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Abstract Linear and nonlinear stability analyses of Hadley–Prats flow in a horizontal fluid-saturated porous
medium with a heat source are performed. The results indicate that, in the linear case, an increase in the
horizontal thermal Rayleigh number is stabilizing for both positive and negative values of mass flow. In the
nonlinear case, a destabilizing effect is identified at higher mass flow rates. An increase in the heat source has
a destabilizing effect. Qualitative changes appear in Rz as the mass flow moves from negative to positive for
different internal heat sources.

1 Introduction

Thermal convection driven by an internal heat source with a horizontal mass flow has many practical appli-
cations such as underground energy transport, cooling of nuclear reactors, food processing, oil recovery,
underground storage of waste products and thermal convection in clouds [1–4].

In the last few decades, convection involving internal heat sources has attracted particular research atten-
tion. Early experimental investigations include Schwiderski and Schwabh [5] and Tritton and Zarraua [6], with
Roberts [7] and Thirlby [8] providing theoretical analyses. Parthiban and Patil [9] investigated thermal convec-
tion due to non-uniform heating boundaries with inclined thermal gradients in the presence of an internal heat
source, followed by an extension to anisotropic porous layers byParthiban andPatil [10]. The case of an inclined
layer with internal heat source was analyzed by Barletta et al. [11], where both boundaries were isothermal and
kept at the same temperatures. Rionero and Straughan [12] investigated the linear and nonlinear effects in the
presence of variable gravity effect and heat generation. Extensive reviews of the theory and applications can
be found in the article by Alex and Patil [13]. Hill [14] investigated a porous layer with concentration-based
internal heat generation, with linear and nonlinear stability analyses of thermosolutal convection. Chamka et
al. [15] analyzed the effect of an internal heat source or sink for hydromagnetic simultaneous heat and mass
transfer by utilizing similarity solutions. Thermosolutal convection in a saturated anisotropic porous medium
with internal heat generation is reported by Bhadauria [16]. Borujerdi et al. [17] examined the steady-state heat
conduction with a uniform heat source where the solid and fluid phases are at different temperatures. Borujerdi
et al. [18] study the influence of the Darcy number on the critical Rayleigh number in the onset of convection
with uniform internal heating. A collection of comprehensive theories and experiments of thermal convection
in porous media (with their practical applications) has been surveyed by Nield and Bejan [19]. Capone and
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Rionero [20] have studied the nonlinear stability of a convective motion in a horizontal porous layer which is
driven by a temperature gradient. Several problems on nonlinear stability analyses using the energy method
are discussed by Kaloni and his contributors [21–25]. In the Lyapunov sense, when the disturbance of the basic
flow is unstable, linearized theory provides sufficient conditions, whereas nonlinear theory provides sufficient
conditions for the disturbance to be asymptotically stable.

The aim of this article is to study the influences of both a heat source and a mass flow. The corresponding
eigenvalue problems are solved numerically utilizing the shooting and Runge–Kutta method.

2 Mathematical analysis

An infinite shallow horizontal fluid-saturated porous medium with thickness d is considered. The z′ -axis
is vertically upwards, and there is a net flow along the direction of the x ′-axis with magnitude M ′. The
vertical temperature difference across the boundaries is �θ . Further imposed is the horizontal temperature
gradient vector (βθx , βθy ). The porous layer flow is governed by the Darcy law, where the linear Boussinesq
approximation is assumed. Utilizing the equation of the conservation of energy, the governing equations in
dimensional form are

∇′· q ′ = 0 , (1)
μ
K q ′ + ∇′P ′ − ρ0

[
1 − γθ

(
θ ′ − θ0

)]
g = 0, (2)

(ρc)m
(

∂θ ′
∂t ′

)
+ (

ρcp
)
f q

′· ∇′θ ′ = km∇′2
θ ′ + Q′, (3)

with the following boundary conditions:

w′ = 0, θ ′ = θ0 − 1

2
(±�θ) − βθx x

′ − βθy y
′ at z′ = ±d

2
. (4)

Here, the Darcy velocity is defined as q ′ = (u′, v′, w′), P ′ is the pressure, θ ′ is temperature, and Q′ is an
internal heat source. The subscripts f and m refer to the fluid and the porous medium, respectively. φ and
K are the porosity and permeability of the porous layer. c, ρ, μ, km and γθ denote the specific heat, density,
viscosity, thermal diffusivity, and thermal expansion coefficient in the porous medium, respectively.

