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Abstract In this paper, we discuss the inverse problem for a mixed Liénard-type nonlinear oscillator equation
ẍ + f (x)ẋ2 + g(x)ẋ + h(x) = 0, where f (x), g(x) and h(x) are arbitrary functions of x . Very recently, we
have reported the Lie point symmetries of this equation. By exploiting the interconnection between Jacobi
last multiplier, Lie point symmetries and Prelle–Singer procedure, we construct a time-independent integral
for the case exhibiting maximal symmetry from which we identify the associated conservative nonstandard
Lagrangian and Hamiltonian functions. The classical dynamics of the nonlinear oscillator is also discussed,
and certain special properties including isochronous oscillations are brought out.

1 Introduction

In general, the Lagrangian of an autonomous dynamical system is defined as the difference between kinetic and
potential energies [1–3]. Systems that haveLagrangians of this formare termedas natural/standardLagrangians.
However, recent studies reveal that certain autonomous dynamical systems do admit other forms of Lagrangians
in which no such clear identification of kinetic and potential energy terms can be made. In other words, these
new forms of Lagrangians do not have separate kinetic or potential energy terms. However, they provide the
same equation ofmotion as that of Newton’s equation ofmotion. These new forms of Lagrangians are termed as
nonstandard Lagrangians [4,5]. The associated Hamiltonians are also called nonstandard Hamiltonians where
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the canonically conjugate momenta assume quite nonstandard forms. A well-known example that admits a
nonstandard Lagrangian/Hamiltonian is the damped harmonic oscillator [6,7] or the well-known Mathews–
Lakshmanan oscillator [8]. Subsequent investigations have shown that several dynamical systems do admit
nonstandard Lagrangians [9–11]. Subsequently, attempts have also been made to quantize these nonstandard
Hamiltonians through various procedures [12–16].

Recently, a few alternative approaches have been considered to derive standard as well as nonstandard
Lagrangians for nonlinear dynamical systems [5,17]. For a class of nonlinear oscillator equations, the Jacobi
last multiplier can often be utilized to derive the Lagrangian. The connection between the Jacobi last multiplier
and the Lagrangian was introduced by Jacobi [18,19], and the potential applicability of this method has been
brought out only recently by Nucci et al. [20–22]. To identify the multiplier, one needs at least two distinct
Lie point symmetries of the underlying equation of motion. The knowledge of Lie point symmetries then
plays an important role in identifying the Lagrangian for the given nonlinear system [20–22]. From a different
perspective, we have shown that for one degree of freedom systems one can also identify time-independent
Hamiltonian from the time-independent integral itself [23]. Identifying a time-independent integral for a
nonlinear dynamical system is itself a nontrivial problem. To overcome this problem, in this paper, we propose
a method of deriving integral of motion when the Lie point symmetries are known. The underlying algorithm
is as follows: From the known Lie point symmetries, we obtain the so-called null forms and integrating factors
associated with a given dynamical equation by utilizing the recently proposed interconnections between the
null forms, integrating factors, Lagrange multiplier and Prelle–Singer procedure [24–26]. The null forms and
integrating factors are then utilized to derive the integrals, which in turn lead to the corresponding Lagrangian
and Hamiltonian of the system. The procedure prescribed here is applicable for a class of systems of the form

ẍ = φ(x, ẋ), (1)

where the overdot stands for differentiation with respect to t . The only assumption here is that Eq. (1) should
admit at least two-parameter Lie point symmetries. To illustrate this idea, we consider an equation belonging
to the mixed Liénard-type equation [27], that is

ẍ + f (x)ẋ2 + g(x)ẋ + h(x) = 0, (2)

where f (x), g(x) and h(x) are all arbitrary functions of x . Specifically, in this paper, we consider the following
integrable dynamical system admitting maximal number of eight symmetries, as deduced in Ref. [27],

ẍ + f (x)ẋ2 + (k1�(x) + k2) ẋ + 1

F(x)

[
k21
9

�(x)3

+k1k2
3

�(x)2 + k3 �(x) + k4

]
= 0, F(x) = e

∫
f (x)dx , �(x) =

∫
F(x)dx, (3)

where ki i = 1, 2, 3, 4, are arbitrary parameters and k4 = − 2k32
9k1

+ k2k3
k1

. Obviously, Eq. (3) belongs to the
family (2). Recently, some special cases of the above equation have been analyzed in the literature in different
perspectives, see, for example, Refs. [28,29]. In this work, we consider a more generalized equation which
encompasses all those special cases. Moreover, establishing a conservative Hamiltonian description for a
generalized equation like (3) is a tedious task, and we have succeeded in getting that from the symmetries
itself.

