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Abstract The purpose of this research is to present the wave propagation analysis of a functionally graded
nano-rod made of magneto-electro-elastic material subjected to an electric and magnetic potential. The unified
nonlocal elasticity theory and Love’s rod model are used in this study. All mechanical, electrical and magnetic
properties are assumed to be variable along the thickness direction based on a power law distribution. Two-
dimensional electric and magnetic potential distributions due to an applied potential and a magnet at the top of
the rod are considered. The governing equations of motion are obtained using equilibrium and nonlocal theory
of elasticity in conjunction with the Hamilton principle. The effect of important parameters of the functionally
graded magneto-electro-elastic nano-rod such as nonlocal parameters, power index, wave number, applied
magnetic and electric potentials on the wave propagation characteristics is studied.

1 Introduction

Local and nonlocal elasticity theories have been proposed for continuum media analysis in macro- and micro-
or nanoscales, respectively. The nonlocal theory states that the stress at a reference point depends not only on
the strain at that point but also on the strains at all other points at the body. A nonlocal continuum mechanic
model based on the Eringen’s theory has been proposed for accounting the size dependency of very small
structures [9]. In this paper, longitudinal wave propagation of a functionally graded piezomagnetic nano-rod
subjected to two-dimensional electric and magnetic potentials has been carried out using a nonlocal model.
The necessity of this study is clarified by performing a comprehensive literature review.

Ikeda [13] presented piezomagnetic analysis of magneto-elastic waves in a ferromagnetic thin film. The
multi-field equations accounting for magneto-elastic behavior have been used for analysis of the wave prop-
agation in the thin film. The obtained results have been confirmed with experiments. Kuo and Huang [15]
presented a unified method based on the inclusion formulation for identification of the magnetic, electric, and
elastic fields in a composite with piezoelectric and piezomagnetic phases. The effectivemagneto-electro-elastic
constants such as elastic moduli, piezoelectric coefficients, dielectric constants, piezomagnetic coefficients,
magnetoelectric, and magnetic permeability of the composites were expressed explicitly in terms of phase
properties, volume fraction, and inhomogeneity shape. Ashida and Tauchert [5] presented wave propagation
analysis of a circular piezoelectric plate subjected to one-dimensional heat conduction using the Laplace trans-
form technique. The authors presented numerical results for two cases of piezoelectric and nonpiezoelectric
materials. Hsu [12] studied electromechanical behavior of piezoelectric laminated composite beams using the
differential quadrature method (DQM). The Chebyshev–Gauss–Lobatto sample point equation was used to
select the sample points. The electromechanical responses of piezoelectric laminated composite beams with
various boundary conditions were determined. He and Guan [11] studied the fundamental equations of the
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space problem for transversely isotropy piezoelectric/piezomagnetic and elastic media. The multi-field equa-
tions were derived using the 3D elastic displacement, electric potential, and magnetic potential functions. Lu
et al. [20] used the nonlocal plate model for the Kirchhoff and the Mindlin plate theories. The assumed theory
was based on Eringen’s theory of nonlocal continuum.Wang et al. [28] employed a nonlocal elasticity solution
for evaluation of the length-dependent in-plane stiffness of achiral and chiral single-walled carbon nanotubes.

The wave propagating in 1D nanostructures with initial axial stress was investigated by Song et al. [26,
27]. They used a nonlocal elastic model incorporating with strain gradient theory. The governing equations
for longitudinal and transverse waves in bars and beams have been derived using two scale parameters for
introducing the size effect. The phase and group velocities of wave propagation were obtained analytically.
Yan and Jiang [30] studied the surface effects on the vibration and buckling behavior of a simply supported
piezoelectric nano-plate (PNP) by using a modified Kirchhoff plate model. Two kinds of in-plane constraints
were defined for the PNP, and the surface effects were accounted for in the modified plate theory through the
surface piezoelectricity model and the generalized Young–Laplace equations.

