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Abstract In this research, large amplitude free vibrations of a sandwich beam with stiff core and carbon
nanotube (CNT)-reinforced face sheets are analysed. The distribution of CNTs across the thickness of the face
sheets may be uniform or functionally graded. The equivalent single- layer theory of Timoshenko is used to
construct the Hamiltonian of the beam under the von Kármán type of geometrical nonlinearity assumptions.
A uniform temperature field through the beam is also included in the formulation. The Ritz method with
polynomial basis functions is used to discrete the equations of motion and establish thematrix representation of
the governing equations. A nonlinear eigenvalue problem is obtained and solved using a standard continuation
procedure. After validating the developed solution method and formulation, parametric studies are conducted
to examine the influences of thermal environment, core thickness-to-face sheet thickness ratio, boundary
conditions, amplitude of vibrations, CNTs volume fraction and their distribution pattern. It is concluded
that an increase in the volume fraction of CNTs results in higher fundamental frequency and decreases the
nonlinear-to-linear frequency ratio.

1 Introduction

Due to their exceptional thermal, mechanical and electrical properties, carbon nanotubes (CNTs) stand as a
potential candidate for the reinforcements of the composites [1], see e.g. [2–5]. The distribution of volume
fraction of CNTs in a matrix may be combined with the concept of functionally graded (FG) materials.
Consequently, as reinforcements, the distribution of CNTs in a matrix may be uniform or functionally graded
[6]. Among the various mathematically possible distribution pattern of CNTs across the thickness, linearly
graded patterns aremore observed in the open literature due to their consistencywith the fabrication procedures.
Various researches are now available on the analysis of beams, plates and shells of various geometry made of
functionally graded carbon nanotube-reinforced composites (FG-CNTRC). A survey on the available works
on FG-CNTRC beams is provided below.

Lin andXiang [7] performed an investigation on free vibrations of an FG-CNTRC beam based on both first-
order and third- order shear deformable beam theories. In this research, theRitzmethod is applied to discrete the
motion equations and establish a standard eigenvalue problem. In the approximation of the displacement field,
polynomial shape functions are used suitable for arbitrary in-plane and out-of-plane boundary conditions.
Numerical results of this study depict the remarkable discrepancy of free vibration characteristics based
on first- and third-order theories especially for beams with both edges clamped. Lin and Xiang [8] also
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performed an investigation on large amplitude free vibration of FG-CNTRC beams within the framework of
first- and third-order beam theories consistent with the vonKármán type of geometrical nonlinearity. Instability
regions of an FG-CNTRC beam subjected to harmonically varying axial force with non-uniform thickness
are obtained by Pourasghar and Kamaian [9] using the classical beam theory formulations. In this research,
in-plane vibrations and extensional-bending couplings are ignored, and the well-known fourth-order Euler
beam equation is used to distinguish the parametric instability of the beam using the Bolotin approximation
technique. The single governing equation is discretized by means of the generalized differential quadrature.
The critical buckling temperature and thermal post-buckling equilibrium path of FG-CNTRC slender beams
reinforced with two identical piezoelectric actuator layers are investigated by Rafiee et al. [10]. In this work,
a straightforward method is developed to obtain the lateral deflection as a function of elevated temperature
for a beam with both edges clamped. It is shown that, by adoption of a proper distribution pattern of CNTs,
the critical buckling temperature of an FG-CNTRC may be enhanced. Furthermore, the influence of the
applied actuator voltage to control the thermal buckling temperature of the FG-CNTRC is found to be small.
Numerical results of this study reveal that FG-CNTRC beams with intermediate CNT volume fraction do
not have, necessarily, intermediate buckling temperatures and post-buckling equilibrium paths. Implementing
the generalized differential quadrature, compressive mechanical buckling and free vibration of FG-CNTRC
beams is analysed by Yas and Samadi [11]. The first-order beam theory of Timoshenko is used to construct
the governing equations. It is concluded that, by proper usage of distribution pattern of CNTs, the buckling
resistance of the beam may be increased. Ansari et al. [12] applied the differential quadrature and Galerkin
methods to analyse the nonlinear forced vibrations of a CNTRC beam subjected to lateral periodically varying
load. Both uniform and graded patterns of CNTs across the beam thickness are included into the formulation.
Von Kármán assumptions are established to construct the governing nonlinear dynamic equations.

Large amplitude free vibrations of FG-CNTRC beams using the polynomial Ritz formulation are investi-
gated byKe et al. [13]. Only a specific case of gradedCNTs distribution and uniform distribution are considered
in this work. The geometrical nonlinearity of this research is restricted to von Kármán type suitable for small
strains and large deflections. It is shown that nonlinear frequency ratios of both simply supported-simply sup-
ported and clamped-simply supported FG-CNTRCbeams are dependent on the sign of the vibration amplitudes,
i.e., their nonlinear frequency ratio versus amplitude curves are unsymmetrical. Shen and Xiang [14] used a
two-step perturbation technique to obtain the linear and nonlinear free vibration, nonlinear bending, thermal
buckling and thermal post-buckling responses of FG-CNTRC beams where the temperature dependency of
the constituents is also included. In this research, the interaction of a two-parameter elastic foundation is also
considered. Numerical results of this study are limited to the case of FG-CNTRC beamswith both edges simply
supported in flexure with movable or immovable feature in in-plane direction. It is shown in this research that,
for nonsymmetric distribution of CNTs, the equilibrium path of simply supported beams under even uniform
heating is no longer of the bifurcation type. Based on the concept of physical neutral surface formulation, in
which the stretching–bending coupling vanishes in the formulation, the governing nonlinear motion equations
of on FG-CNTRC Timoshenko beam integrated with two identical piezoelectric layers are obtained by Rafiee
et al. [15] and solved for nonlinear free vibration. The Galerkin method is used to construct the time-dependent
ordinary differential equations. Time dependency of the motion equations is obtained using the multiple scales
method. Using the first-order Bolotin technique, Ke et al. [16] obtained the instability regions of Timoshenko
beams subjected to harmonically varying in-plane compressive loads. It is shown that, using FG-X type of
CNTs distribution, the buckling load of an FG-CNTRC beam increases. A two-dimensional elasticity solution
is developed by Alibeigloo and Liew [17] to obtain the stress analysis and free vibration characteristics of
FG-CNTRC beams integrated with sensor and actuator piezoelectric layers. In this research, both ends of
the beam are assumed to be simply supported. Navier solution through the beam length accompanied by the
differential quadrature method through the beam depth is used to discretize the governing equations. Yang et
al. [18] obtained the instability regions of a slender Euler–Bernoulli beam subjected to the simultaneous effects
of uniform heating, constant voltage and periodically varying compressive force. The response of FG-CNTRC
beams subjected to low- velocity impact of a single mass is analysed by Jam and Kiani [19]. Thermal envi-
ronment effects are also included in this research. It is shown that the impact characteristics of FG-CNTRC
beams are highly dependent to the distributed pattern and volume fraction of CNTs.