The plan of the paper is as follows. In Sect. 2, we briefly discuss the method of identifying suitable
Lagrangian andHamiltonian for the given second-order ODE (3). The Lagrangian andHamiltonian description
of Eq. (3) are discussed in Sect. 3. In Sect. 4, we discuss the dynamical properties associated with (3) and
prove its isochronicity. Finally, conclusion is given in Sect. 5.

2 Methodology for the identification of Lagrangian

In this section, we discuss the method for identifying the Lagrangian for a second-order ODE of the form (1).
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2.1 First integral and Lagrangian

In this section, we briefly recall the extended PS procedure [25], which is one of the versatile tools to derive
integrating factors and first integrals for the nonlinear second-order ODEs, and introduce a method to obtain
the corresponding Lagrangian and Hamiltonian.

Let us consider a second-order ODE of the form ẍ = φ(x, ẋ), given by Eq. (1). We assume that this ODE
admits a first integral I (t, x, ẋ) = C , where C is a constant, on the solutions. If S(t, x, ẋ) and R(t, x, ẋ)
denote the null form and integrating factor for the second-order ODE (1), then they can be determined from
the relations (for more details, one may refer to [25])

D[S] = −φx + Sφẋ + S2, (4a)

D[R] = −R(S + φẋ ), (4b)

Rx = Rẋ S + RSẋ . (4c)

Solving (4), one can obtain the expressions for S and R. Once they are determined, the associated integral
can be obtained by evaluating the following expression [25], that is

I (t, x, ẋ) = G −
∫ (

RS + d

dx
G

)
dx −

∫ {
R + d

dẋ

[
G −

∫ (
RS + d

dx
G

)
dx

]}
dẋ, (5)

where G = ∫
R(φ + ẋ S)dt . Once we know the first integral, we can obtain the Lagrangian and Hamiltonian

corresponding to the equation with the help of the following method.
Suppose the given equation admits a time-independent integral I , then one can associate it with a Hamil-

tonian [23] through the Legendre transform, namely

I (x, ẋ) = H(x, p) = pẋ − L(x, ẋ), (6)

where L(x, ẋ) is the Lagrangian and p is the canonically conjugate momentum. From (6), we can deduce

∂ I

∂ ẋ
= ∂p

∂ ẋ
ẋ,

∂ I

∂x
= ∂p

∂x
ẋ − ∂L

∂x
. (7)

Identifying without loss of generality p and L from (7), we find

p =
∫

Iẋ
ẋ
d ẋ,

L =
∫

(px ẋ − Ix )dx +
∫ [

p − d

dẋ

∫
(px ẋ − Ix )dx

]
dẋ . (8)

Using expressions (6)–(8), we can obtain the expressions for the Lagrangian, the canonically conjugate mo-
mentum and the associated Hamiltonian.

Hence, from the above study it is clear that once we know the expressions for the null form and integrating
factor, we can obtain the first integral that will lead to the Lagrangian/Hamiltonian of the system. However, in
some cases, it is difficult to solve the determining equations for the null forms and integrating factor. To over-
come this difficulty, we analyze the recently established interconnections between the Lie point symmetries,
null form, integrating factor and Jacobi multiplier that will directly give the expressions for the null form and
integrating factor.