Wu and Hui [29] studied analytical and numerical solution of a nonlocal elastic bar in tension. Assadi and
Farshi [6] studied the size-dependent free vibration analysis of nanotubes with surface effects. The Love’s
model of rods for study of longitudinal waves was employed. In order to simulate shear deformation, the
Timoshenko beam model was used as supplementary analysis. Güven [19] considered the effect of initial
stress on the wave propagation analysis of a nano-rod using a unified nonlocal model with two length scale
parameters. The phase velocity of the nano-rod was derived explicitly in terms of nanoscale parameters,
material properties and initial stress using Hamilton principle. Song et al. (2012) used a high-order continuum
model and surface elasticity to studywave propagation in nano-wires. The results including phase velocitywere
evaluated in terms of different mechanical and nanoscale parameters. Ghorbanpour et al. [16] studied vibration
analysis of the coupled system of double-layered graphene sheets (CS-DLGSs) embedded in a Visco-Pasternak
foundation. The equation of motion was derived using the nonlocal elasticity theory of an orthotropic plate.
Electro-thermal transverse vibration of fluid-conveying double-walled boron nitride nanotubes (DWBNNTs)
was studied by Ghorbanpour et al. [17]. The elastic medium was described by spring and van der Waals (vdW)
forces between inner and outer nanotubes. Yan and Jiang [30] studied the surface effects on the vibration and
buckling behavior of a simply supported piezoelectric nano-plate by using a modified Kirchhoff plate model.
The stresses and strains of a functionally graded Timoshenko beam subjected to an arbitrary transverse loading
were studied using the energy method by Hadi et al. [10].

A new higher-order shear deformation theory based on trigonometric shear deformation theory was devel-
oped for considering the size effects using the nonlocal elasticity theory by Nami and Janghorban [21]. Chen
et al. [8] studied wave propagation analysis of a nano-sized, transversely isotropic cylinder. They used thin
layer model to consider surface elasticity. They indicated that the surface effect has an important influence on
the wave propagation of the nano-cylinder. Mohammadimehr and Rahmati [22] studied the electro-thermo-
mechanical vibration analysis of nano-rod subjected to electric potential. They employed nonlocal elasticity
theory for analysis. Güven [18] derived the equations of motion for one-dimensional wave propagation in
a nano-bar. The phase velocities using the local and nonlocal solutions were calculated and compared in
order to study the effect of the nonlocal parameter. Some electromechanical analyses of functionally graded
piezoelectric materials have been performed by the author [1–4,24].

The purpose of this study is to derive fundamental governing differential equations of wave propagation
in a functionally graded magneto-electro-elastic nano-rod subjected to two-dimensional electric and magnetic
potentials. For constituting the governing differential equations of the motion, a unified nonlocal elasticity
model is used. Magneto-electro-elastic relations are used to account for the effect of multi-fields and nanoscale
parameters on the nonlocal solutions of the nano-bar.

2 Formulation

2.1 Magnetoelectric fields

In this section, the basic relations of magneto-electro-elastic analysis are implemented. It is assumed that the
nano-rod is made of magneto-electro-elastic materials. Three constitutive equations for identification of the
structural behavior made of this material are expressed in vector form [7,14,25]:
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T = Cε − eE − dH,

D = eε + ηE + gH,

B = dε + gE + μH, (1)

where T and ε are stress and strain tensors, E and D are electric field and electric displacement tensors, H and
B are magnetic field and magnetic displacement components and C, e and η are elastic stiffness, piezoelectric
and dielectric tensors, respectively. d, g and μ are piezomagnetic, electromagnetic and magnetic coefficient
tensors, respectively. The constitutive and piezoelectric relations are defined in terms of physical components
as [25]:

Ti j = Ci jklεkl − ei jk Ek − di jk Hk,

Di = ei jkε jk + ηik Ek + gik Hk,

Bi = di jkε jk + gik Ek + μik Hk, (2)

where the components of the electric and magnetic fields Ek, Hk are defined as:

Ek = − ∂φ

∂xk
,

Hk = − ∂�

∂xk
, (3)

where φ and � are the electric and magnetic potential. The magnetic and electric fields are introduced by
considering the electric and magnetic potentials based on a two-dimensional electric potential as:

�(x, z, t) = φ1(x3)φ(x1, t),

φ1(x3) =
(
1

2
+ x3

h

)e

V0, e ≥ 1, (4)

where V0 is an applied voltage at the top of the nano-rod and ( 12 + z
h )e is the assumed distribution for the

electric potential along the transverse direction. For example, e=1 is corresponding to a linear distribution
and a greater value presents a higher-order distribution of the electric potential. Based on the assumed electric
potential in Eq. (4), the electric field components are derived as [2,3]:

�(x1, x3, t) =
(
1

2
+ x3

h

)e

V0φ(x1, t),

E1 = − ∂�

∂x1
= −

(
1

2
+ x3

h

)e

V0
∂φ(x1, t)

∂x1
,

E3 = − ∂�

∂x3
= − e

h

(
1

2
+ x3

h

)e−1

V0φ(x1, t). (5)

Similar to the electric potential, the magnetic potential of nano-rod is assumed as:

�(x1, x3, t) = �1(x3)�(x1, t),

�1(x3) =
(
1

2
+ x3

h

)e

H0, e ≥ 1, (6)

where H0 is an applied magnetic field at the top of the plate and
( 1
2 + x3

h

)e
is the assumed distribution for the

magnetic potential along the transverse direction. The components of the magnetic field are derived using the
gradient of Eq. (6) as follows:

�(x1, x3, t) =
(
1

2
+ x3

h

)e

V0�(x1, t),

E1 = − ∂�

∂x1
= −

(
1

2
+ x3

h

)e

H0
∂�(x1, t)

∂x1
,

E3 = − ∂�

∂x3
= − e

h

(
1

2
+ x3

h

)e−1

H0�(x1, t). (7)
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2.2 Displacement field and constitutive relations

Based on the Love’s rod model, we have the strain components as follows [18]:{
ε11 = ∂u(x1,t)

∂x
ε22 = ε33 = −νε11

(8)

where εi j are strain components, u(x1, t) is the axial displacement and ν is the Poisson ratio. Using the strain
components defined in Eq. (8), the three displacement components are defined as:⎧⎪⎨

⎪⎩
u(x1, t) = u(x1, t)
v(x1, x2, t) = −νx2

∂u(x1,t)
∂x1

w(x1, x3, t) = −νx3
∂u(x1,t)

∂x1

(9)

where u, v and w are the displacement components along the Cartesian coordinate axes x1, x2, x3.
Linear strain–displacement relations in Cartesian coordinate system are defined as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx = ∂u
∂x1

εyy = ∂v
∂x2

εyy = ∂w
∂x3

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxy = 1/2
(

∂u
∂x2

+ ∂v
∂x1

)

εxz = 1/2
(

∂u
∂x3

+ ∂w
∂x1

)

εyz = 1/2
(

∂v
∂x3

+ ∂w
∂x2

) (10)

Substitution of the displacement components from Eq. (9) into the strain displacement relations (10) yields
the strain components in terms of the axial displacement u(x1, t) as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

εxx = ∂u(x1,t)
∂x

εyy = ∂v(x1,x2,,t)
∂x2

= −ν
∂u(x1,t)

∂x1

εzz = ∂w(x1,x3,t)
∂x3

= −ν
∂u(x1,t)

∂x1

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxy = 1/2
(

∂u
∂x2

+ ∂v
∂x1

)
= −1/2νx2

∂2u(x1,t)
∂x21

εxz = 1/2
(

∂u
∂x3

+ ∂w
∂x1

)
= −1/2νx3

∂2u(x1,t)
∂x21

εyz = 1/2
(

∂v
∂x3

+ ∂w
∂x2

)
= 0

(11)

The stress components must be in dynamic equilibrium with the body and inertia forces:

∂Ti j
∂xj

+ ρBi = ρai i = 1, 2, 3, (12)

where Ti j and Bi are the components of the stress tensor and the body force, ai are acceleration components
and ρ is the density of the material. Extension of Eq. (12) in a three dimensional coordinate system with no
body force effect gives: ⎧⎪⎪⎨

⎪⎪⎩

∂T11
∂x1

+ ∂T12
∂x2

+ ∂T13
∂x3

= ρ ∂2u
∂t2

∂T21
∂x1

+ ∂T22
∂x2

+ ∂T23
∂x3

= ρ ∂2v
∂t2

∂T31
∂x1

+ ∂T32
∂x2

+ ∂T33
∂x3

= ρ ∂2w
∂t2

(13)

The generalizedHooke’s law using Lamé’s constants and considering electro-magneto effects yields the stress–
strain relation as follows [1,4]:

Ti j = 2μεi j + λεkkδi j − ei jk Ek − qi jk Hk →

⎧⎪⎪⎨
⎪⎪⎩

T11 = Eε11 − e111E1 − e113E3 − q111H1 − q113H3

T12 = −μνx2
∂2u
∂x21

T13 = −μνx3
∂2u
∂x21

(14)

where μ and λ are Lamé constants, ei jk are the piezoelectric constants, qi jk the piezomagnetic coefficients,
Ek is the electric field and Hk is the magnetic field. Substitution of the nonzero components of stress into the
equations of motion (13) yields: ⎧⎪⎪⎨

⎪⎪⎩

∂T11
∂x1

+ ∂T12
∂x2

+ ∂T13
∂x3

= ρ ∂2u
∂t2

∂T21
∂x1

= ρ ∂2v
∂t2

∂T31
∂x1

= ρ ∂2w
∂t2

(15)
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The unified nonlocal elasticity model by considering the electric and magnetic effects is used as [18,21,23]

(1 − l2m∇2)Ti j = (1 − l2s ∇2)(2μεi j + λεkkδi j ) − ei jk Ek − qi jk Hk, (16)

where ∇2 is the Laplacian operator. Substitution of the nonzero components of stress and strain from the
corresponding equations gives:

T11 − l2m
∂2T11
∂x21

= E

(
ε11 − l2s

∂2ε11

∂x21

)
− e111E1 − e113E3 − q111H1 − q113H3,

T12 − l2m
∂2T12
∂x21

= 2G

(
ε12 − l2s

∂2ε12

∂x21

)
,

T13 − l2m
∂2T13
∂x21

= 2G

(
ε13 − l2s

∂2ε13

∂x21

)
. (17)

For the derivation of the stress components from Eq. (17), it is necessary to evaluate the second derivative of
the stress components using the equations of motion. For this purpose, one-time differentiation of Eq. (15)
with respect to x1, x2, x3 should be performed. After these operations, we will have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2T11
∂x21

+ ∂2T12
∂x2∂x1

+ ∂2T13
∂x3∂x1

= ρ ∂3u
∂x1∂t2

∂2T21
∂x2∂x1

= ρ ∂3v
∂x2∂t2

∂2T31
∂x3∂x1

= ρ ∂3w
∂x3∂t2

(18)

By substitution of shear stress from the nonlocal form of Hooke’s law (18), we have:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2T11
∂x21

= ρ ∂3u
∂x1∂t2

− ∂2T12
∂x2∂x1

− ∂2T13
∂x3∂x1

→ ∂2T11
∂x21

= ρ(1 + ν)
∂3u(x1,t)
∂x1∂t2

+ ∂(ρνx3)
∂x3

∂3u(x1,t)
∂x1∂t2

∂2T21
∂x2∂x1

= ∂
∂x2

{
ρ ∂2v

∂t2

}
= ∂

∂x2

{
ρ ∂2v

∂t2

}
= −ρν

∂3u(x1,t)
∂x1∂t2

∂2T31
∂x3∂x1

= ∂
∂x3

{
ρ ∂2w

∂t2

}
= − ∂

∂x3

{
ρνx3

∂3u(x1,t)
∂x1∂t2

} (19)

After appropriate changes and some simplifications, we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2T11
∂x21

=
{
ρ(1 + 2ν) + νx3

∂ρ
∂x3

}
∂3u(x1,t)
∂x1∂t2

∂2T21
∂x2∂x1

= −ρν
∂3u(x1,t)
∂x1∂t2

∂2T31
∂x3∂x1

= − ∂
∂x3

{
ρνx3

∂3u(x1,t)
∂x1∂t2

} (20)

Finally, three components of stress in terms of displacement components and electric and magnetic functions
are derived as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T11 = l2m
{
ρ(1 + 2ν) + νx3

∂ρ
∂x3

}
∂3u(x1,t)
∂x1∂t2

+ E

(
∂u(x1,t)

∂x1
− l2s

∂3u(x1,t)
∂x31

)
+ e111

( 1
2 + x3

h

)e
V0

∂φ(x1)
∂x1

+ e113
e
h

( 1
2 + x3

h

)e−1
V0φ(x1) + q111

( 1
2 + x3

h

)e
H0

∂�(x1)
∂x1

+ q113
e
h

( 1
2 + x3

h

)e−1
H0�(x1)