Unlike the case of single-layer FG-CNTRC beams, researches on sandwich beams with FG-CNTRC face
sheets or host are rare in the open literature. Mirzaei and Kiani [20] investigated the thermal post-buckling
and snap-through phenomenon of a thermally post-buckled sandwich beam with FG-CNTRC face sheets. In
this research, the governing equations are obtained using the Ritz method and displacement control strategy
along with the arc-length technique which is used to trace the equilibrium paths. Wu et al. [21] analysed the
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free vibration and buckling loads of beams with stiff host layer and FG-CNTRC face sheets. Generalized
differential quadrature is used to discretize the governing equation. Buckling loads and natural frequencies are
obtained via the standard eigenvalue algorithm.

Literature on the analysis of FG-CNTRC plates is comprehensive. Liew and his co-authors examined the
free vibration characteristics of FG-CNTRC plates [22–24]. They also investigated the dynamic response of an
FG-CNTRC plate subjected to sudden lateral pressure [25], geometrically nonlinear large amplitude behaviour
of FG-CNTRC plates within the framework of von Kármán plate theory [26–28], buckling [29], post-buckling
[30], and parametric stability [31] of FG-CNTRC plates under in-plane compressive loads and stress analysis
of laminated plates comprising FG-CNTRC layers [32].

Nonlinear free vibrations of a sandwich beam with CNTRC face sheets are examined in the present work.
A sandwich beam is symmetric with respect to its mid-surface comprising an isotropic polymeric matrix and
CNTs as reinforcements in the face sheets. Thermal environment effects are also included into the formulation.
To account for large deformations, the von Kármán type of geometrical nonlinearity is also taken into account.
Various types of volume fraction profile and various magnitudes of CNTs volume fraction are used for the
face sheets. Only the uniform case of temperature distribution is considered. After establishing a nonlinear
eigenvalue problem by applying the polynomial-based Ritz method into the Hamilton principle, an iterative
displacement control procedure is used to obtain the nonlinear frequencies of the sandwich beam. After
comparing the numerical results of this study with the available data in the open literature, numerical results
are given for the sandwich beamswith FG-CNTRC face sheets to examine the influence of boundary conditions,
volume fraction of CNTs, graded profile of volume fraction of CNTs and host thickness-to-face thickness ratio.

2 Basic formulation

As an especial case ofmultilayered structures, sandwich structures consist of two stiff skinswhich are generally
thin and a lightweight core which is thick. Face sheets in this study are made from functionally graded car-
bon nanotube-reinforced composites (FG-CNTRC). Generally, sandwich structures are mid-plane symmetric.
Therefore, the thickness of each face sheet is considered as hf . The core, on the other hand, is made from
an isotropic homogeneous and relatively stiff material with thickness hH. The total thickness of the sandwich
beam, in such case, becomes h = hH + 2hf . A Cartesian coordinate system is applied to the beam where as
usual x is located at one end of the beam mid-surface and z is perpendicular to the beam.

There are five different types of carbon nanotube-reinforced beams in the open literature. There are a
uniformly distributed (UD) case and four different functionally graded (FG) cases, namely FG-V, FG-O, FG-
X and FG-�. In this study, all of these types are considered for each of the face sheets. As a convention, for
instance an FG-V sandwich beam is referred to a beam where the top face sheet is of the FG-V type. Due to
the symmetry conditions, the other face sheet is of FG-� type.

It is assumed that CNTRC face sheets are made from a mixture of (10, 10) armchair single-walled carbon
nanotubes (SWCNTs) as reinforcement, graded distribution in the thickness direction and a matrix which is
assumed to be isotropic and homogeneous. The effective material properties of the two-phase composites,
mixture of CNTs and an isotropic polymer, can be estimated according to the modified rule of mixtures as
previously discussed by Shen [33,34] or the Mori–Tanaka scheme. Due to its simplicity, the modified rule
of mixtures is used to obtain the equivalent properties of the CNTRC. To this end, the conventional rule of
mixtures approach ismodified by the introduction of efficiency parameters. These parameters are used tomatch
the data obtained by the molecular dynamics approach and the rule of mixtures approach. Thus, the axial and
shear modulus may be written as [20,35–37]

E11 = η1VCNE
CN
11 + VmE

m,

η3

G12
= VCN

GCN
12

+ Vm
Gm

(1)

where in the above equations ECN
11 and GCN

12 are the elasticity modulus and shear modulus of SWCNTs,
respectively. Besides, Em andGm indicate the corresponding properties of the isotropicmatrix. The coefficients
η1 and η3 are the so-called efficiency parameters to account for the scale-dependent material properties. These
constants as mentioned earlier are evaluated by matching the effective properties of CNTRC obtained from
the molecular dynamics simulations with those from the rule of mixtures [33]. Furthermore, in Eq. (1), VCN
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Table 1 Volume fraction of CNTs as a function of thickness coordinate for various cases of sandwich beams with CNTRC face
sheets

CNTs distribution VCN, top face sheet VCN, bottom face sheet

UD CNTRC V ∗
CN V ∗

CN

FG-O CNTRC 2V ∗
CN

(
1 − |2z − hH − hf |

hf

)
2V ∗

CN

(
1 − |2z + hH + hf |

hf

)

FG-X CNTRC 2V ∗
CN

|2z − hH − hf |
hf

2V ∗
CN

|2z + hH + hf |
hf

FG-V CNTRC V ∗
CN

2z − hH
hf

−V ∗
CN

hH + 2z

hf

FG-� CNTRC V ∗
CN

hH + 2hf − 2z

hf
V ∗
CN

hH + 2hf + 2z

hf

and Vm are the volume fractions of CNTs and matrix phase, respectively, which satisfy the condition [38–40]

VCN + Vm = 1. (2)

Uniform and four types of functionally graded distributions of the CNTs along the thickness direction of
the nanocomposite face sheets are considered. The mathematical expression of CNTs volume fraction in each
case of distribution is given in Table 1.