2.2 Exploring the interconnections

(i) Lie symmetries and null forms

Let us consider the Lie point symmetry generator of (1) be V = ξ∂t + η∂x , where ξ(t, x) and η(t, x) are the
symmetry functions. The second prolonged vector field of V is given by V (2)(= ξ∂t +η∂x +η(1)∂ẋ +η(2)∂ẍ ),
where η(1) and η(2) are the first and second prolongations of the vector field V [30]. Here, η(1) = η̇ − ẋ ξ̇
and η(2) = η̈ − ẍ ξ̇ . The infinitesimal symmetries ξ and η can be determined by imposing the invariance of
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the equation of motion (1) under the infinitesimal transformation T = t + εξ(t, x) and X = x + εη(t, x) or
equivalently

V (2)[ẍ − φ(t, x, ẋ)] |ẍ−φ(t,x,ẋ)=0 = 0. (9)

Alternatively, the above invariance condition can be formulated in terms of the characteristic of V, that is
Q(= η − ẋξ), as

D2[Q] = φẋ D[Q] + φx Q. (10)

Solving Eq. (10), we can get Q from which we can extract Lie point symmetries ξ and η with appropriate
restrictions on Q.

Now, introducing the following transformation to the null function,

S = −D[X ]/X, (11)

Eq. (4a) becomes a linear equation in the new variable X , that is

D2[X ] = φẋ D[X ] + φx X, (12)

where D is the total differential operator. Comparing Eqs.(12) and (10), we find that

X = Q. (13)

Interestingly, the S-determining equation (12) is exactly the same as that of the determining equation for the
Lie point symmetries (10). Since S = − D[X ]

X , the null form S can also be determined once ξ and η are known
(for more details, one may refer to [24]).

(ii) Integrating factor and Jacobi last multiplier

To get the interconnection between the Jacobi last multiplier and the integrating factor, we rewrite Eq. (1) into
an equivalent system of two first-order ODEs ẋi = wi (x1, x2), i = 1, 2. Then, its Jacobi last multiplier M is
obtained by solving the following differential equation [22]:

∂M

∂t
+

2∑
i=1

∂(Mwi )

∂xi
= 0. (14)

The above equation can be rewritten as
D[logM] + φẋ = 0. (15)

Introducing now the following transformation for the integrating factor:

R = X/F, (16)

where F(t, x, ẋ) is a function to be determined, in Eq. (4b) we can rewrite the latter as

D[F] = φẋ F. (17)

Now comparing Eq. (17) with (15), we find that F = M−1. Thus, from the knowledge of the multiplier
M = ( 1

Δ

)
, we can also fix the explicit form of F which appears in the denominator of the integrating factor R

(see Eq. (16)) as F = Δ or vice versa. Here, the multiplier M of a second-order ODE can be obtained as [24]

1

M
= Δ =

∣∣∣∣∣∣
1 ẋ ẍ
ξ1 η1 η

(1)
1

ξ2 η2 η
(1)
2

∣∣∣∣∣∣ , (18)

where (ξ1, η1) and (ξ2, η2) are two sets of Lie point symmetries of the ODE (1) and η
(1)
1 and η

(1)
2 are their

corresponding first prolongations, that is η
(1)
i = η̇i − ẋ ξ̇i , i = 1, 2.

We also note here that once the Jacobi last multiplier is found, the Lagrangian can be constructed directly
from the relation

∂2L

∂ ẋ2
= 1

Δ
= M. (19)

Integrating the multiplier two times with respect to ẋ , we can obtain a Lagrangian for the given equation.
However, as we see below, the obtained Lagrangians for some problems turn out to be too messy and it is
difficult to use the underlying expression.
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3 Lagrangian and Hamiltonian description of Eq. (3)

In this section, we illustrate the effectiveness of the procedure discussed in the previous section by identifying
the nonstandard Lagrangian and Hamiltonian for Eq. (3).

3.1 Time-independent integral

Equation (3) is invariant under the following two Lie point symmetries [27]:

ξ1 = 1, η1 = 0, (20a)

ξ2 = −k1�(x) + k2
3k3 − k22

, η2 = k1�(x) + k2
k1F(x)

+ (k1�(x) + k2)3

3k1F(x)
(
3k3 − k22

) , (20b)

where F(x) = e
∫

f (x)dx and �(x) = ∫
F(x)dx . One may also consider the other Lie point symmetries of Eq.

