposed RKC scheme, the
conventional explicit Euler scheme, the classical fourth-order explicit Runge–Kutta (RK4) scheme, and a
second-order predictor–corrector (PC2) scheme in the SPH method. The Euler and RK4 schemes have been
widely used in the literature, and their formulations to solve the ODE system (24) are straightforward. The
PC2 scheme has also been applied in conjunction with SPH method to solve problems in both fluid dynamics
and solid mechanics, see for example [11,25]. Its formulation to solve the system (24) can be carried out as

Un+ 1
2 = Un + 1

2
�tF

(
tn,Un) ,

Ûn+ 1
2 = Un + 1

2
�tF

(
tn + �t

2
,Un+ 1

2

)
,

Un+1 = 2Ûn+ 1
2 − Un . (29)

In Fig. 4 we display the profiles of velocity and stress solutions along the bar at t = 0.12 ms using a collocation
set of 250 particles and CFL = 0.6 for the considered time stepping schemes. The time evolution of velocity
and stress solutions at the mid-point (x = L

2 ) of the bar is shown in Fig. 5. It is clear from these results that
both the Euler and PC2 schemes exhibit oscillatory behavior for the SPH solution of the velocity field. On
the other hand, the results obtained using the RK4 and RKC schemes are similar, and no oscillations have
been detected in their solutions. However, the RK4 scheme requires about the double of computational work
compared to the RKC scheme. Note that for the considered CFL value, the RKC scheme uses only two stages,
whereas four stages are needed in the RK4 scheme. It should also be pointed out that for CFL > 0.6 the Euler
and PC2 schemes become unstable, and the RK4 scheme becomes unstable for CFL > 1.2. This is not the
case for the RKC scheme as the results remain stable independently of the CFL in this test problem. To further
examine the effect of CFL on these schemes we present in Fig. 6 the velocity and stress profiles along the
bar and in Fig. 7 the time evolution of velocity and stress solutions at the mid-point of the bar using different
values of CFL in both RK4 and RKC schemes. Increasing the CFL in the RK4 scheme results in an increase of
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Fig. 4 Velocity (left) and stress (right) profiles along the bar at t = 0.12ms using different time stepping schemes
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Fig. 5 Time evolution of velocity (left) and stress (right) for the shock wave problem at the mid-point of the bar using different
time stepping schemes
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Fig. 6 Velocity profile along the bar at t = 0.12 ms using RK4 (left) and RKC (right) using different values of CFL

the numerical dissipation, and for CFL = 1 oscillations start to appear in the results. On the other hand, results
obtained using the RKC scheme remain stable independently of the values taken by CFL. No deterioration in
the accuracy has been detected in the numerical results obtained using the RKC scheme.

Next we examine the performance of the RKC method using different numbers of particles in the bar. To
this end, we display in Fig. 8 the velocity and stress profiles along the bar and in Fig. 9 the time evolution of
velocity and stress solutions at the mid-point of the bar using three different numbers of particles (NP) and a
fixed CFL=2.5. It is clear from these results that using a large number of particles in the simulation yields
improved results with a noticeable reduction in the numerical dissipation. Note that these results are obtained
using a fixed timestep (calculated from the definition of CFL), while the number of stages in the RKC scheme
varies according to Eq. (28). To quantify these results, we summarize in Table 1 the L1- and L2-error norms for
the time stepping schemes considered in this study using different numbers of particles and different timesteps.
In this Table we also include computational cost referred to the CPU time associated with each time stepping
scheme. Examination of Table 1 shows that for a small number of particles and small timesteps the three
schemes give roughly similar results with differences in the CPU time. However, by increasing the number
of particles or the value of timesteps, the results obtained using the RKC scheme are slightly more accurate
and efficient than results obtained by PC2 and RK4 schemes, respectively. With increasing the number of
particles or the value of timesteps, the PC2 and RK4 schemes go unstable (– in Table 1 corresponds to runs
where the PC2 and RK4 schemes become unstable). It is worth remarking that for large numbers of particles
or low values of timesteps the CPU time in the RKC scheme becomes larger. For example, in a run with
NP=1000 and �t = 11.8 µs the CPU time spent to perform a RKC step is more than twice that of a RKC
step using NP=250 and �t = 11.8 µs. However, the same accuracy can be achieved by the RKC scheme
with NP=1000 and �t = 47.2 µs at low computational cost. Finally, we set a limit to the number of stages as
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Fig. 7 Time evolution of stress and velocity for the shock wave problem at the mid-point of the bar using RK4 (left column) and
RKC (right column)
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Fig. 8 Velocity (left) and stress (right) profiles along the bar at t = 0.12 ms using RKCmethod with different numbers of particles