It is easy to check from Table 1 that UD and all of FG types will have the same value of volume fraction
of CNTs. The effective Poisson ratio depends weakly on position [33] and is expressed as

ν12 = V ∗
CNνCN12 + Vmνm . (3)

The longitudinal thermal expansion coefficient of the composite face sheets can be expressed by the Shapery
model as [14,34]

α11 = VCNECN
11 αCN

11 + VmEmαm

VCNECN
11 + VmEm

. (4)

In this study, a sandwich beam with FG-CNTRC face sheets is formulated within the framework of first-
order shear deformable beam theory (FSDT). Based on the general concept of FSDT, axial and transverse
displacement components of the beam, i.e. u and w, may be presented in terms of the axial displacement of
the mid-plane u0, transverse displacement of the mid-plane w0 and rotation of cross section ϕ, as

u(x, z, t) = u0(x, t) + zϕ(x, t),

w(x, z, t) = w0(x, t). (5)

Referring to the basic relations of strains and displacements according to the von Kármán assumptions
suitable for small strains and large deflections, on a generic point of the beam, one may write the below
equations for the strain components,

εxx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

= ∂u0
∂x

+ 1

2

(
∂w0

∂x

)2

+ z
∂ϕ

∂x
,

γxz = ∂u

∂z
+ ∂w

∂x
= ϕ + ∂w0

∂x
. (6)

And the constitutive equations of the beam when only axial and transverse components of the stress field
are present may be written as

σxx = Q11(εxx − α11(T − T0)),

σxz = Q55γxz . (7)

Here, T0 is a reference temperature and T is the uniform temperature across the beam. Besides, Q11 and Q55
are evaluated in terms of the material constants as

Q11 = E11,

Q55 = G13. (8)
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The stress resultants of first-order shear deformable beam theory may be obtained easily upon integration of
the stress components over the thickness. The stress resultants are easily obtained as

Nxx =
∫ +h/2

−h/2
σxxdz = A11

(
du0
dx

+ 1

2

(
dw0

dx

)2
)

− NT,

Mxx =
∫ +h/2

−h/2
zσxxdz = D11

dϕ

dx
,

Qxz = Ks

∫ +h/2

−h/2
σxzdz = A55

(
ϕ + dw0

dx

)
. (9)

In the above equation, Ks is the shear correction factor and is taken as Ks = π2/12 [12]. NT is the induced
stress resultant due to the uniform temperature rise loading which is equal to

NT =
∫ +h/2

−h/2
Q11α11(T − T0)dz. (10)

Note that no thermal moment is induced through the beam, since temperature is distributed uniformly through
the beam and the thermo-mechanical properties of the sandwich beam are symmetric with respect to the mid-
surface. Furthermore, in Eq. (9), A11, D11and A55 are the stretching, bending and shear stiffness, respectively,
which may be obtained as

(A11, D11, A55) =
∫ +h/2

−h/2
(Q11, z

2Q11, Q55)dz. (11)

Again note that the stretching–bending coupling, B11, is absent since the elasticity modulus is a symmetric
function with respect to the mid-surface.

3 Solution method

Hamilton’s principle is used to obtain the governing nonlinear equations of motion. For the case of absence of
external loads, the statement of the Hamilton principle reads

δ

∫ t1

t0
(U − T )dt = 0,

t = t1, t2 : δu0 = δw0 = δϕ = 0 (12)

where in the above equations t1 and t2 are arbitrary times. Besides, δU is the virtual strain energy per width of
the beam which according to FSDT may be written as

δU =
∫ L

0

∫ +h/2

−h/2
(σxxδεxx + Ksσxzδγxz) dzdx (13)

and δT is the virtual kinetic energy of the beam per width which takes the form

δT =
∫ L

0

∫ +h/2

−h/2
ρ (u̇δu̇ + ẇδẇ) dzdx . (14)

While the complete set of dynamic equations and the associated boundary conditions may be obtained by
applying the integration by parts technique to Eq. (12), energy-based methods also may be used to solve
the equations associated with Eq. (12). Ritz method as a powerful tool is used extensively in the solution of
linear and nonlinear problems arising in various fields of structural mechanics, see e.g. [41–44]. In the present
research also, the Ritz method is used to discretize the governing system of equations. Beforehand, using the
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general concept of the separation of variables method, time and space dependency of the primary variables
may be separated. Accordingly, each of the functions u0, w0 and ϕ may be written in the next form [45]:

u0(x, t) =
N∑

n=1

Un(t)N
u
n (x),

w0(x, t) =
N∑

n=1

Wn(t)N
w
n (x),

ϕ(x, t) =
N∑

n=1

�n(t)N
ϕ
n (x). (15)

Here, Nu
n , N

w
n , Nϕ

n are the shape functions which have to be chosen according to the boundary conditions.
Besides, N is the number of terms which should be chosen to assure the convergence of the total displacements.
In this study, the polynomial type of shape functions is used.

Substituting Eq. (15) into Eqs. (13) and (14) and integrating over thickness and length eliminates the
dependency of the unknown variables to the spatial coordinates. Afterwards, the complete set of motion
equations may be written in matrix representation as⎡

⎣Muu Muw Muϕ

Mwu Mww Mwϕ

Mϕu Mϕw Mϕϕ

⎤
⎦

⎧⎨
⎩

Ü
Ẅ
�̈

⎫⎬
⎭ +

⎡
⎣Kuu Kuw Kuϕ

Kwu Kww Kwϕ

Kϕu Kϕw Kϕϕ

⎤
⎦

⎧⎨
⎩

U
W
�

⎫⎬
⎭ =

⎧⎨
⎩
0
0
0

⎫⎬
⎭ . (16)

The nonlinear vibration problem is now governed by Eq. (16). In the above equation, the stiffness matrix is
nonlinear since someof their elements are dependent on the unknowndisplacement vectorW. In linear vibration
analysis, the nonlinear terms are dropped out of the stiffness matrix, and the system of Eq. (16) reduces to
a standard eigenvalue problem using the fact that the problem obeys the separation of variables solution
method whose time-dependent solution is a harmonic function with frequency ω. However, the nonlinear free
vibration problem, in general, does not admit the separation of variables method. Consequently, the mode
shape varies with respect to time and cannot be obtained using the general separation of variables idea. In the
conventional solution of nonlinear free vibration problem, the time-dependent or the space-dependent solution
of the nonlinear free vibration problem is assumed a priori based on the observation from the linear analysis.
However, such solutions for beams with at least one edge clamped are not valid.