(3) to derive the Lagrangian. Since we are interested to explore the time-independent integrals, we consider
only these two symmetries. To determine the null forms, we consider the Lie point symmetries (20a) from
which we can fix Q = η − ẋξ = −ẋ . Substituting the latter expression and its derivative in (11), we readily
obtain

S = f ẋ2 + (k1� + k2)ẋ + k21
9

�3

F + k1k2
3

�2

F + k3�
F + k4

F

ẋ
, (21)

where k4 = 9k2k3−2k32
9k1F

. From the knowledge of S, X and the Lie point symmetries (20a), we can find the
integrating factor R to be of the form (see Eq. (16))

R = 54k21F
2(k2 − 3k3)ẋ

P1P2
, (22)

where P1 and P2 are given as

P1 = (
(3k1F(x)ẋ + (k1�(x) + k2)

2)2 − 3
(
k22 − 3k3

)
(k1�(x) + k2)

2 , (23a)

P2 = (k1�(x) + k2)
2 − 3(k22 − 3k3) + 3k1F(x)ẋ . (23b)

The integral of motion of (3) can now be obtained by substituting (21) and (22) in (5) and evaluating the
integrals. Doing so, we find a time-independent integral

I1 = P1
P2
2

, (24)

where P1 and P2 are given in (23).

3.2 Conservative Lagrangian/Hamiltonian

To derive the time-independent Lagrangian and Hamiltonian from the first integral (24), we first determine the
canonical momentum from the first integral (24). Substituting the latter in the first of the relations in (8) and
integrating the resultant expression, we find

p = −27λ3

2k1

⎛
⎜⎜⎜⎝ F(x)(

k1F(x)ẋ + k21
3

(
k2
k1

+ �(x)
)2 + 3λ

)2

⎞
⎟⎟⎟⎠ + 3λ

2k1
F(x), (25)
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where λ = k3 − k22
3 . Once p is known, the Lagrangian and Hamiltonian can be determined by evaluating the

expression (8). Our result shows (λ > 0)

L = 27λ3

2k21

⎛
⎜⎝ 1

k1F(x)ẋ + k21
3

(
k2
k1

+ �(x)
)2 + 3λ

⎞
⎟⎠ + 3λ

2k1
F(x)ẋ − 9λ2

2k21
(26)

and

H = 9λ2

2

⎡
⎢⎢⎢⎣
(
F(x)ẋ + k

3

(
k2
k1

+ �(x)
)2)2

+ λ
(
k2
k1

+ �(x)
)2

(
k1F(x)ẋ + k21

3

(
k2
k1

+ �(x)
)2 + 3λ

)2

⎤
⎥⎥⎥⎦ , (27)

or

H = 9λ2

2k21

[
2 − 2k1 p

3λF
− 2

(
1 − 2k1 p

3λF

) 1
2 + k21

9λ

(
k2
k1

+ �(x)

)2 (
1 − 2k1 p

3λF

)]
. (28)

One may observe that both the Lagrangian and Hamiltonian are of nonstandard forms. One can check that the
Euler–Lagrange equation of motion derived from (26) and the Hamiltonian equation of motions derived from
(27) coincide with that of Eq. (3). For the case λ < 0 Eq. (3) admits the same Lagrangian and Hamiltonian
descriptions given by Eqs. (26) and (27) or (28), respectively, provided that one has to replace λ with − | λ |
in the respective places in Eqs. (26) and (27) or (28).

3.3 Alternative Lagrangian

Aswe pointed out in the previous section, the Lagrangian can also be determined by determining the Jacobi last
multiplier M (see Eq. (19)). Substituting the Lie point symmetries (20) in (18) and evaluating the determinant,
we find

M = 1

27k21(k
2
2 − 3k3)F(x)2

[
(k1�(x) + k2)

(
(k1�(x) + k2)

2 − 3(k22 − 3k3)
) {

(k1�(x) + k2)

× (
(k1�(x) + k2)

2 − 3(k22 − 3k3)
) + 9k1F(x)ẋ (k1�(x) + k2 + f (x)ẋ)

}
+9k1F(x)ẋ2

{
3k1F(x)

(
(k1�(x) + k2)