s = 10 and we perform the same simulations using different values for CFL. The obtained results for the time
evolution of velocity and stress solutions at the mid-point of the bar are presented in Fig. 10. It is clear from
this Figure that the computed results do not depend on the number of stages used in the RKC scheme, and for a
fixed bound for this number the proposed method still produces stable results with large values of CFL. As can
be seen from the solutions displayed in the above Figures and the errors presented in Table 1, high accuracy is
achieved in the SPH method with RKC scheme for this test example in terms of the considered error norms.
Hence, our next computations are realized using only the SPH-RKC scheme.
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Fig. 9 Time evolution of velocity (left) and stress (right) for the shock wave problem at the mid-point of the bar using RKC
method with different numbers of particles

Table 1 Results for the shock wave problem at t = 0.12 ms using different numbers of particles and different timesteps in the
considered time stepping schemes

NP �t = 11.8 µs �t = 23.6 µs �t = 47.2 µs

Euler PC2 RK4 RKC Euler PC2 RK4 RKC Euler PC2 RK4 RKC

250
L1-error 0.0840 0.0889 0.0889 0.0889 0.0789 0.0889 0.0889 0.0889 0.1469 0.0886 0.1005 0.0889
L2-error 0.1569 0.1613 0.1613 0.1613 0.1519 0.1613 0.1613 0.1613 0.1943 0.1613 0.171 0.1612
CPU 97.6 259.8 558.9 276.3 (2) 49.9 111.7 279.8 159.3 (2) 32.2 66.6 108.1 95.7 (3)

500
L1-error 0.0555 0.0625 0.0625 0.0625 0.1002 0.0625 0.0626 0.0625 – – 0.1764 0.0643
L2-error 0.1275 0.1353 0.1353 0.1353 0.1598 0.1354 0.1354 0.1354 – – 0.2172 0.01372
CPU 131.5 326.3 674.3 351.8 (2) 61.6 195.8 315.2 288.3 (3) – – 178.5 146.2 (4)

750
L1-error 0.0480 0.0510 0.0510 0.0511 – – 0.0618 0.051 – – – 0.0522
L2-error 0.1180 0.1221 0.1221 0.1222 – – 0.134 0.1221 – – – 0.1234
CPU 151.5 417.6 790.6 434.6 (2) – – 390.7 334.4 (3) – – – 229.4 (4)

1000
L1-error 0.0675 0.0441 0.0441 0.0441 – – 0.1203 0.0445 – – – 0.0441
L2-error 0.1323 0.1137 0.1136 0.1136 – – 0.1797 0.1153 – – – 0.1137
CPU 231.5 470.7 896.7 738.6(3) – – 445.0 381.1 (4) — – – 323.7 (5)

The CPU times are given in seconds, and the number between brackets refers to the number of stages in RKC scheme
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method with different values of CFL and a fixed limit for number of stages



A Runge–Kutta–Chebyshev SPH algorithm 1827

4.2 Oscillatory beam problem

This example solves a problem of an oscillatory thin beam made of Magnesium with length and wide denoted
by L and W , respectively. The left end of the beam is fixed, the other end is free, and a perpendicular velocity
vy is loaded on the beam at the initial time [12]. The purpose of this test example is to examine the performance
of the proposed SPH method for solving elastodynamic problems in presence of large deformation. Here, the
velocity vy at each point on the beam is calculated from

vy
c

= Vf
M

(
cos (κx) − cosh (κx)

)
− N

(
sin (κx) − sinh (κx)

)

Q
(30)

where c is the wave speed of the material, Vf is a factor used to control the magnitude of velocity, and κ is a
factor assumed to satisfy the condition

cos(κL) cosh(κL) = −1.