The following dimensionless variables are introduced to non-dimensionalize the governing equations:

(x, y, z) = 1

d

(
x ′, y′, z′

)
, t = αmt ′

ad2
, q = dq ′

αm
, P = K

(
P ′ + ρ0gz′

)

μαm
,

θ = Rz
(
θ ′ − θ0

)

�θ
, M = dM ′

αm
, Q = d2Q′

km�θ
(5)

where

αm = km(
ρcp

)
f

, a = (ρc)m(
ρcp

)
f

, Rz = ρ0gγθKd�θ

μαm
. (6)

Here, Rz denotes the vertical thermal Rayleigh number. The horizontal thermal Rayleigh numbers are defined
as follows:

Rx = ρ0gγθKd2βθx

μαm
, Ry = ρ0gγθKd2βθy

μαm
. (7)

The previous scaling for dimensional variables and the horizontal thermal Rayleigh numbers were introduced
byWeber [27] and used extensively byNield [28]. Under these dimensionless variables, the governing Eqs. (1)–
(3) are

∇· q = 0 , (8)

q + ∇P − θk = 0, (9)
∂θ
∂t + q· ∇θ = ∇2θ + QRz, (10)
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with the conditions of the plates being

w = 0, θ = −1

2
(±Rz) − Rx x − Ry y at z = ±1

2
. (11)

From Eqs. (8)–(10), we observe that all of the thermal Rayleigh numbers are involved in boundary conditions
(11). The condition on temperature at both bounding planes give a linear variation of temperature. This spatial
linear variation of temperature along the horizontal planes bounding a fluid layer is a physically more realistic
situation than the strictly uniform heating (Capone and Rionero [20]). However, in the present problem uniform
heating can be recovered by setting the horizontal thermal gradients to zero.

3 Steady-state solution

The flow governing Eqs. (8)–(10), subject to (11), have a basic state solution of the form

θs = θ̃ (z) − Rx x − Ry y,

us = u (z) , vs = v (z) , ws = 0, Ps = P (x, y, z) , (12)

with

us = −∂P

∂x
, vs = −∂P

∂y
,

0 = −∂P

∂z
+ θ̃ (z) − Rx x − Ry y,

D2θ̃ = −us Rx − vs Ry − QRz . (13)

Here D = d
dz , and we have a net flow M in the horizontal direction such that

∫ 1/2
−1/2 u(z)dz = M and

∫ 1/2
−1/2 v(z)dz = 0. The solution in the form of flow velocity and temperature in the medium is then given by

us = Rx z + M, vs = Ryz, (14)

θ̃ = −Rzz − λ

24

(
4z3 − z

) − (MRx + QRz)

(
z2

2
− 1

8

)
(15)

where λ = Rx
2 + Ry

2.

4 Perturbation equations

We consider the perturbations in the form q = qs + q, θ = θs + θ and P = Ps + P . By substituting these
perturbations in the dimensionless governing Eqs. (8)–(10), we get

∇· q = 0, (16)

q = −∇P + θk, (17)
∂θ
∂t + qs · ∇θ + q· ∇θs + q· ∇θ = ∇2θ (18)

where

∇θs = − (
Rx , Ry, Rz − Ã

)
,

Ã = λ

24

[
1 − 12z2

] − (MRx + QRz) z.

The conditions at the plates are

w = 0, θ = 0 at z = ±1

2
. (19)

Note that (19) shows that there are no normal velocity and temperature perturbations at the plates.
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5 Linear stability analysis

To perform a linear stability analysis, we neglect the nonlinear terms fromEq. (18). The linearized perturbations
equations are then

∇· q = 0, (20)

q = −∇P + θk, (21)
∂θ
∂t + qs · ∇θ + q· ∇θs = ∇2θ (22)

where

∇θs = −
(
Rx , Ry, Rz − λ

24

[
1 − 12z2

] + (MRx + QRz) z

)
.