2 − (k22 − 3k3) + k1F(x)ẋ
)

− f (x) (k1�(x) + k2)
(
(k1�(x) + k2)

2 − 3(k22 − 3k3)
)}]

, (29)

where F = e
∫

f (x)dx and �(x) = ∫
F(x)dx . Substituting the multiplier M in Eq. (19) and integrating it twice

with respect to ẋ , we obtain

L = 1

2P3

⎡
⎣P2 ln

P1
P2
2

−
6
√
3k1F(x)

√
k22 − 3k3

k1�(x) + k2
× tanh−1

⎧⎨
⎩ (k1�(x) + k2)2 + 3k1F(x)ẋ

√
3(k1�(x) + k2)

√
k22 − k3

⎫⎬
⎭
⎤
⎦ , (30)

where P3 = (k1�(x) + k2)2 − 3(k22 − 3k3). One can check that Eq. (30) is another nonstandard Lagrangian
for Eq. (3).
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4 Hamiltonian dynamics of Eq. (3)

For the present problem, it is very difficult to obtain the second integral either through PS procedure or by
recalling the interconnections so as to obtain the explicit solutions and study the underlying dynamics. It
is also clear from the form of Eq. (3) that it cannot be integrated directly. So we have to follow another
procedure to obtain the solution and explore its underlying dynamics. Since the equation has a conservative
Hamiltonian description, the best way to do this is to identify a canonical transformation which can transform
the complicated Hamiltonian into a simple Hamiltonian from which the solutions can be obtained. After a
careful analysis, we identified a canonical transformation that transforms the Hamiltonian (27) into a harmonic
oscillator-type Hamiltonian.

Introducing the canonical transformation

∫
e
∫

f (x)dxdx = −k2
k1

+ U

1 − k1
3λ P

,

p = Pe− ∫
f (x)dx

(
1 − k1

6λ
P

)
, (31)

where P = U̇ , the Hamiltonian (27) can be transformed to the linear harmonic oscillator Hamiltonian H =
1
2

(
P2 + λU 2

)
. It is clear that the parameter λ fixes the ultimate dynamics of the dynamical system (3). We

consider all the three cases, namely (i)λ > 0, (ii)λ < 0 and (iii)λ = 0, and bring out the underlying dynamics
of Eq. (3).

4.1 Case (i)λ > 0

In the first case λ > 0, we have Ü + λU = 0 which upon integration gives U = A sin(ωt + δ), where A and
δ are arbitrary constants. From the solution of the latter, we arrive at the following sinusoidal solution for Eq.
(3) of the form

∫
e
∫

f (x)dxdx = −k2
k1

+ A sin (ωt + δ)

1 − ( k1
3ω )A cos (ωt + δ)

, (32)

where 0 ≤ A < 3ω
k1

, ω = √
λ and A =

√
2H
ω

and δ is an arbitrary constant. It is to be noted that the above
general solution admits harmonic periodic solutions and that the frequency of the periodic oscillations is
completely independent of the amplitude or initial condition. Consequently, the underlying system turns out
to be an isochronous one. This surprising result is not a common feature for nonlinear oscillators.

4.2 Case (ii)λ < 0

For the case λ < 0, Eq. (3) admits the same Lagrangian and Hamiltonian descriptions given by Eqs. (26) and
(27) or (28), respectively. The only difference here is that one has to replace λ with − | λ | in the respective
places in Eqs. (26) and (27) or (28). Hence, the solution for Eq. (3) for the case λ < 0 can be written by solving
the underlying equation of motion which in turn provides us the solution of (3) in the form

∫
e
∫

f (x)dxdx = −k2
k1

+ 3α
(
eα(t−δ) − 2Ee−α(t−δ)

)
3α + k1

(
eα(t−δ) + 2Ee−α(t−δ)

) , (33)

where H = E, α = √|λ| and δ is a constant. The above solution admits decaying type or aperiodic solutions
only. The dissipative nature of the system is clear from (33).



