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Abstract In this paper, the plane problem of a frictionless receding contact between an elastic functionally
graded layer and two homogeneous quarter planes is considered when the graded layer is pressed against the
quarter planes. The top of the layer is subjected to normal tractions over a finite segment. The graded layer
is modeled as a non-homogeneous medium with a constant Poisson’s ratio and exponentially varying shear
modules. The problem is converted into the solution of a Cauchy-type singular integral equation in which the
contact pressure and the receding contact half-length are the unknowns using integral transforms. The singular
integral equation is solved numerically using Gauss–Jacobi integration. The corresponding receding contact
half-length that satisfies the global equilibrium condition is obtained using an iterative procedure. The effect
of the material non-homogeneity parameter on the contact pressure and on the length of the receding contact
is investigated.

1 Introduction

The materials research community has recently been exploring the possibility of using new concepts in coating
or layer design such as functionally gradedmaterials (FGMs) in whichmaterial properties vary smoothly along
a spatial direction, as an alternative to the conventional homogeneous coating and layer [1].As the application of
FGMs has increased in modern industries, new methodologies have been developed to analyze the mechanical
behavior of functionally graded elements. Also, there are many engineering applications where the stress
analysis at the interface between two bodies in contact is principal in the structural design as the response of
the structure depends on it. Examples of these applications in mechanical engineering are railways, foundation
grillages, connecting rods, joint and support elements, rolling mills and pavements of highways and airfields
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[2,3]. So, problems involving the contact of two separate bodies pressed against each other have widely been
studied by many researchers. Although the contact area increases after the application of the load in many
cases, there are others where the contact area becomes smaller. This kind of problem is called receding in the
literature. In other words, a contact can be named receding if the contact area in the loaded configuration is
contained within the initial contact area [4].

Among the analytical studies on receding contact, the following are recorded in the literature. Keer et al.
[5] solved the smooth receding contact problem between an elastic layer and a half-space when two bodies
were pressed against each other by considering both plane and axisymmetric cases.

The same problem was solved treating the layer as a simple beam by Gladwell [6]. The frictionless contact
problem for an elastic layer resting on two quarter planes and loaded compressively was solved by Erdogan
and Ratwani [7]. Civelek and Erdogan [8] investigated the general axisymmetric double frictionless contact
problem for an elastic layer resting on a half-space and pressed by an elastic stamp. The smooth receding contact
problem for an elastic layer pressed against a half-space by frictionless semi-infinite elastic was examined by
Gecit [9]. Aksogan et al. [10,11] studied a contact problem for an elastic layer supported by two elastic quarter
planes with both symmetrical loading and axisymmetric loading. Comez et al. [12] solved a double receding
contact problem for two elastic layers having different elastic constants and heights and pressed by a rigid
stamp. Kahya et al. [13] considered a frictionless receding contact problem between an anisotropic elastic
layer and an anisotropic elastic half plane, when the two bodies were pressed together by means of a rigid
circular stamp. Yaylacı and Birinci [14] studied a receding contact problem of two elastic layers supported by
two elastic quarter planes. The solution of a receding contact problem using an analytical method and a finite
element method was examined by Oner et al. [15].

A receding contact plane problem for a functionally graded layer pressed against a homogeneous half-space
was analyzed by El-Borgi et al. [1]. A multilayered model for sliding frictional contact analysis of functionally
graded materials (FGMs) with arbitrarily varying shear modulus under plane strain-state deformation has been
developed by Ke and Wang [16]. The two-dimensional frictionless contact problem of a coating structure
consisting of a surface coating, a functionally graded layer and a substrate under a rigid cylindrical punch was
investigated by Yang and Ke [17]. Barik et al. [18] studied the stationary plane contact of a functionally graded
heat conducting punch and a rigid insulated half-space. The frictionless contact problem of a functionally
graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical
punch was examined by Ke et al. [19]. Sliding frictional contact between a rigid punch and a laterally graded
elastic medium was studied by Dag et al. [20]. Rhimi et al. [21,22] considered the axisymmetric problem of a
frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space when
the two bodies were pressed together and double receding contact between a rigid stamp of axisymmetric
profile, an elastic functionally graded layer and a homogeneous half-space. Chen and Chen [23] studied the
contact behavior of a graded layer resting on a homogeneous half-space and pressed by a rigid stamp. Comez
[24] considered a contact problem for a functionally graded layer loaded by means of a rigid stamp and
supported by a Winkler foundation. The plane problem of a frictional receding contact formed between an
elastic functionally graded layer and a homogeneous half-space, when they were pressed against each other,
was investigated by El-Borgi et al. [25].