In some energy-based finite element formulations, the assumption Ẍ = −ω2X is established. Of course,
the numerical solutions of this method differ mainly from those obtained by assuming the space-dependent
or the time-dependent solutions. In an alternative approach, Prathap and Varadan [46] reduced the continuum
equivalent of Eq. (16) to a nonlinear eigenvalue problem by noting that the point of maximum amplitude
(which is also the point of reversal of motion) is of special interest, and by defining certain properties of the
time function at this point, i.e., Ẍmax = −ω2Xmax, Eq. (16) can be reduced to an equation in space alone, and
the nonlinear eigenvalue problem that results can be solved for a numerically exact mode shape at maximum
amplitude, and a corresponding eigenvalue, which can be derived in terms of ω2, thus defined at the point of
reversal of motion. In this paper, it is assumed that a point of maximum amplitude exists during the vibration
and that this is also the point of reversal of motion of every point of the beam [47],⎧⎨

⎩
Ümax

Ẅmax

�̈max

⎫⎬
⎭ = −ω2

⎧⎨
⎩

Umax
Wmax
�max

⎫⎬
⎭ . (17)

Substitution of Eq. (17) into Eq. (16) results in

ω2

⎡
⎣Muu Muw Muϕ

Mwu Mww Mwϕ

Mϕu Mϕw Mϕϕ

⎤
⎦

⎧⎨
⎩

Umax
Wmax
�max

⎫⎬
⎭ =

⎡
⎣Kuu Kuw Kuϕ

Kwu Kww Kwϕ

Kϕu Kϕw Kϕϕ

⎤
⎦

⎧⎨
⎩

Umax
Wmax
�max

⎫⎬
⎭ (18)

or in a compact form

(K − ω2M)Xmax = 0 (19)
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Table 2 Appropriate p-Ritz shape functions associated with the boundary conditions (20)

shape function C–C C–S S–S

Nu
n

( x

L

)n (
1 − x

L

) ( x

L

)n (
1 − x

L

) ( x

L

)n (
1 − x

L

)

Nw
n

( x

L

)n (
1 − x

L

) ( x

L

)n (
1 − x

L

) ( x

L

)n (
1 − x

L

)

Nϕ
n

( x

L

)n (
1 − x

L

) ( x

L

)n ( x

L

)n−1

where in the above matrix K is the nonlinear elastic matrix and M is the mass matrix whose elements are
provided in the “Appendix”. The elements of nonlinear elastic matrix are dependent to the unknown displace-
ment components. The above equation is a nonlinear eigenvalue problem and should be solved iteratively with
respect to displacement vector Xmax. The procedure to solve this problem is mentioned next.

At first, a linear analysis should be carried out to obtain the linear frequencies and the associated mode
shapes. To obtain the governing equations associatedwith the linear vibration, the elements of the elasticmatrix
are linearized. Equivalently, the linear frequency analysis is dominant when the nonlinear components of the
elastic matrix are ignored. Solving the resulting equation as an eigenvalue problem, the natural frequencies
and the associated mode shapes of the system follow. To obtain the nonlinear free vibration characteristics of
the system, the following procedure should be carried out.

(i) An element of the displacement vector Xmax is assumed to be known. In this study,W1,max is considered
to be known.

(ii) The eigenvector associated with the linear analysis is scaled up according to the assumed displacement
of step (i).

(iii) The nonlinear components of the elastic matrix are computed with the displacement vector of step (ii).
(iv) A linear eigenvalue analysis at this step may be done.
(v) Note that the obtained results at the end of step (iv) are just approximate because of step (ii). The

eigenvector obtained by step (iv) is scaled up by the assumed displacement W1.
(vi) The procedure of steps (iii) to (v) is performed iteratively to reach a converged frequency parameter

and the associated eigenvector (mode shape). When convergence is achieved, the nonlinear frequency is
obtained.

It should be pointed out that the complete set of boundary conditions may be obtained in the process of
applying the Hamilton principle. For the two well-known cases of boundary conditions, i.e. clamped (C) and
simply supported (S) boundary conditions, the following conditions should be satisfied at each edge:

C : u0 = w0 = ϕ = 0,

S : u0 = w0 = Mx = 0. (20)

The polynomial shape functions associated with the C–C, C–S and S–S type of boundary conditions are
given by Ghiasian et al. [45]. Here C–S indicates a beam which is clamped at x = 0 and simply supported at
x = L . The same shape functions are used in the present study and are given in Table 2.

4 Numerical results and discussion

The procedure outlined in the previous sections is used herein to study the nonlinear free vibration charac-
teristics of sandwich beams with FG-CNTRC face sheets. In this section, at first, two comparison studies
are conducted. Afterwards, parametric studies are performed to examine the influences of involved parame-
ters. Unless otherwise stated, Poly (methyl methacrylate), referred to as PMMA, is selected for the matrix
of face sheets with material properties Em = (3.52 − 0.0034T ) GPa, νm = 0.34, ρm = 1150 kg/m3 and
αm = 45×10−6(1+0.0005�T )1/K. In the calculation of the elasticity modulus of the matrix, T = T0 +�T
where T0 = 300K is the reference temperature. (10, 10) armchair SWCNT is chosen as the reinforcements
in the face sheet. Elasticity modulus, shear modulus, Poisson’s ratio and thermal expansion coefficient of
SWCNT are highly dependent on temperature. Shen and Xiang [14] reported these properties at four certain
temperature levels, i.e., T = 300, 400, 500 and 700 K. The magnitudes of E11, G12, α11, ρ and ν12 for (10,
10) armchair SWCNT at these four specific temperatures are given in Table 3.
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Table 3 Thermo-mechanical properties of (10, 10) armchair SWCNT at specific temperatures [14,34,48,49]