2046 A. K. Tiwari et al.

4.3 Case (iii)λ = 0

Finally, we consider the case λ = 0. In this case, the Hamiltonian can be written as

Ĥ = k1
3

p

(
k2
k1

+
∫

e
∫

f (x)dxdx

)2

e− ∫
f (x)dx − 2

√
− 1

k1
p e− ∫

f (x)dx , (34)

where

p = − k1e
∫

f (x)dx(
k1e

∫
f (x)dx ẋ + k21

3

(
k2
k1

+ ∫
e
∫

f (x)dxdx
)2)2 . (35)

For this case, we identify the canonical transformation as

U =
√

6

k1
p e− ∫

f (x)dx ,

P = 1

3

√
6

k1
p e− ∫

f (x)dx

(
k2
k1

+
∫

e
∫

f (x)dxdx

)
. (36)

The canonical transformation (46) transforms (34) to a freely falling particle Hamiltonian H = P2

2 −
√

2
3U .

Consequently, the general solution to (3) for λ = 0 can be given as∫
e
∫

f (x)dxdx = −k2
k1

+ 3

k1

(
2 (t + I1)

(t + I1)2 − 3E

)
, H = E, (37)

where I1 is a constant.

5 Examples

We have shown above that system (3) exhibits time-independent nonstandard Lagrangian and Hamiltonian
structures and also proved its isochronous nature for arbitrary form of the function f (x). The implications
can be easily appreciated by considering specific forms for the function f (x). Here, in this section, we obtain
time-independent Lagrangian and conservative Hamiltonian for two specific choices of f (x).

5.1 f (x) = 2αx
1+αx2

For the choice f (x) = 2αx
1+αx2

, Eq. (3) takes the form

ẍ+ 2αx

1 + αx2
ẋ2+

(
k1

(
x+αx3

3

)
+k2

)
ẋ+ 1

1 + αx2

[
k21
9

(
x+αx3

3

)3
+ k1k2

3

(
x+αx3

3

)2
+k3

(
x+αx3

3

)
+k4

]
= 0, (38)

wherewe choose k4 = − 2k32
9k1

+ k2k3
k1

. The conventional prediction about Eq. (38) is that it is of dissipative nature.
However, using the results given in Sect. 2, we can prove that the system (38) is of conservative nature and
displays the explicit forms of the time-independent Lagrangian and Hamiltonian. The underlying expressions
are given by

L = 27λ3

2k21

⎛
⎜⎝ 1

k1(1 + αx2)ẋ + k21
3

(
k2
k1

+ x + αx3
3

)2 + 3λ

⎞
⎟⎠ + 3λ

2k1
(1 + αx2)ẋ − 9λ2

2k21
(39a)

H = 9λ2

2

⎡
⎢⎢⎢⎣
(

(1 + αx2)ẋ + k
3

(
k2
k1

+ x + αx3
3

)2)2

+ λ
(
k2
k1

+ x + αx3
3

)2
(
k1(1 + αx2)ẋ + k21

3

(
k2
k1

+ x + αx3
3

)2 + 3λ

)2

⎤
⎥⎥⎥⎦ . (39b)
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It is clear from the forms of L and H that both are of nonstandard type as the x and p components are mixed
up such that is one cannot make a clear distinction between the kinetic and potential energy terms. Due to
such form, its seems difficult to predict the dynamics of the system completely. However, using the canonical
transformation

x + αx3

3
= −k2

k1
+ U

1 − k1
3λ P

, (40a)

p(1 + αx2) = P

(
1 − k1

6λ
P

)
, (40b)

we can transform the above Hamiltonian to that of the linear harmonic oscillator equation from which the
solution for Eq. (38) can be written for three different choices as follows.

Case (i): k3 > 0

For k3 > 0, the form of the solution (32) for the equation (38) turns out to be

x + αx3

3
= −k2

k1
+ A sin (ωt + δ)

1 − ( k1
3ω )A cos (ωt + δ)

, (41)

Solving the above equation, we get three roots. In fact, we have only one real root, and it is given by

x(t) = 2
1
3

(−3βα2 + (
√
4α3 + 9β2α4))

1
3

− (−3βα2 + (
√
4α3 + 9β2α4))

1
3

2
1
3 α

, (42)

where β = − k2
k1

+ A sin (ωt+δ)

1−(
k1
3ω )A cos (ωt+δ)

, 0 ≤ A < 3ω
k1

and ω = √
k3. It is clear from the form of the solution

that the dynamics of Eq. (38) for k3 > 0 is periodic, and the frequency of the oscillations is independent of
amplitude; that is, the system is isochronous.