Although the receding contact problem of a homogeneous layer resting on two quarter planes has been
studied by Erdogan and Ratwani [7] and Aksogan et al. [10], the problem has not been investigated in case
of a functionally graded layer yet. In this paper, the plane problem of a frictionless receding contact between
an elastic functionally graded layer and two homogeneous quarter planes is considered when the graded layer
is pressed against the quarter planes. The problem is reduced to a Cauchy-type singular integral equation in
which the unknowns are the receding contact half-length and contact pressure by using Fourier and Mellin
integral transforms. The contact pressures and the length of the receding contact are calculated for various
values of the material non-homogeneity parameter, loading and distance between the quarter planes by solving
the resulting singular integral equation.

2 Formulation of the problem

As shown in Fig. 1, consider the symmetric plane strain problem consisting of an infinitely long functionally
graded (FG) layer of thickness h resting on two quarter planes. For the layer, the Poisson’s ratio ν1 is taken as
constant and the shear modulus μ1 depends on the y-coordinate only as follows:

μ1(y) = μ0 exp(βy), −h ≤ y ≤ 0, (1)
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Fig. 1 Geometry and loading of the receding contact problem

whereμ0 is the shear modulus of the graded layer at y = 0 and β is the non-homogeneity parameter controlling
the variation of the shear modulus in the graded layer. The quarter planes have constant Poisson’s ratio ν2 and
shear modulus μ2.

The top of the layer is subjected to a distributed load q(x) over the segment |x | ≤ a. The main unknowns
of the problem are the contact pressure, denoted p(x), over the contact area c−b ≤ x ≤ c+b and the receding
contact half-length, namely b.

It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted
through the contact surfaces. In addition, x = 0 is to be the plane of symmetry with respect to external loads as
well as geometry, for simplicity. Clearly, it is sufficient to consider one half (i.e., x ≥ 0) of the medium only.

Assuming that the FG layer is isotropic at every point, equilibrium equations with body forces neglected,
the strain–displacement relationships and the linear elastic stress–strain law, respectively, given by:

∂σx

∂x
+ τxy

∂y
= 0,

∂τxy

∂x
+ ∂σy

∂y
= 0, (2a,b)

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
, (3a,b,c)

σx = μ1

κ1 − 1

[
(1 + κ1)εxx + (3 − κ1)εyy

]
, (4a)

σy = μ1

κ1 − 1

[
(3 − κ1)εxx + (1 + κ1)εyy

]
, (4b)

τxy = 2μ1εxy, (4c)

where u and v are the x and y components of the displacement field, respectively; σx , σy and τxy are the
components of the stress field in the same coordinate system; εx , εy and εxy are the corresponding components
of the strain field; and κ1 is a material property defined as κ1 = 3− 4ν1 for plane strain problems. Combining
Eqs. (1)–(4), the following two-dimensional Navier equations are obtained:

(κ1 + 1)
∂2u

∂x2
+ (κ1 − 1)

∂2u

∂y2
+ 2

∂2v

∂x∂y
+ β(κ1 − 1)

∂u

∂y
+ β(κ1 − 1)

∂v

∂x
= 0, (5a)

(κ1 − 1)
∂2v

∂x2
+ (κ1 + 1)