The conditions at the plates are

w = 0, θ = 0 at z = ±1

2
. (23)

Adopting a normal mode solution to Eqs. (20)–(22) of the form
[
q, θ, P

] = [q (z) , θ (z) , P (z)] exp {i (kx + ly) + σ t} (24)

and further eliminating P yields
(
D2 − α2

)
w + α2θ = 0, (25)

(
D2 − α2 − (σ + i(kus + lvs))

)
θ + i

α2

(
kRx + l Ry

)
Dw − (

Dθ̃
)
w = 0. (26)

Equations (25) and (26), subject to w = θ = 0 at both the plates z = 1
2 and z = − 1

2 , constitute an eigenvalue
problem for the vertical thermal Rayleigh number Rz with a, Rx , Ry , k and l as parameters. In the above,
α = √

k2 + l2 is the overall wave number. Numerical results are presented in Sect. 7.

6 Nonlinear stability analysis

In this section, our nonlinear analysis via energy functional is presented as follows. We multiply Eqs. (17) and
(18) by q and θ , respectively, and integrate over Ω , where Ω denotes a typical periodicity cell. This yields the
following identities:

||q||2 = 〈θw〉, (27)

1

2

d||θ ||2
dt

= −〈(q· ∇θs) θ〉 − ||∇θ ||2. (28)

Here ||· || and 〈· 〉 denote the norm and inner product on L2(Ω). We adopt the energy functional (cf. [29])

E (t) = ξ

2
‖ θ ‖2 (29)

with coupling parameter ξ > 0. The system of Eqs. (27) and (28) along with Eq. (29) can now be represented
in the form

dE

dt
= I − Δ (30)

where

I = −ξ〈(q· ∇θs) θ〉 + 〈θw〉, (31)

Δ = ξ ||∇θ ||2 + ||q||2. (32)
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We define

n = max
H

I

Δ
(33)

where H is the space of all admissible solutions to Eqs. (16)–(18). If 0 < n < 1, it follows that

dE

dt
≤ −Δ(1 − n) . (34)

The classical Poincare inequality ||q − qΩ ||L p(Ω) ≤ C ||∇q||L p(Ω), where Ω is a open connected locally
compact Hausdorff space and use of qΩ = 1

|Ω|
∫
Ω
q (y) dy yields

dE

dt
≤ −2π2 (1 − n)min

{
1,

a

Leφ

}
E . (35)

Equation (35) then guarantees that E (t) → 0 as t → ∞ for 0 < n < 1. Applying the arithmetic-geometric
mean inequality on Eq. (27) yields

||q||2 ≤ ||θ ||2. (36)

From Eqs. (36) and (29), it follows that the decay of ||q|| is implied by the decay of E (t), and hence, the
system is stable. From the above, we have identified that the nonlinear stability requires the critical argument
at n = 1. The corresponding Euler–Lagrange system with the maximum problem Eq. (33) is

ξθ∇θs − θk + 2q = ∇δ, (37)

w − ξq· ∇θs + 2ξ∇2θ = 0. (38)

Here δ is a Lagrange multiplier introduced because q is divergence free. We consider Rz as the eigenvalue and
estimate the maximum variation of Rz with optimal choice of ξ . Equations (37) and (38) yield

∂Rz

∂ξ
= n (1 − ξ Rz) ||∇θ ||2 + 〈 Ãθw〉 − Rx 〈θu〉 + Ry〈θv〉

ξ2
(
2n||∇θ ||2 + 〈 Ãθw〉 − Rx 〈θu〉 + Ry〈θv〉) . (39)

Equation (39) is important and also noted that if Rx = Ry = 0 and Q = 0, we get

∂Rz

∂ξ
= (1 − ξ Rz)

2ξ2
. (40)

Equation (40) is the same as the expressions reported by Guo and Kaloni [21].We solve the system of Eqs. (37)
and (38) in the presence of the critical value n = 1. To evaluate this system numerically, we apply curlcurl
of Eq. (37) and further use the third component of the resulting equation