Case (ii): k3 < 0

For k3 < 0, the solution for Eq. (38) can be written as

x(t) = 2
1
3

(−3γα2 + (
√
4α3 + 9γ 2α4))

1
3

− (−3γα2 + (
√
4α3 + 9γ 2α4))

1
3

2
1
3 α

, (43)

where γ = − k2
k1

+ 3α
(
eα(t−δ)−2Ee−α(t−δ)

)
3α+k1(eα(t−δ)+2Ee−α(t−δ))

, H = E, α = √|λ| and δ is a constant. Here also we have three

roots for Eq. (38). We have considered only the real root. The form of the solution suggests decaying type or
aperiodic solution for Eq. (38).

Case (iii): k3 = 0

For the choice k3 = 0, the Hamiltonian can be written as

Ĥ = k1
3

(
k2
k1

+ x + αx3

3

)2
p

1 + αx2
− 2

√
− 1

k1

p

1 + αx2
, (44)

where

p = − k1(1 + αx2)(
k1(1 + αx2)ẋ + k21

3

(
k2
k1

+ x + αx3
3

)2)2 . (45)
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For this case, we identify the canonical transformation as

U =
√

6

k1

p

1 + αx2
, (46a)

P = 1

3

√
6

k1

p

1 + αx2

(
k2
k1

+ x + αx3

3

)
. (46b)

The canonical transformation (46) transforms (34) to a freely falling particle Hamiltonian H = P2

2 −
√

2
3U .

Consequently, the general solution to (38) for k3 = 0 can be given as

x = 2
1
3

(−3a1(t)α2 + (
√
4α3 + 9a1(t)2α4))

1
3

− (−3a1(t)α2 + (
√
4α3 + 9a1(t)2α4))

1
3

2
1
3 α

, H = E, (47)

where a1(t) = − k2
k1

+ 3
k1

(
2 (t+I1)

(t+I1)2−3E

)
and I1 is a constant. The front-like form of the solution is clear from

Eq. (47).
Hence, we can conclude that Eq. (38) exhibits both conservative- and front-like like behaviors depending

on the value of the parameter k3. For k3 > 0, Eq. (38) exhibits isochronous nature; however, for k3 ≤ 0 we
get front-like nature.

5.2 f (x) = 0

For this choice, Eq. (3) becomes modified Emden equation, that is

ẍ + k1x ẋ + k21
9
x3 + k3x = 0, (48)

where we have chosen k2 = 0. The above equation is well known in the literature and has been studied bymany
authors in different perspectives [4,5,12,14,31]. Using the results given in Sect. 3, we can write expressions
for the time-independent Lagrangian and Hamiltonian as

L = 27k33
2k21

⎛
⎝ 1

k1 ẋ + k21
3 x

2 + 3k3

⎞
⎠ + 3k3

2k1
ẋ − 9k23

2k21
, (49a)

H = 9k23
2k21

[
2 − 2k1 p

3k3
− 2

(
1 − 2k1 p

3k3

) 1
2 + k21

9k3
x2

(
1 − 2k1 p

3k3x

)]
, (49b)

p = −27λ3

2k1

⎛
⎜⎜⎜⎝ 1(

k1 ẋ + k21
3

(
k2
k1

+ x
)2 + 3λ

)2

⎞
⎟⎟⎟⎠ + 3λ

2k1
. (49c)

Using the canonical transformation

x = U

1 − k1
3k3

P
, (50a)

p = P

(
1 − k1

6k3
P

)
, (50b)

we can transform the above Hamiltonian to linear harmonic oscillator equation from which the solution for
Eq. (48) can be written for three different choices as follows.
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Case (i): k3 > 0

For k3 > 0, the solution turns out to be of the form [5]

x(t) = A sin (ωt + δ)

1 − ( k1
3ω )A cos (ωt + δ)

, (51)

where 0 ≤ A < 3ω
k1

and ω = √
k3. It is clear from the form of the solution that the dynamics of Eq. (48)

for k3 > 0 is periodic and the frequency of the oscillations is independent of amplitude; that is, the system is
isochronous.