T21 = −l2mρνx2
∂4u(x1,t)
∂x21∂t2

+ E
2(1+ν)

νx2

{
− ∂2u(x1,t)

∂x21
+ l2s

∂4u(x1,t)
∂x41

}

T13 = −l2mρνx3
∂3u(x1,t)
∂x21∂t2

+ E
2(1+ν)

νx3

{
− ∂2u(x1,t)

∂x21
+ l2s

∂4u(x1,t)
∂x41

}
(21)
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For an electromechanical system, electric displacement is defined as [2–4,24]:

Di = ei jkε jk + ηik Ek + gik Hk,

D1 = e111ε11 + η11E1 + η13E3 + g11H1 + g13H3 = e111
∂u(x1, t)

∂x1
− η11

(
1

2
+ x3

h

)e

V0
∂φ(x1, t)

∂x1

− η13
e

h

(
1

2
+ x3

h

)e−1

V0φ(x1, t) − g11

(
1

2
+ x3

h

)e

H0
∂�(x1, t)

∂x1
− g13

e

h

(
1

2
+ x3

h

)e−1

H0�(x1, t),

D3 = e311ε11 + η31E1 + η33E3 + g31H1 + g33H3 = e311
∂u(x1, t)

∂x1
− η31

(
1

2
+ x3

h

)e

V0
∂φ(x1, t)

∂x1

− η33
e

h

(
1

2
+ x3

h

)e−1

V0φ(x1, t) − g31

(
1

2
+ x3

h

)e

H0
∂�(x1, t)

∂x1
− g33

e

h

(
1

2
+ x3

h

)e−1

H0�(x1, t).

(22)

Therefore, the magnetic induction components are derived as follows:

Bi = qi jkε jk + gik Ek + μik Hk,

B1 = q111ε11 + g11E1 + g13E3 + μ11H1 + μ13H3 = q111
∂u(x1, t)

∂x1
− g11

(
1

2
+ x3

h

)e

V0
∂φ(x1, t)

∂x1

− g13
e

h

(
1

2
+ x3

h

)e−1

V0φ(x1, t) − μ11

(
1

2
+ x3

h

)e

H0
∂�(x1, t)

∂x1
− μ13

e

h

(
1

2
+ x3

h

)e−1

H0�(x1, t),

B3 = q311ε11 + g31E1 + g33E3 + μ11H1 + μ13H3 = q311
∂u(x1, t)

∂x1
− g31

(
1

2
+ x3

h

)e

V0
∂φ(x1, t)

∂x1

− g33
e

h

(
1

2
+ x3

h

)e−1

V0φ(x1, t) − μ31

(
1

2
+ x3

h

)e

H0
∂�(x1, t)

∂x1
− μ33

e

h

(
1

2
+ x3

h

)e−1

H0�(x1, t).

(23)

The required material properties defined in these relations are inhomogeneous along the thickness direction.
Based on this assumption, for a symbolic material property Υ (x3), we have following functionality:

Υ (x3) = (Υt − Υb)

(
1

2
+ x3

h

)n

+ Υb, (24)

whereΥt, Υb arematerial properties at top and bottom, respectively, n is the power index, and 2h is the thickness
of the nano-rod. After derivation of mechanical and electrical components (stress, strain, electric and magnetic
fields, electric and magnetic displacements), Hamilton’s principle is used for derivation of the total energy of
the nano-rod and consequently governs the differential equations of the system.

The kinetic energy of the nano-rod is obtained as follows:

KE =
∫ ∫ ∫

1

2
ρ
{
u̇2 + v̇2 + ẇ2} dx1dx2dx3 =

∫ ∫ ∫
1

2
ρ

{(
∂u(x1, t)

∂t

)2

+
(

νx2
∂2u(x1, t)

∂t∂x1

)2

+
(

νx3
∂2u(x1, t)

∂t∂x1

)2
}
dx1dx2dx3. (25)

The strain energy of the system is

U =
∫ ∫ ∫

1

2
{T11ε11 + 2T12ε12 + 2T13ε13 − D1E1 − D3E3 − B1H1 − B3H3}dx1dx2dx3. (26)
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Substitution of the required equations for stress, strain, electric displacement and electric field from Eqs. (11,
21, 22, 23) gives the strain energy as follows:

U =
∫∫∫

1

2

{[
l2m

{
ρ(1 + 2ν) + νx3

∂ρ

∂x3

}
∂3u(x1, t)

∂x1∂t2
+ E

(
∂u(x1, t)

∂x1
− l2s

∂3u(x1, t)

∂x31

)
+ e111

(
1

2
+ z

h

)e

V0
∂φ(x1, t)

∂x1

+e113
e

h

(
1

2
+ z

h

)e−1

V0φ(x1, t) + q111

(
1

2
+ z

h

)e

H0
∂ψ2(x1, t)

∂x1
+ q113

e

h

(
1

2
+ z

h

)e−1

H0ψ2(x1, t)

]
∂u(x1, t)

∂x1

+
[
−l2mρνx2

∂4u(x1, t)

∂x21∂t
2

+ E

2(1 + ν)

{
−νx2

∂2u(x1, t)

∂x21
+ l2s νx2

∂4u(x1, t)

∂x41

}][
−νx2

∂2u(x1, t)

∂x2

]

+
[
−l2mρνx3

∂4u(x1, t)

∂x21∂t
2

+ E

2(1 + ν)

{
−νx3

∂2u(x1, t)

∂x21
+ l2s νx3

∂4u(x1, t)

∂x41

}][
−νx3

∂2u(x1, t)

∂x2

]

+
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In order to obtain final equations of motion, Hamilton’s principle is used as
∫ t2

t1
(δKE − δU )dt = 0. (28)

Considering the variation of the kinetic and the potential energy in Hamilton’s principle and performing
integration by part yields three governing differential equations of motion in terms of the coefficients of
δu, δφ, δ� as follows:

δu: − A
∂2u

∂t2
+ B

∂4u

∂t2∂x21
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(29)

where all integration constants A, B, …, Z and A1 . . .G1 are expressed in the Appendix. Considering the
harmonic longitudinal wave propagation equation and harmonic electric and magnetic potentials along the
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longitudinal direction using u(x1, t) = Ueik(x1−ct), φ(x1, t) = Φeik(x1−ct), Ψ (x1, t) = Ψ eik(x1−ct) and sub-
stitution into the governing differential equation yields [26,27]⎡

⎣χ11 χ12 χ13
χ21 χ22 χ23
χ31 χ32 χ32

⎤
⎦
⎧⎨
⎩
U
�
�

⎫⎬
⎭ =

⎧⎨
⎩
0
0
0

⎫⎬
⎭ , (30)

whereχi j are functions of integration constants shown in theAppendix, k is thewave number, and c is the phase
velocity. To obtain the velocity of wave propagation, the determinant of the matrix [χi j ] must be considered
zero.

3 Numerical results and discussion

The numerical results of the problem are calculated using the determinant of the matrix [χi j ] derived in
Eq. (30) in terms of different parameters of the electro-magneto-mechanical system. The obtained results

Fig. 1 Dimensionless real part of c in terms of wave number for different values of power index for V0 = 5V and H0 = 5A

Fig. 2 Dimensionless real part of c in terms of wave number for different values of power index for V0 = 10V and H0 = 10A
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Fig. 3 Real part of c in terms of power index for different applied voltage and magnetic

Fig. 4 Imaginary part of c in terms of power index for different applied voltage

contain real and imaginary parts of c. These results are presented in terms of power index n, wave number k
and applied magnetic field and voltage H0, V0. The dimension of the cross section of the nano-rod is assumed
as b = h = 1nm. The numerical values of the material constants are stated as:

ρ = 5500
kg

m3 , ν = 0.3, E = 226GPa, e111 = 9.3
C

m2 , e113 = −2.2
C

m2 ,

q113 = 290, q333 = 350, η11 = 5.64 × 10−9 C

mV
,

η33 = 6.35 × 10−9 C

mV
, g13 = 5.37 × 10−12 Ns

CV
, g33 = 2737 × 10−12 Ns

CV
,

μ11 = −297 × 10−6 Ns
2

C2 , μ13 = 83 × 10−6 Ns
2

C2 .