ξ Rx
∂2θ

∂x∂z
+ ξ Ry

∂2θ

∂y∂z
+ ξ∇2

1

[(−Rz + Ã
)
θ
] + 2∇2

1w − ∇2
1θ − 2

(
∂2u

∂x∂z
+ ∂2v

∂y∂z

)
= 0 (41)

where ∇2
1 =

(
∂2

∂x2
+ ∂2

∂y2

)
. Now, we apply the normal mode expansion

[
q, θ, δ

] = [q (z) , θ (z) , δ (z)] exp (i (kx + ly)) , (42)

with
(
Rx , Ry

) · (k, l) = 0, (Nield [26] and Kaloni and Qiao [22]), i.e., the horizontal thermal Rayleigh number
vector is orthogonal to the wave number vector. We substitute (42) in Eqs. (37), (38) and (41) and eliminate u,
v and δ to obtain

D2w = α2

2

(
2w + ξ

[−Rz + Ã
]
θ − θ

)
, (43)

D2θ = 1

2

[−Rz + Ã − ξ−1] w +
[

α2 − ξ

(
R2
x + R2

y

4

)]

θ. (44)

The system of Eqs. (43) and (44) is evaluated with the boundary conditions w = θ = 0 at z = ± 1
2 . The

critical vertical thermal Rayleigh number is obtained as Rz = maxξ minα2 Rz .
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7 Results and discussion

The onset of thermal convection in a fluid-saturated porous layer in the presence of mass flow and an internal
heat source effect is analyzed using both linear and nonlinear stability theory. Both cases are studied based
on the classical normal mode technique. We treat the vertical thermal Rayleigh number as the eigenvalue
Rz . Here, the critical vertical thermal Rayleigh number Rz is defined as the minimum of all Rz values as the
wave number α is varied. The vector of wave number is defined as α = (k, l, 0). To achieve the stationary
convection boundary, we set σ = 0 (the removal of the oscillatory mode is discussed in “Appendix”), with(
Rx , Ry

) · (k, l) = 0. The longitudinal disturbances are characterized by k = 0. In the same way, trans-
verse disturbances are characterized by l = 0. In Table 1, Rzl and Rze indicate the linear and nonlinear
critical thermal Rayleigh number (Rz). αl and αe indicate the critical wave number in linear and nonlinear
cases.

From Table 1, it is observed that when Q = 0 and M = 0, in the linear case, the results are in very good
agreement with earlier published results in the literature, Nield [26]. For an increase in the value of Q from 0
to 2, the critical value of Rz is reduced as seen in Table 1 in both cases. Hence, the heat flow parameter causes
destabilization in the medium. A fixed notation is used to represent the curves corresponding to the linear and
nonlinear results. Dotted lines represent linear stability results, and solid lines represent nonlinear stability
results in Figs. 1, 2 and 3.

Table 1 Critical thermal Rayleigh numbers at M = 0

Rx 0 10 20 30 40

Q = 0
Rzl 39.4784 42.0076 49.5486 61.9566 78.9663
αl 3.13999 3.1399 3.1499 3.1599 3.2199
Rze 39.47840 40.72345 44.20928 49.18550 53.61943
αe 3.13999 3.08999 2.94999 2.7199 2.2799

Q = 1
Rzl 39.2360 41.7294 49.1460 61.2757 77.7028
αl 3.1599 3.1599 3.1699 3.2099 3.3099
Rze 39.05626 40.27496 43.67935 48.51113 52.6681
αe 3.15999 3.109999 2.96999 2.73999 2.28999

Q = 2
Rzl 38.53950 40.93195 47.99451 59.34272 74.11823
αl 3.19999 3.19999 3.22999 3.33999 3.59999
Rze 37.85142 38.99556 42.16919 46.59001 49.8985
αe 3.20999 3.15999 3.0299 2.7999 2.27999

Fig. 1 Variation of Rz with Q at Rx = 10 and Ry = 0
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Fig. 2 Variation of Rz with Rx at Q = 1 and Ry = 0