T (K ) ECN
11 (TPa) GCN

12 (TPa) νCN12 αCN
11 (10−6/K) ρCN (kg/m3)

300 5.6466 1.9445 0.175 3.4584 2100
400 5.5679 1.9703 0.175 4.1496 2100
500 5.5308 1.9643 0.175 4.5361 2100
700 5.4744 1.9644 0.175 4.6677 2100

Han and Elliott [50] performed a molecular dynamics simulation to obtain the elastic properties of CNTRC
made of PMMAmatrix and (10, 10) armchair SWCNT. However, in their analysis the effective CNT diameter
was chosen large, and therefore, their simulations were redone by Shen [33]. As stated earlier, two efficiency
parameters are introduced in the rule of mixtures to account for the size dependency of the mechanical
properties of the composite media. For three specific constants of CNT volume fraction, these constants are
chosen to equal the obtained magnitudes of E11 and G12 from the proposed modified rule of mixtures with
those obtained by Han and Elliott [50]. For V ∗

CN = 0.12, these constants are η1 = 0.137 and η3 = 0.715. For
V ∗
CN = 0.17, these constants are η1 = 0.142 and η3 = 1.138. For V ∗

CN = 0.28, these constants are η1 = 0.141
and η3 = 1.109. It is of worth noting that, in the subsequent numerical studies, G13 is set equal to G12.

It is assumed that the core is made of Ti-6Al-4V whose properties are dependent on temperature according
to the following expressions: [51]:

Ec = 122.56(1 − 4.586 × 10−4T )GPa,

αc = 7.5788(1 + 6.638 × 10−4T − 3.147 × 10−6T 2) × 10−6 1/K,

ρc = 4429 kg/m3,

νc = 0.325. (21)

Unless otherwise stated, a sandwich beam is operating at reference temperature. In all of the numerical
examples, the frequency parameter is defined by Ω = ωL

√
ρc/Ec

ref where Ec
ref is the elasticity modulus of

the core at reference temperature.

4.1 Comparison studies

Two comparison studies are presented in this section. For the first comparison study, the fundamental frequency
parameter of a sandwich beam with FG-CNTRC face sheets is evaluated and compared with the results of Wu
et al. [21]. In the analysis of Wu et al. [21], linear frequencies of a sandwich beam with Ti-6Al-4V core and
FG-CNTRC face sheets are computed using the differential quadrature method. It should be pointed out that
slight differences are observed in the mechanical properties of the core among the values of the present study
and those of Wu et al. [21] which are ignored. In the analysis of Wu et al. [21], Poisson’s ratio is chosen as
νc = 0.342 instead of νc = 0.325 of this study. Also mass density is ρc = 4430 kg/m3 instead of ρc = 4429
kg/m3 which is chosen in this study. Furthermore, in the evaluation of the stiffness matrix in the analysis of
Wu et al. [21] the effect of Poisson’s ratio is included; however, this study does not take into account such
effect in the stiffness matrix. Wu et al. [21] obtained the extensional stiffness using Q11 = E11(1− ν12ν21)

−1.
While in our research, as seen from Eq. (8), the effect of Poisson’s ratio is ignored and Q11 = E11 is taken
into consideration. These slight differences, however, do not generate significant differences. For comparison
study, a relatively thick beamwith L/h = 20 and hH/hf = 8 is considered. Three different values of nanotube
volume fraction are considered, and two types of boundary conditions are examined. Results are provided in
Table 4. It is seen that reasonable agreement is observed at the onset of comparison.

For the second comparison study, the nonlinear-to-linear frequency ratio of a homogeneous isotropic beam
with various boundary conditions is evaluated from the present approach, and results are compared with those
obtained by Marur and Prathap [52]. Three different types of boundary conditions are considered. For the sake
of comparison, a slender beam with length-to-thickness ratio L/h = 100 is considered and the thickness of
face sheets is set equal to 0. In such case, the present formulation reduces to an isotropic homogeneous beam
made of Ti-6Al-4V. Table 5 presents the ratio of nonlinear frequency to linear frequency ωnl/ωl for various
values of maximum vibration amplitude. It is seen that excellent agreement is observed by the comparison of
our results with those reported by Marur and Prathap [52] which guarantees the accuracy and correctness of
the present formulation and solution procedure.
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Table 4 A comparison of fundamental frequency parameter, Ω , of a sandwich beam with FG-CNTRC face sheets, hH/hf = 8
and L/h = 20

V ∗
CN = 0.12 V ∗

CN = 0.17 V ∗
CN = 0.28

UD FG-V UD FG-V UD FG-V

C–C
Present 0.3254 0.3305 0.3557 0.3623 0.4080 0.4171
Wu et al. [21] 0.3195 0.3240 0.3470 0.3530 0.3949 0.4032
Diff (%) 1.84 2.00 2.50 2.63 3.32 3.44
S–S
Present 0.1416 0.1440 0.1557 0.1588 0.1803 0.1846
Wu et al. [21] 0.1432 0.1453 0.1560 0.1588 0.1785 0.1825
Diff (%) 1.11 0.89 0.19 0.00 1.01 1.15

Table 5 Nonlinear-to-linear frequency ratios of a slender beam (L/h = 100) made of an isotropic homogeneous material

W/h C–C C–S S–S

Present [52] Present [52] Present [52]

1/
√
12 1.0287 1.0283 1.0572 1.0582 1.1181 1.1180

2/
√
12 1.1112 1.1105 1.2130 1.2150 1.4143 1.4135

3/
√
12 1.2326 1.2336 1.4276 1.4368 1.8029 1.8027

4/
√
12 1.3832 1.3856 1.6912 1.6822 2.2362 2.2361

5/
√
12 1.5536 1.5574 1.9012 1.9180 2.6927 2.6925

Table 6 Fundamental frequency parameter, Ω , of sandwich beams with FG-CNTRC face sheets, L/h = 20 and S–S type of
boundary conditions