∂2v

∂y2
+ 2

∂2u

∂x∂y
+ β(3 − κ1)

∂u

∂x
+ β(κ1 + 1)

∂v

∂y
= 0. (5b)
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The boundary conditions for the graded layer can be defined as follows:

σx (x, 0) = −q(x)H(a − |x |), τxy(x, 0) = 0, 0 ≤ x < ∞, (6a,b)

σx (x,−h) = −p(x)H(b − |x − c|), τxy(x,−h) = 0, 0 ≤ x < ∞, (6c,d)

where H is the Heaviside function.
For the homogeneous quarter plane, using the Airy stress function provides convenience, and the stress

components and displacement components can be written in polar coordinates (r, θ) assuming zero body
forces as follows:

ϕ = ϕ(r, θ), (7)

σr = 1

r2
∂2ϕ

∂θ2
+ 1

r

∂ϕ

∂r
, σθ = ∂2ϕ

∂r2
, τrθ = −1

r

∂2ϕ

∂r∂θ
, (8a,b,c)

2Gur = −∂ϕ

∂r
+ (1 − υ)r

∂�

∂θ
, 2Guθ = −∂ϕ

∂θ
+ (1 − υ)r2

∂�

∂r
, (9a,b)

where ϕ is the Airy stress function; σr , σθ and τrθ are the components of the stress field; ur and uθ are the
components of the displacement field; and � is a known function defined as:


� = 0,
∂

∂r

(
r
∂�

∂θ

)
= 
ϕ. (10a,b)

Equations (8a,b,c) satisfy the equilibrium equations automatically, and the compatibility equation becomes

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂θ2

)2

ϕ = 0. (11)

The boundary conditions for the quarter plane can be defined as follows:

σr (r, 0) = pr (r)H(b − |r − b|), τrθ (r, 0) = 0, 0 ≤ r < ∞, (12a,b)

σr

(
r,

π

2

)
= 0, τrθ

(
r,

π

2

)
= 0, 0 ≤ r < ∞, (12c,d)

where pr (r) is the contact pressure over the contact surface 0 ≤ r ≤ 2b and equals to p(r) = −p(x). In
addition, it is assumed that the stress field goes to zero at infinity,

σx (x, y) = 0, τzy(x, y) = 0, x2 + y2 → ∞, (13a,b)

σr (r, θ) = 0, τrθ (r, θ) = 0, r2 → ∞. (13c,d)

The global equilibrium of the FG layer can be expressed as:

a∫
0

q(x)dx =
c+b∫
c−b

p(x)dx . (14)

In order to ensure continuity of the vertical displacement and eliminate rigid-body motion through the contact
surface, the displacement field is subjected to the following boundary condition:

∂

∂x
[v1(x,−h) − v2(x,−h)] = 0, c − b ≤ x ≤ c + b, (15)

where v1 is the vertical displacement of the FG layer, whereas v2 is the vertical displacement of quarter plane
in Cartesian coordinates (x, y) given by:

v2(x, −h) = uθ (r, 0), c − b ≤ x ≤ c + b, 0 ≤ r ≤ 2b. (16)
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3 Solution of the contact problem

Using symmetry considerations and Fourier transforms, the displacement components for the FG layer may
be written as

u(x, y) = 2

π

∞∫
0

φ(ξ, y) sin (ξ x)dξ, v(x, y) = 2

π

∞∫
0

ψ(ξ, y) cos (ξ x)dξ, (17a,b)

where φ(ξ, y)and ψ(ξ, y)are the Fourier sine and Fourier cosine transforms of u and v with respect to the
x-coordinate, respectively. Substituting Eqs. (17a,b) into the plane elasticity equations (5a,b), the following
ordinary differential equations are obtained:

−(κ1 + 1)ξ2φ + (κ1 − 1)
d2φ

dy2
− 2ξ

dψ

dy
+ β(κ1 − 1)

[
dφ

dy
− ξψ

]
= 0, (18a)