It is easy to verify that for this mode κL = 1.875, and the other factors in (30) are calculated as

M = sin (κL) + sinh (κL) ,

N = cos(κL) + cosh (κL) ,

Q = 2
(
cos (κL) sinh (κL) − sin (κL) cosh (κL)

)
.

For this oscillatory beam problem, the equation of frequency ω is given by [16]

ω =
√

EW 2κ4

12ρ
. (31)

In the first runwith this examplewe set L = 0.5 m,W = 0.05 m, Vf = 0.02, and a set of particles uniformly
distributed along the beam with initial spacing �d = 0.0033 m is used in our simulation. Figures 11 and 12
present the distribution of the principal stress fields σ 11 and σ 22, respectively. The results are presented for
four different times t = 73.7, 1621.33, 3316.37 and 4937.7μs using a fixed CFL = 2.5. Note that for this
value of CFL, the explicit schemes considered in the previous example are unstable and therefore cannot be
used to solve this problem, whereas the RKC scheme is stable and it requires only five stages for the solution of
this problem. It is clear that no oscillations or smearing of the deformation have been detected in the computed
results. As can be seen, good behavior is recovered by the proposed SPH-RKC method for the considered
elastodynamic conditions without any significant loss of accuracy. The performance of the proposed SPH-
RKC method is very attractive since the computed solutions remain stable and accurate even for relatively
coarse particle distributions without requiring small timesteps for the stability of the explicit time stepping
scheme.

To examine the effect of number of particles on the results for this example, we plot in Fig. 13 the time
evolution of the displacement and velocity at the end of the beamusing three sets of particleswith initial spacing
�d = 0.01, 0.005 and 0.0033 m. It is evident that, increasing the number of particles in the simulation, the
convergence is achieved in our SPH-RKC method for this test example. A better resolution is obtained for
larger number of particles and once this number reaches a limit of �d = 0.0033 m the improvement in the
results becomes minimal but at higher computational cost. It should also be noted that for the results presented
in this Figure the time step �t remains constant and the number of stages in the RKC scheme is s = 3, 4 and 5
for �d = 0.01, 0.005 and 0.0033 m, respectively. On the other hand, refining the number of particles keeping
constant the timestep, the considered Euler, PC2 and RK4 schemes yield spurious oscillations and become
unstable at the end.

To ascertain the quality of the resolution of SPH-RKC method for this example, we compare in Table 2
the computed frequency to the theoretical frequency given by (31) using �d = 0.0033 m. We consider two
values for the beam width W and several values for the factor Vf to assess the performance of the proposed
SPH-RKC method to accurately capture the oscillatory behavior of the beam. As can be seen, more accurate
results are obtained for a beam with W = 0.05 m than for the case with W = 0.1 m. The errors also decrease
as the factor Vf becomes smaller, and in all cases the error is less than 9% for the case withW = 0.1 m and less
than 5% for the other case with W = 0.05 m. The computed solutions using the proposed SPH-RKC method
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Fig. 11 Distribution of the principal stress field σ 11 for the oscillatory beam problem using SPH-RKC method at four different
instants

seem to converge to the physically relevant solutions in all selected test cases. The proposed SPH-RKCmethod
captures the elastic deformation accurately, does not diffuse the stress fields or give nonphysical oscillations
near the steep gradients.

4.3 Elastic plate problem with a void

Our final test example consists of an elastic plate with a void under compression. The material is Magnesium
and the plate is assumed to be squared with length L = 2 m including a circular void with radius R0 = 0.3 m,
see Fig. 14.Afixed velocity of 0.2 m/s is applied on the top and bottomboundaries of the plate and the remaining
boundaries are kept free. Note that because of the symmetry in this problem it is more efficient to consider
only a quarter of the computational domain. The aim of this test example is to examine the performance of the
proposed SPH-RKC method to resolve complex stress features and to preserve the symmetry in the numerical
solutions. In addition, since the SPH-RKC method is a particle-based method, the distribution of particles
would influence the accuracy of its analysis. To illustrate this effect, we consider three collocation sets of
particles, namely squared distribution, radial distribution and equally radial distribution as depicted in Fig. 15.
For a better insight, only a coarser view is illustrated in this Figure. The total number of particles for each
collocation set is 897, 922 and 916 for the squared distribution, the radial distribution and the equally radial
distribution, respectively. In all our simulations for this problem we use a fixed CFL=2.5, and for this value
of CFL we have found that the number of stages in the RKC scheme does not overpass six stages.