V ∗
CN UD FG-� FG-V FG-X FG-O

hH/hf = 8 0.12 0.1498 0.1473 0.1522 0.1498 0.1497
0.17 0.1646 0.1613 0.1679 0.1647 0.1645
0.28 0.1906 0.1859 0.1952 0.1908 0.1905

hH/hf = 6 0.12 0.1523 0.1484 0.1562 0.1525 0.1522
0.17 0.1702 0.1651 0.1752 0.1704 0.1701
0.28 0.2009 0.1939 0.2078 0.2012 0.2007

hH/hf = 4 0.12 0.1572 0.1503 0.1640 0.1576 0.1570
0.17 0.1797 0.1708 0.1883 0.1802 0.1793
0.28 0.2173 0.2053 0.2287 0.2179 0.2167

Table 7 Fundamental frequency parameter, Ω , of sandwich beams with FG-CNTRC face sheets, L/h = 20 and C–C type of
boundary conditions

V ∗
CN UD FG-� FG-V FG-X FG-O

hH/hf = 8 0.12 0.3359 0.3305 0.3412 0.3361 0.3357
0.17 0.3682 0.3610 0.3752 0.3784 0.3680
0.28 0.4240 0.4140 0.4337 0.4242 0.4237

hH/hf = 6 0.12 0.3414 0.3329 0.3497 0.3417 0.3411
0.17 0.3802 0.3691 0.3909 0.3806 0.3798
0.28 0.4457 0.4307 0.4601 0.4462 0.4452

hH/hf = 4 0.12 0.3519 0.3367 0.3664 0.3527 0.3512
0.17 0.4003 0.3811 0.4185 0.4012 0.3994
0.28 0.4796 0.4544 0.5032 0.4808 0.4784

4.2 Parametric studies

After performing comparison studies, parametric studies are done in this section to analyse the influences of
involved parameters on the large amplitude free vibration of a sandwich beam with FG-CNTRC face sheets.

Tables 6, 7 and 8 present the fundamental frequency parameter of, respectively, S–S,C–CandC–S sandwich
beams with FG-CNTRC face sheets. In each case, the length-to-total thickness ratio is set equal to L/h = 20.
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Table 8 Fundamental frequency parameter, Ω , of sandwich beams with FG-CNTRC face sheets, L/h = 20 and C–S type of
boundary conditions

V ∗
CN UD FG-� FG-V FG-X FG-O

hH/hf = 8 0.12 0.2326 0.2288 0.2364 0.2328 0.2325
0.17 0.2554 0.2503 0.2604 0.2560 0.2553
0.28 0.2951 0.2880 0.3020 0.2952 0.2950

hH/hf = 6 0.12 0.2366 0.2306 0.2424 0.2368 0.2364
0.17 0.2640 0.2561 0.2716 0.2643 0.2637
0.28 0.3107 0.3000 0.3210 0.3111 0.3103

hH/hf = 4 0.12 0.2441 0.2334 0.2543 0.2446 0.2436
0.17 0.2784 0.2647 0.2914 0.2791 0.2777
0.28 0.3352 0.3174 0.3523 0.3362 0.3344

Fig. 1 First four mode shapes of C–C sandwich beam with FG-CNTRC face sheets. Volume fraction of CNT is V ∗
CN = 0.17, and

distribution pattern is according to FG-V. Geometric characteristics of the beam are L/h = 20 and hH/hf = 8

Three different values are assumed for the thickness of the host layer to the thickness of the face sheet which are
hH/hf = 4, 6 and 8. Besides, frequency parameters are provided for three different values of volume fraction
of CNTs and five different cases of graded profile. As expected, in each case, the natural frequency of C–C
beam is higher than the C–S beam, and the latter case is also higher than S–S beam. Such trend is expected
due to the higher local flexural rigidity of a clamped edge in comparison with a simply supported one. In each
case, the FG-V type of carbon nanotube distribution for the top face sheet results in a higher natural frequency
parameter in comparison with the other types of distribution. Generally, it is concluded that the fundamental
frequency of symmetric sandwich beams with FG-V type of CNTs distribution in the top face sheet is higher
than, in order, FG-X, UD, FG-O and FG-�. However, differences of natural frequency for FG-X, UD, FG-O
are hard to detect. From the results of these tables, it is concluded that, as the volume fraction of CNT in
the face sheets increases, the fundamental natural frequency increases. The influence of thickness of host to
thickness of face sheet is also observant since any increase in this ratio results in a decrease in the fundamental
frequency. It may be concluded that, among the distribution profile, CNT volume fraction and host-to-face
thickness ratio, the volume fraction is the most influential parameter on the natural frequency.

Figures 1, 2 and 3 depict the first four free vibration mode shapes of, respectively, C–C, C–S and S–S
sandwich beams with FG-CNTRC face sheets. Length to total thickness is set equal to L/h = 20, and core to
face thickness is assumed as hH/hf = 8. In these figures, the volume fraction is set equal to V ∗

CN = 0.17 and
the distribution of CNTs in top face sheet obeys the FG-V pattern.

As the numerical results of Tables 6, 7 and 8 reveal, for FG-V pattern of CNTs distribution, the frequency
parameter of a sandwich beam with CNTRC face sheets becomes maximum, and therefore, in the rest of this
work only this kind of CNTs from the functionally graded type of distributions is taken into account.