Case (ii): k3 < 0

For k3 > 0, the solution for Eq. (48) can be written as [5]

x(t) = 3α
(
eα(t−δ) − 2Ee−α(t−δ)

)
3α + k1

(
eα(t−δ) + 2Ee−α(t−δ)

) , (52)

where H = E, α = √|λ| and δ is a constant. The form of the solution suggests decaying/front-like type
solutions for Eq. (48).

Case (iii): k3 = 0

For the choice k3 = 0, the Hamiltonian can be written as

Ĥ = k1
3
px2 − 2

√
− p

k1
, (53)

where

p = − k1(
k1 ẋ + k21

3 x
2

)2 . (54)

For this case, we identify the canonical transformation as

U =
√

6

k1
p, (55a)

P = 1

3

√
6

k1
p x . (55b)

The canonical transformation (55) transforms (53) to a freely falling particle Hamiltonian H = P2

2 −
√

2
3U .

Consequently, the general solution to (48) for k3 = 0 can be given as

x(t) = 3

k1

(
2 (t + I1)

(t + I1)2 − 3E

)
, H = E, (56)

where I1 is a constant. The dissipative form of the solution is clear from Eq. (56).
Hence, we can conclude that Eq. (48) exhibits both conservative- and dissipative-like behavior depending

on the value of the parameter k3. For k3 > 0, Eq. (48) exhibits isochronous nature; however, for k3 ≤ 0 we
get dissipative nature.
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6 Comparison with other methods

In Ref. [32], Musielak has given the conditions to obtain the nonstandard Lagrangian of the form

L(x, ẋ) = 1

H(x)ẋ + G(x)x
(57)

for the equation of motion

ẍ + f (x)ẋ2 + g(x)ẋ + h(x)x = 0, (58)

provided that the following condition is satisfied:

2

3
g(x) = d

dt
(3x

h(x)

g(x)
) + 3x f (x)

h(x)

g(x)
, (59)

following the earlier work on the MEE equation [5]. The functions H(x) and G(x) are given by

H(x) = eI f (x),G(x) = 3
h(x)

g(x)
eI f (x) (60)

with

I f (x) =
∫

f (x)dx . (61)

A similar approach is also given by Cieślinski and Nikiciuk in Ref. [33].
We have applied the conditions given in Refs. [32] and [33] to the present case of Eq. (3). This equation as

well as the examples 1 and 2 (see Eqs. (38), (48)) satisfies the above condition (59) and yields the same form
of Lagrangian (57) (up to a constant multiple). However, in the present work, we have also brought out the
interconnections in a systematic way and obtained the isochronous solutions.

7 Conclusion

In this paper, we have discussed the nonstandard Lagrangian andHamiltonian structures of an isochronous non-
linear oscillator equation (3) belonging to the mixed-type Liénard equation. We have utilized the interrelation
between the Jacobi last multiplier method and Lie point symmetries and obtained the associated Lagrangian.
However, the obtained Lagrangian is found to be too complicated. Hence, we utilized the interconnection
between the PS method and last multiplier and obtained a time-independent integral for Eq. (3), which in
turn gives the nonstandard Lagrangian and Hamiltonian for Eq. (3). Further, we have shown that the obtained
Hamiltonian for Eq. (3) can be transformed to the Hamiltonian of a linear harmonic oscillator through appro-
priate canonical transformation from which we obtained the solution for Eq. (3). We have also shown that the
system exhibits isochronous nature of oscillations for λ > 0. We have also compared our results with the other
existing methods and confirmed their correctness. The identification of such systems is of considerable interest
from practical applications as many of these equations are of PT-symmetric type. Also, it is of considerable
interest to consider the quantization of the system (3) and its generalization to higher dimensions. Hence, we
believe that exploring such nonlinear equations will be highly rewarding in understanding general nonlinear
systems.
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