Fig. 3 Variation of Rz with M at Rx = 10 and Ry = 0

A comparison of the critical value of Rz as a function of Q for different values of the mass flow rate M is
shown in Fig. 1 at Rx = 10 and Ry = 0. It is observed that as Q increases the critical values of Rz decrease.
However, as M increases from −2 to 2, at a higher value of M , the critical Rz value is lower than at lower
values of M in both the cases as seen in Fig. 1. For both positive and negative values of M , Rz decreases with
increasing values of Q. It indicates that increasing the heat source has a strongly destabilizing effect. This is
due to the fact that the global temperature of the system is increasing with increasing heat source and causes
the instability. As increasing the heat source, the threshold critical region between linear and nonlinear results
is increasing as seen in Fig. 1.

The response of Rz with varying Rx is shown in Fig. 2 for negative and positive values of M .
It is noted that, at M = −2 in the linear case, the critical value of Rz is higher than all the remaining values

of M . When Rx is increased, the corresponding Rz values also increase for all M values. This indicates that
the flow rate is strongly stabilizing in the linear case as compared to the nonlinear case seen in Fig. 2. It is also
interesting to observe that as Rx increases the critical value of Rz also increases up to a certain value of Rx ;
thereafter, the Rz value decreases for M = 2 in the nonlinear case seen in Fig. 2. It means that the flow rate is
strongly destabilizing at higher values of Rx and M in the nonlinear case.

Figure 3 shows the response of Rz with mass flow rate M in the presence of different values of Q = 0, 1, 2
for Rx = 10.
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As the mass flow rate (M) increases, Rz also increases up to certain values of M and thereafter decreases
for all values of Q as demonstrated in Fig. 3. Q has a strongly stabilizing effect up to a certain value of M ,
then after strongly destabilizing the flow in both cases. It is seen that by increasing the magnitude of horizontal
mass flow in both negative and positive directions the critical value of Rz is decreased.

8 Conclusions

We have analyzed the instability of thermal convection in Hadley–Prats flow subject to an internal heat source
using linear and nonlinear stability analysis. The results yield the following conclusions:

– An increase in the internal heat source causes a strong destabilization in all cases, as it raises the global
temperature of the system.

– In the presence of horizontal mass flow, the flow is stabilizing at higher horizontal Rayleigh numbers in
the linear case, whereas it is destabilizing in the nonlinear case at larger mass flows.

– Qualitative changes appear in Rz as the mass flow moves from negative to positive for different internal
heat sources.

Acknowledgments The authors are grateful to the anonymous referees for remarks which improved the work considerably.

Appendix

In this section, we show that the imaginary part of σ is 0 (i.e., the oscillatory mode does not exist). After we
use the condition

(
Rx , Ry

) · (k, l) = 0, Eqs. (25) and (26) are transformed as

(
D2 − α2

)
w + α2θ = 0, (45)

(
D2 − α2 − σ − iMk

)
θ − (

Dθ̃
)
w = 0, (46)

subject to boundary conditions w = θ = 0 at both the plates z = 1
2 and z = − 1

2 . Eliminating θ , for a single
equation obtained from Eqs. (45)–(46), yields

(
D2 − α2)2 w − (σ + iMk)

(
D2 − α2) w + α2 (

Dθ̃
)
w = 0. (47)

Multiplying Eq. (47) by w (complex conjugate of w) and integrating by parts over [− 1
2 ,

1
2 ], and using the

boundary condition, we obtain

||D2w||2 + 2α2||Dw||2 + α4||w||2 + (σ + iMk)
(||Dw||2 + α2||w||2) + α2

∫ 0.5

−0.5

(
Dθ̃

) |w|2 dz = 0.(48)

Taking the imaginary part of Eq. (48) when σ = σr + iσi ,

σi
(||Dw||2 + α2||w||2) = −Mk

(||Dw||2 + α2||w||2) . (49)

When k = 0, we have σi
(||Dw||2 + α2||w||2) = 0, which implies σi = 0.

This shows that the stationary longitudinal mode is the only possible mode for the convection induced by
horizontal mass flow as stated by Nield and Bejan [19] and Kaloni and Qiao [22].
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