Table 9 investigates the nonlinear-to-linear frequency ratio of an S–S sandwich beam with CNTRC face
sheets. The distribution of CNTs along the thickness of the top face sheet is of the UD or FG-V type. Three
different ratios are considered for core thickness to face sheet thickness, which are hH/hf = 4, 6 and 8. In
each case, three different ratios are considered for the volume fraction of CNTs. As the numerical results of
this table reveal, the linear fundamental frequency of the sandwich beam increases by either increasing CNT
volume fraction or decreasing the host-to-face thickness ratio. It is seen that the fundamental frequency of a
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Fig. 2 First four mode shapes of C–S sandwich beam with FG-CNTRC face sheets. Volume fraction of CNT is V ∗
CN = 0.17 and

distribution pattern is according to FG-V. Geometric characteristics of the beam are L/h = 20 and hH/hf = 8

Fig. 3 First four mode shapes of S–S sandwich beam with FG-CNTRC face sheets. Volume fraction of CNT is V ∗
CN = 0.17 and

distribution pattern is according to FG-V. Geometric characteristics of the beam are L/h = 20 and hH/hf = 8

Table 9 Nonlinear-to-linear frequency ratio ωnl/ωl of sandwich beams with CNTRC face sheets, L/h = 20 and S–S type of
boundary conditions

hH/hf V ∗
CN Ω W/h

0.2 0.4 0.6 0.8 1

FG-V 8 0.12 0.1522 1.0585 1.2173 1.4435 1.7106 2.0022
0.17 0.1679 1.0522 1.1954 1.4018 1.6477 1.9181
0.28 0.1952 1.0447 1.1687 1.3500 1.5690 1.8120

6 0.12 0.1562 1.0578 1.2149 1.4390 1.7038 1.9931
0.17 0.1752 1.0509 1.1906 1.3925 1.6337 1.8992
0.28 0.2078 1.0431 1.1629 1.3390 1.5522 1.7892

4 0.12 0.1640 1.0563 1.2094 1.4285 1.6881 1.9722
0.17 0.1883 1.0488 1.1832 1.3784 1.6123 1.8704
0.28 0.2287 1.0413 1.1564 1.3261 1.5324 1.7624

UD 8 0.12 0.1498 1.0604 1.2238 1.4559 1.7292 2.0269
0.17 0.1646 1.0543 1.2025 1.4155 1.6685 1.9459
0.28 0.1906 1.0468 1.1762 1.3647 1.5915 1.8424

6 0.12 0.1523 1.0607 1.2248 1.4577 1.7320 2.0306
0.17 0.1702 1.0538 1.2009 1.4124 1.6638 1.9396
0.28 0.2009 1.0460 1.1734 1.3593 1.5833 1.8312

4 0.12 0.1573 1.0610 1.2259 1.4599 1.7351 2.0349
0.17 0.1797 1.0534 1.1996 1.4098 1.6598 1.9343
0.28 0.2173 1.0456 1.1719 1.3565 1.5789 1.8255
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Table 10 Nonlinear-to-linear frequency ratio ωnl/ωl of sandwich beams with CNTRC face sheets with L/h = 20, V ∗
CN = 0.17

and various boundary conditions

hH/hf Type Ω W/h

0.2 0.4 0.6 0.8 1

C–C 8 FG-V 0.3752 1.0130 1.0506 1.1101 1.1872 1.2808
UD 0.3682 1.0135 1.0525 1.1138 1.1938 1.2904

6 FG-V 0.3909 1.0126 1.0492 1.1073 1.1831 1.2690
UD 0.3802 1.0134 1.0521 1.1132 1.1927 1.2863

4 FG-V 0.4185 1.0121 1.0475 1.1031 1.1766 1.2618
UD 0.4003 1.0131 1.0519 1.1124 1.1919 1.2860

C–S 8 FG-V 0.2604 1.0261 1.0996 1.2116 1.3507 1.5041
UD 0.2554 1.0271 1.1034 1.2191 1.3625 1.5244

6 FG-V 0.2716 1.0254 1.0976 1.2065 1.3427 1.4974
UD 0.2640 1.0269 1.1030 1.2173 1.3605 1.5207

4 FG-V 0.2914 1.0244 1.0937 1.1987 1.3305 1.4805
UD 0.2784 1.0267 1.1020 1.2158 1.3581 1.5173

S–S 8 FG-V 0.1679 1.0522 1.1954 1.4018 1.6477 1.9181
UD 0.1646 1.0543 1.2025 1.4155 1.6685 1.9459

6 FG-V 0.1752 1.0509 1.1906 1.3925 1.6337 1.8992
UD 0.1702 1.0538 1.2009 1.4124 1.6638 1.9396

4 FG-V 0.1883 1.0488 1.1832 1.3784 1.6123 1.8704
UD 0.1797 1.0534 1.1996 1.4098 1.6598 1.9343

sandwich beam with FG-V type of CNT is higher than of a sandwich beam with uniformly distributed CNTs.
The investigation of nonlinear-to-linear frequency ratios takes into account the fact that this ratio decreases as
the volume fraction of CNTs in the face sheets increases. Therefore, the nonlinear-to-linear frequency ratio of
sandwich beams with V ∗

CN = 0.12 is higher than the case with V ∗
CN = 0.17, and the frequency ratio for the

latter case is also higher than V ∗
CN = 0.28. The influence of core thickness to face thickness on the frequency

ratio is not monotonic, and its increase may result in increasing or decreasing the frequency ratio. However, the
effect of this ratio is ignorable. Besides, the ratio of nonlinear to linear frequency is dependent on the graded
profile of CNTs across the thickness of face sheets and for sandwich beams with UD-CNTRC; this ratio is
higher than for sandwich beams with FG-V CNTRC face sheets. This conclusion is similar to the findings of
Wang and Shen [14] for the case of a sandwich plate with CNTRC face sheets.The effect of the graded profile,
similar to core to face thickness influence, is ignorable.

The next parametric study aims to investigate the effect of boundary conditions on the nonlinear-to-linear
frequency ratio of sandwich beams with CNTRC face sheets. Numerical results of this parametric study are
provided in Table 10. In this table, for three different thickness ratios of the sandwich beam, i.e. hH/hf = 8, 6
and 4, two types of CNTs pattern, namely FG-V andUD, and three types of boundary conditions, the nonlinear-
to-linear frequency ratio, are provided for some specific magnitudes of maximum amplitude. It is observed that
for all types of boundary conditions and thickness ratio the fundamental frequency of a sandwich beam with
FG-V CNTRC face sheets is higher than of those with UD-CNTRC face sheets. However, the discrepancy
is small. On the other hand, the ratio of nonlinear to linear frequency is higher for uniform type of CNTs
distribution. However, again, the difference of this ratio for FG-V and UD type of graded profiles is small. The
nonlinear-to-linear frequency ratio is maximum for an S–S beam and is minimum for a C–C beam which is
compatible with the results of Ke et al. [13] for the case of a single-layer FG-CNTRC beam.