Figure 16 presents the normal stresses σ xy and σ yy , and the velocity field obtained on each collocation
set at time t = 994.9097 ms. As can be seen from these results, both squared and radial distributions exhibit
nonphysical oscillations in the stress patterns. The results obtained on the squared distribution also produce
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Fig. 12 Distribution of the principal stress field σ 22 for the oscillatory beam problem using SPH-RKC method at four different
instants
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Fig. 13 Time evolution of displacement (left) and velocity (right) at the end of the beam with different numbers of particles for
the oscillatory beam problem using L = 0.5 m and W = 0.1 m
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Table 2 Comparison results for the frequency using different values of Vf in the oscillatory beam problem

Vf W = 0.1 m W = 0.05 m

ωtheoretical (Hz) ωSPH (Hz) Error (%) ωtheoretical ωSPH Error (%)

0.05 2066 1888 8.62 1033 982 4.94
0.02 2066 1929 6.63 1033 983 4.84
0.01 2066 1943 5.95 1033 1000 3.19
0.005 2066 1943 5.95 1033 1007 2.52
0.002 2066 1943 5.95 1033 1007 2.52
0.001 2066 1943 5.95 1033 1007 2.52

Fig. 14 Configuration of the domain for the elastic plate with a void

Fig. 15 Squared distribution (left), radial distribution (middle), and equally radial distribution (right) of particles for the elastic
plate with a void

cracking effects on the void surface and a localized velocity field in the vicinity of the void. On the other
hand, the results obtained using the equally radial distribution captures the correct deformation features and
generates most accurate results. Theoretically, the normal stress σ yy on an infinite plate with a circular void
under uniaxial compression loading can be analytically calculated as [3]

σ yy(x, 0) = σ∞

(
1 + 1

2

R2
0

x2
+ 3

2

R4
0

x4

)

where σ∞ is the stress component on the edge of the plate. It is easy to verify from the above equation that
for x >> R0, the stress σ yy on the edge of the circular void is about three times larger than the reference
stress σ∞. In Fig. 17 we illustrate a comparison between profiles of the normal stress σ yy at y = 0 obtained
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Fig. 16 Normal stress σ xy (first column), normal stress σ yy (second column) and velocity field (third column) for the elastic plate
with a void using three different collocation sets: Squared distribution (first row), radial distribution (second row) and the equally
radial distribution (third row)

for the considered collocation sets and the theoretical stress. It is clear that for the considered elastodynamic
conditions the results obtained using the equally radial distribution are more accurate than those obtained using
the squared and radial distributions. There is a good matching in the profile obtained using the equally radial
distribution and the theoretical solution. To quantify the accuracy in these distributions, we list in Table 3 the
errors for the obtained results in L1 and L2 norms. It can be clearly seen that the SPH-RKC method using
equally radial distribution accurately solves this problem, and it generates less computational errors compared
to SPH-RKC method using squared and radial distributions.

Our next concern is to compare the results computed using our SPH-RKC method to those obtained using
the conventional finite element method (FEM) for this test example. We consider two sets of simulations with
R0 = 0.3 m and R0 = 0.2 m. The meshes used in FEM contain 3025 nodes and 3222 nodes for the case with
R0 = 0.3 m and R0 = 0.2 m, respectively. In Fig. 18 we present cross-sections of the normal stress σ yy at
y = 0, and the corresponding errors in L1 and L2 norms are summarized in Table 4. A simple examination of
the presented results shows that the FEM fails to accurately resolve the case with R0 = 0.3 m, whereas results
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Fig. 17 Cross-section at y = 0 of the normal stress σ yy for the elastic plate with a void using different particle distributions