Shown in Fig. 1 is the distribution of the dimensionless real part of the phase velocity c in terms of the
wave number for different values of the power index for V0 = 5V and H0 = 5A. It is concluded that with
increasing the wave number, the real part of c decreases considerably. Furthermore, investigation on the effect
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Fig. 5 Dimensionless imaginary part of c in terms of wave number for different power index for V0 = 10 V and H0 = 10 A

Fig. 6 Dimensionless imaginary part of c in terms of wave number for different power index for V0 = 5 V and H0 = 5 A

of power index n indicates that with increasing the power index, the phase velocity decreases. This decreasing
is due to decreasing the stiffness of materials.

Shown in Fig. 2 is the distribution of the dimensionless real part of the phase velocity c in terms of the wave
number for different values of the power index for V0 = 10V and H0 = 10 A. Decreasing phase velocity c,
with increasing power index n and wave number k, is concluded from Fig. 2.

Figure 3 shows the distribution of the dimensionless imaginary part of the phase velocity c in terms of the
power index n, for different values of applied magnetic and voltage. It can be concluded that with increasing
applied voltage and magnetic field, the imaginary part of the phase velocity decreases considerably.

The other important results of Fig. 3 are that the distribution of the imaginary part for different values of
the power index has a minimum value for n = 2.

Figure 4 shows the distribution of the dimensionless imaginary part of the phase velocity c in terms of
the wave number for different values of applied voltage and magnetic field. It can be concluded that with
increasing applied voltage and magnetic field and wave number, the imaginary part decreases considerably.



Analysis of wave in a functionally graded magneto-electro-elastic nano-rod 2539

Fig. 7 Dimensionless real part of c in terms of nonlocal parameter of nano-rod for different power index for V0 = 5 V and
H0 = 5 A

Fig. 8 Dimensionless real part of c in terms of nonlocal parameter of nano-rod for different power index for V0 = 10 V and
H0 = 10 A

Shown in Figs. 5 and 6 are the dimensionless imaginary part of the phase velocity c in terms of the wave
number for different values of the power index for V0(H0) = 10V(A) and V0(H0) = 5V(A), respectively. It
can be concluded that with increasing the power index n, and wave number k, the imaginary part increases.

To study the effect of nonlocal parameters of unified nonlocal elasticity (ls, lm), a numerical analysis is
performed for different values of nonlocal parameter and power index when two parameters are assumed
identical (ls = lm). Figures 7 and 8 show the dimensionless real part of the phase velocity in terms of the
nonlocal parameter for different values of the power index for V0 = H0 = 5 and V0 = H0 = 10, respectively.
It is concluded that increasing the nonlocal parameter decreases the phase velocity considerably. The trend of
these results is in accordance with the literature [26,27].
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4 Conclusion

In this study, a nonlocal elasticity solution was developed for the analysis of wave propagation in a functionally
graded magneto-electro-elastic nano-rod subjected to two-dimensional electric and magnetic potentials. The
effect of important parameters such as nanoscale parameters, applied voltage and and magnetic field, wave
number and power index was investigated on the real and imaginary part of the phase velocity. Some important
results of this paper are expressed as follows:

1. Investigation on the distribution of the real part of the phase velocity c in terms of different values of
power index and wave number indicates that increasing the wave number and power index leads to a
decreasing real part of c. The important reason for decreasing the phase velocity is a decreasing stiffness
of the material along the longitudinal direction.

2. The distribution of the of imaginary part of phase velocity in terms of wave number and power index
shows that for n = 2, the phase velocity has a minimum value. Increasing the wave number leads to
increasing phase velocity.

3. The applied voltage and magnetic field play an important role in changing the imaginary part of the phase
velocity of the nano-rod. Investigation on the distribution of the imaginary part of the phase velocity for
different values of applied magnetic field and voltage indicates that increasing the applied voltage and
magnetic field decreases considerably the dimensionless imaginary part of the phase velocity.

4. Nonlocal parameters of unified nonlocal elasticity theory have a considerable effect on the change of the
phase velocity. The numerical results indicate that the phase velocity is decreased with increasing the
nonlocal parameters of the nano-rod.

Acknowledgments The research described in this paper was financially supported by the University of Kashan (Grant Number:
463865/17) and Iranian Nanotechnology Development Committee. I would like to thank Dr. Loghman for language editing of
this paper.
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