The next parametric study is devoted to the examination of the thermal environment effect on the nonlinear-
to-linear frequency ratio of a sandwich beamwith CNTRC face sheets. In this example, both edges of the beam
are considered to be clamped. The length-to-thickness ratio is set equal to 20, and the core to face thickness
is considered as hH/hf = 6. Three different thermal environment cases are considered. Numerical results
are tabulated in Table 11. It is seen from the results of this table that an increase in temperature level results
in decreasing the fundamental frequency and also increases the nonlinear-to-linear frequency ratio. These
conclusions are compatible with the findings of Shen and Xiang [14] for the case of a single CNTRC higher-
order beam with both edges simply supported. For all of the studied cases of volume fraction and temperature
level, it is worth noting that the fundamental frequency of a beam with FG-V CNTRC face sheet is higher
than that of a beam with UD-CNTRC beam, whereas the nonlinear-to- linear frequency ratios of a sandwich
beam with FG-V CNTRC beam are lower than those of the sandwich beam with UD-CNTRC beam in all the
considered examples.
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Table 11 Influence of thermal environment on nonlinear-on-linear frequency ratio ωnl/ωl of sandwich beams with CNTRC face
sheets, L/h = 20, hH/hf = 6, and C–C boundary conditions

V ∗
CN Type Ω W/h

0.2 0.4 0.6 0.8 1

T = 300 0.12 FG-V 0.3497 1.0142 1.0556 1.1212 1.2053 1.3068
UD 0.3414 1.0149 1.0586 1.1265 1.2150 1.3199

0.17 FG-V 0.3909 1.0126 1.0492 1.1073 1.1831 1.2690
UD 0.3802 1.0134 1.0521 1.1132 1.1927 1.2863

0.28 FG-V 0.4601 1.0107 1.0421 1.0919 1.1571 1.2368
UD 0.4457 1.0114 1.0448 1.0979 1.1673 1.2509

T = 400 0.12 FG-V 0.3328 1.0151 1.0590 1.1279 1.2163 1.3208
UD 0.3242 1.0159 1.0621 1.1345 1.2269 1.3358

0.17 FG-V 0.3744 1.0131 1.0514 1.1121 1.1910 1.2863
UD 0.3634 1.0141 1.0546 1.1188 1.2014 1.3020

0.28 FG-V 0.4438 1.0111 1.0435 1.0947 1.1628 1.2451
UD 0.4290 1.0119 1.0465 1.1013 1.1732 1.2586

T = 500 0.12 FG-V 0.3216 1.0155 1.0605 1.1306 1.2214 1.3305
UD 0.3128 1.0164 1.0639 1.1378 1.2330 1.3469

0.17 FG-V 0.3631 1.0134 1.0525 1.1144 1.1944 1.2919
UD 0.3519 1.0143 1.0560 1.1212 1.2062 1.3087

0.28 FG-V 0.4320 1.0112 1.0441 1.0965 1.1654 1.2494
UD 0.4171 1.0133 1.0474 1.1035 1.1769 1.2660

5 Concluding remarks

The large amplitude free vibration of a sandwich beam with FG-CNTRC face sheets in thermal environment
is studied in the present work. The analysis is done employing a micromechanical model and a multi-scale
approach which captures the length-scale property of the CNTs in face sheets. Both uniform and graded types
of distributed CNTs are considered. Material properties of CNTs, matrix and host layer are all considered
to be temperature dependent. Following the first-order equivalent single-layer theory for the sandwich beam,
a Ritz-based formulation is developed upon the adoption of a polynomial type of shape functions suitable
for immovable in-plane edges and clamped or simply supported out-of-plane edges. The resulting equations
are rewritten in matrix representation and solved as a standard eigenvalue problem. Numerical results are
provided for the influences of thermal environment, boundary conditions, core-to-face sheet thickness ra-
tio, volume fraction of CNTs and distribution pattern of CNTs. The numerical results of this study reveal
that:

• Due to the stiffer configuration of a clamped edge in comparison with a simply supported one, the natural
frequency of a C–C sandwich beam with CNTRC face sheets is higher than of C–S beam, and the latter
one is also higher than of an S–S sandwich beam.

• An increase in the volume fraction of CNTs results in higher natural frequency of a sandwich beam with
CNTRC face sheets.

• Among the various graded profiles of the CNTs through the thickness of the face sheets, the frequency of
a sandwich beam with FG-V CNTRC face sheet is maximum. Also a sandwich beam with FG-� CNTRC
face sheet has the least natural frequency in comparison with the other graded patterns.

• Increasing the temperature through the beam with immovable edges results in a lower natural frequency.
• Increasing the thickness ratio decreases/increases the frequency of the sandwich beam. The nonlinear-to-

linear frequency ratio increases as the thickness ratio increases.
• At a prescribed vibration amplitude, the nonlinear-to-linear frequency ratio is maximum for a beam with

both edges simply supported and minimum for a beam with both edges clamped.
• The nonlinear-to-linear frequency ratio increases slightly with the increase in temperature.
• The nonlinear-to-linear frequency ratio of a sandwich beamwith UD-CNTRC face sheets is slightly higher

than the ratio for a sandwich beam with FG-V CNTRC face sheets.
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Appendix

The elements of the elastic stiffness matrix which is presented previously in Eq. (16) are

Kuu
mn =

∫ L

0
A11

dNu
m

dx

dNu
n

dx
dx,

Kuw
mn = 1

2

∫ L

0
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m

dx

dw0

dx
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n

dx
dx,
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dx
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dx
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n

dx
dx,

Kww
mn =

∫ L

0

(
1

2
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dx
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dx
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dx

)
dx,
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dx
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n dx,
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0
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ϕ
m
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dx
dx,
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0

(
D11
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dx
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ϕ
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ϕ
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)
dx .

Similarly, the elements of the mass matrix which is presented previously in Eq. (16) are

Muu
mn = I1

∫ L

0
Nu
mN

u
n dx,

Muw
mn = 0,

Muϕ
mn = 0,

Mwu
mn = 0,

Mww
mn = I1

∫ L

0
Nw
m Nw

n dx,

Mwϕ
mn = 0,

Mϕu
mn = 0,

Mϕw
mn = 0,

Mϕϕ
mn = I3

∫ L

0
Nϕ
mN

ϕ
n dx .
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