Table 3 Errors in the cross-section at y = 0 of the normal stress σ yy for the elastic plate with a void using different particle
distributions

Squared distribution Radial distribution Equally radial distribution

L1-error 0.1811 0.2102 0.0307
L2-error 0.3320 0.2570 0.0375
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Fig. 18 Cross-section at y = 0 of the normal stress σ yy using R0 = 0.3 m (left) and R0 = 0.2 m (right) for the elastic plate with
a void

obtained using the SPH-RKC method show good agreement with the analytical solution of this elastic plate
problem. For a void with small radius R0 = 0.2 m both FEM and SPH-RKCmethod yield comparable results,
but the SPH-RKC results are the most accurate.

Finally, we illustrate in Fig. 19 the normal stresses σ xy and σ yy , and the velocity field in the whole domain
at three different instants using the equally radial distribution of particles. These plots give a clear view of the
overall elastic pattern and the effect of deformation on the structure of normal stresses and velocity fields in
the cavity. The new SPH-RKC method performs well for this elastodynamic problem. It is also important to
mention two points concerning the number of stages s in the SPH-RKC method. First, the SPH-RKC method
requires a large number of stages only when high values of CFL are used in the simulation. Otherwise, two
stages are sufficient for low CFL values. This is relevant to the time integration of elastodynamic problems
where the wave speed changes within the time from one regime to another. Second, refining the particle
distribution does not mean a decrease in timesteps, since the number of stages in the RKC scheme can change.
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Table 4 Errors in cross-sections at y = 0 of the normal stress σ yy for the elastic plate with a void using FEM and SPH-RKC
method

R0 = 0.2 m R0 = 0.3 m

FEM (3222) RKC-SPH (2560) FEM (3025) RKC-SPH (2459)

L1-error 0.0521 0.0304 0.6799 0.0272
L2-error 0.0537 0.0442 0.8084 0.0357

The numbers between brackets refers to the number of nodes in FEM and the number of particles in SHP-RKC method
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Fig. 19 Normal stress σ xy (first column), normal stress σ yy (second column) and velocity fields (third column) using equally
radial distribution with 3504 particles at three different times: t = 331.6336 ms (first row) t = 663.2731 ms (second row), and
t = 994.9097 ms (third row)

This is a remarkable feature of the SPH-RKC satisfactorily handling procedures using adaptive local particle
refinement methods to resolve interfaces for elastodynamics in composite materials.

5 Conclusions

In this paper we have presented a stable explicit Runge–Kutta Chebyshev scheme for the time integration in
SPH simulation of elastodynamics. The method uses a class of SPH approximation for discretization in space,
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and it accurately resolves the elastodynamic features regardless whether the deformation is compression or
tension dominated. The considered method does not require severe restrictions on the timesteps compared to
the conventional explicit time stepping schemes used in conjunction with the SPH method. From a practical
viewpoint, the method is straightforward, irrespective of the smoothness of the elastic media and the shape
of the domain under consideration, and easy to implement because no mesh is required, and only radial
distance between neighboring particles is used to approximate the elastodynamic solutions. A validation of
the method has been carried out using several test problems on elastodynamics. The numerical results were
compared with those obtained using traditional time stepping schemes in SPH simulations. The method was
also applied to solve an elastic plate with a void under compression. The method exhibited good shape,
high accuracy and stability behavior, even coarse particle distributions and large timesteps are used in the
computations. Quantitative comparisons have been made with other published works on elastodynamics, and a
good agreement is found. The presented results demonstrate the capability of the SPHmethod that can provide
insight to complex elastodynamic features. In addition, the computed results for all considered test examples
verify the performance and robustness nature of the numerical model.

Future work will concentrate on the extension of the proposed method to elastodynamics in three space
dimensions. From a modeling viewpoint, a more realistic model which takes into consideration variations
along the depth of the elastic domains should be built. The present applications are a relatively idealized two-
dimensional model where only the depth-averaged variation is modeled. A more realistic model with the use
of Runge–Kutta Chebyshev SPH method is currently being investigated. Future work will also concentrate on
extending the proposed techniques for nonlinear problems in elastodynamics.
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