−(κ1 − 1)ξ2ψ + (κ1 + 1)
d2ψ

dy2
+ 2ξ

dφ

dy
+ β

[
(3 − κ1)ξφ + (κ1 + 1)

dψ

dy

]
= 0, (18b)

where

φ =
4∑
j=1

A j exp
(
n j y
)
, ψ =

4∑
j=1

A jm j exp
(
n j y
)
. (19a,b)

The unknown functions A j ( j = 1, 2, 3, 4) are determined from the boundary conditions, and n1, . . . , n4 are
the four complex roots of the characteristic equation associated with Eqs. (18a,b), which may be written as:

n4j + 2βn3j + (β2 − 2ξ2)n2j − 2ξ2βn j + ξ2
(

ξ2 + β2 3 − κ1

κ1 + 1

)
= 0. (20)

The roots of Eq. (20) are obtained as

n1 = −1

2

⎛
⎜⎝β +

√√√√4ξ2 + β2 − 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ , n2 = −1

2

⎛
⎜⎝β −

√√√√4ξ2 + β2 − 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ ,

(21a,b)

n3 = −1

2

⎛
⎜⎝β +

√√√√4ξ2 + β2 + 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ , n4 = −1

2

⎛
⎜⎝β −

√√√√4ξ2 + β2 + 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ .

(21c,d)

The known function m j in Eq. (19b) may be expressed as follows:

m j =
(
3β + 2n j − βκ1

) [
n j
(
β + n j

)
(κ1 + 1) − ξ2 (κ1 + 3)

]
ξ
[
4ξ2 − β2 (κ1 − 3) (κ1 + 1)

] , ( j = 1, 2, 3, 4). (22)

Substituting Eqs. (17,19) into Eqs. (4), the stress field for the graded layer is obtained as

σy = 2μ0 exp (βy)

π (κ1 − 1)

∞∫
0

4∑
j=1

A jC j exp
(
n j y
)
cos (ξ x) dξ, (23a)

τxy = 2μ0 exp (βy)

π

∞∫
0

4∑
j=1

A j D j exp
(
n j y
)
sin (ξ x) dξ, (23b)
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in which the known functions C j and Dj ( j = 1, 2, 3, 4) are given by:

C j = (3 − κ1) ξ + (κ1 + 1)m jn j , Dj = n j − ξm j . (24a,b)

Applying boundary conditions (6a-d) to the stress field (23a,b), the following linear algebraic system of
equations is obtained:

⎡
⎢⎣

C1 C2 C3 C4
D1 D2 D3 D4

C1 exp (−n1h) C2 exp (−n2h) C3 exp (−n3h) C4 exp (n4h)
D1 exp (−n1h) D2 exp (−n2h) D3 exp (−n3h) D4 exp (n4h)

⎤
⎥⎦
⎧⎪⎨
⎪⎩
A1
A2
A3
A4

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

−qt

0
−pt

0

⎫⎪⎬
⎪⎭, (25)

where q and p are known functions defined as:

qt = κ1 − 1

μ0

∞∫
0

q (x) cos (ξ x) dξ =κ1 − 1

μ0

a∫
0

q
(
tq
)
cos
(
ξ tq
)
dξ, (26a)

pt = κ1 − 1

μ0 exp (−βh)

∞∫
0

p (x) cos (ξ x) dξ = κ1 − 1

μ0 exp (−βh)

c+b∫
c−b

p (t) cos (ξ t) dξ. (26b)

The unknown functions A j ( j = 1, 2, 3, 4)may be obtained in terms of qt and pt solving Eq. (25) analytically
and can be expressed as

A j = A j1 p
t + A j2q

t , (26)

where A j1 and A j2 ( j = 1, . . . , 4) are shown in Appendix 1. Equation (11) can be solved using the Mellin
transform with respect to the r-coordinate:

(
∂2

∂θ2
+ (s + 2)2

)(
∂2

∂θ2
+ s2

)
ϕM = 0, (27)

in which ϕM is the Mellin transform of the Airy stress function:

ϕM =
∫ ∞

0
ϕrs−1dr . (28)

The solution of the ordinary differential equation (27) may be defined as

ϕM = B1e
isθ + B2e

−isθ + B3e
i(s+2)θ + B4e

−i(s+2)θ , (29)

where Bj ( j = 1, 2, 3, 4) are the unknown functions that will be determined from the boundary conditions
(12). Using the Mellin transform after multiplying r2, the stress field (8) and the displacement field (9) are
obtained:

(
r2σr

)M =
(

∂2

∂θ2
− s

)
ϕM , (30a)

(
r2τrθ

)M = (s + 1)
∂

∂θ
ϕM , (30b)

2G

(
r2

∂uθ

∂r

)M

= is(s + 1)
(
B1e

isθ − B2e
−isθ

)

+ i [(s + 2)(s + 1) + (1 − υ)(−4s − 4)]
[
B3e

i(s+2)θ − B4e
−i(s+2)θ

]
. (31)
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Applying the boundary conditions (12a-d) to the stress field (30), the following linear algebraic system of
equations is obtained:

⎡
⎢⎣

s (s + 1) s (s + 1) s (s + 1) s (s + 1)
s −s s + 2 −(s + 2)

exp
(

π
2 is
)

exp
(−π

2 is
)

exp
(

π
2 i(s + 2)

)
exp

(−π
2 i(s + 2)

)
s exp

(
π
2 is
) −s exp

(−π
2 is
)

(s + 2) exp
(

π
2 i(s + 2)

) −(s + 2) exp
(−π

2 i(s + 2)
)

⎤
⎥⎦
⎧⎪⎨
⎪⎩

B1
B2
B3
B4

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

psr
0
0
0

⎫⎪⎬
⎪⎭,

(32)
where pr is a known function defined as:

psr =
∞∫
0

pr (r)r
s+1dr =

2b∫
0

pr (τ )τ s+1dτ. (33)

The unknown functions Bj ( j = 1, 2, 3, 4) may be obtained in terms of psr solving Eq. (32) analytically. To
switch from polar coordinates (r, θ) to Cartesian coordinates (x, y) along the direction θ = 0, the following
conversions are considered:

r = x − (c − b), τ = t − (c − b), uθ (r, 0) = v2(x, −h), pr (r) = −p(x). (34a-d)

Applying the remaining boundary condition (16) and using Eqs. (25), (26), (32), (33) and (34) yields the
following singular integral equation, in which the unknowns are the contact pressure p(t) and the receding
contact half-length b:

c+b∫
c−b

{
κ1 + 1

8

(
1

t − x
− 1

t + x

)
+ N1(t, x)

+κ2 + 1

8

μ0 exp (−βh)

μ2

1

x − (c − b)

(
1

α
+ N2(t, x) − π2

π2 − 4

)}
p(t)dt

= exp (−βh)

a∫
0

q(tq) cos
(
ξ tq
)
N3(x)dtq , (35)

in which α, N1, N2 and N3 are given in Appendix 2.
To complete the solution of the problem, the obtained contact pressures must satisfy the equilibrium

condition of the graded layer given by Eq. (14).

4 Numerical solution of the singular integral equation

Using the following dimensionless quantities, the numerical solution of the problem can be simplified:

t = c + br, dt = bdr, x = c + bs, z = ξh, dz = hdξ, (36a-e)

p(t) = Qφ(r)

h
, Q =

a∫
0

q(tp)dtp, (37a,b)

where Q is the resultant force.
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initial estimation 
of b

solve Eq. (46) for
 

verify 

 
assume a new 

value for b 

false 

calculate 
normalized 

contact pressures  

true 

1

?
( ) ( ) 1

N
N

i i
i

i

b
W r g r

h =

≅∑

1, ... , Ng g

Fig. 2 Flowchart of the iterative algorithm

The singular equation (35) and the equilibrium condition (14) become:

1∫
−1

{
κ1 + 1

8

(
1

r − s
− 1

r + s + 2 c/h
b/h

)
+ b

h
k1(r, s)

+κ2 + 1

8

μ0 exp (−βh)

μ2

1

s + 1

(
1

α
+ k2(r, s) − π2

π2 − 4

)}
φ(r)dr

= exp (−βh)

Q/h

a∫
0

q(tq) cos
(
ξ tq
)
k3(s)dtq , (38)

k1(r, s) = hN1(r, s), k2(r, s) = N2(r, s), k3(r, s) = N3(r, s), (39a-c)

b

h

1∫
−1

φ(r)dr = 1. (40)

It is clear to notice that the contact surface has a smooth contact at the right end (c+ b) and a stress singularity
at the edge of the quarter plane (c − b) (i.e., φ(−1) → ∞, φ(1) = 0). As a result, the integral equation has
a generalized Cauchy kernel, which will influence the singular behavior of the solution at x = c − b. Hence,
the solution may be sought as described in [26]:

φ(r) = w(r)g(r), w(r) = (1 − r)a(1 + r)b, −1 ≤ r ≤ 1, (i = 1, . . . , N ), (41)

where a is equal to 0.5 because of smooth contact and b can be calculated from the following expressions

μ2(1 + κ1)

μo exp(−βh)(1 + κ2)

(
2λ2 − 1 + cosπλ

)
cosπλ − sin2 πλ = 0, b = λ − 1, (42a,b)
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where λ is the root of Eq. (42a) with the smallest positive real part. Using the appropriate Gauss–Jacobi
integration formulas, the solution of Eqs. (38, 40) may be expressed as a system of algebraic equations:

N∑
i=1

[
κ1 + 1

8

(
1

ri − sk
− 1

ri + sk + 2 c/h
b/h

)
+ b

h
k1(ri , sk)

+κ2 + 1

8

μ0 exp (−βh)

μ2

1

sk + 1

(
1

α
+ k2(ri , sk) − π2

π2 − 4

)]
WN

i g(ri )

= exp (−βh)

Q/h

a∫
0

q(tq) cos
(
ξ tq
)
k3(sk)dtq , (k = 1, . . . , N ), (43)

b

h

N∑
i=1

WN
i

(ri )g(ri ) = 1, (44)

where ri and sk are the roots of the corresponding Jacobi polynomials and WN
i are the weighting constants as

shown in Appendix 3.
The system of algebraic equations (43) is consist of (N ) equations with (N + 1) unknowns, namely

g1, . . . , gN and b. In order to solve for (N + 1) unknowns, in addition to the system of equations given
by (43), the global equilibrium condition (44) is also used. When analyzed, it is observed that the system of
equations given by (43) and (44) is nonlinear in terms of the variable b, and an iterative procedure given as a
flow chart in Fig. 2 can be used to find the unknowns. As it is seen in Fig. 2, firstly an initial estimate of the
variable b is assumed and the solution of Eq. (43) is performed using this value for the unknowns g1, . . . , gN .
Equation (44) represents global equilibrium condition of the graded layer, and it should be verified using the
calculated g1, . . . , gN values. If the left-hand side of Eq. (44) is less than one, the variable b increases by
a certain amount or vice versa. After the value of the left-hand side of Eq. (44) crosses one, it means that b
should be between the last two assumed values. These last two assumptions can be taken as initial upper and
lower limits, namely bu and bl , respectively, and the correct value of b can be found using a half-step approach.
Each time a new value for b is taken in the middle of the bu and bl . If the assumed variable b satisfies Eq. (44)
with in an acceptable error, correct values of contact pressures and on the half contact length are obtained.
Otherwise, b is assigned as bl if the value of the left-hand side of Eq. (44) is less than one, else b is assigned
as bu for the next iteration and the procedure continues.

5 Numerical results

The geometry and loading of the problem are given in Fig. 1. The load applied on the FG layer, i.e., q(x), is
uniformly distributed load with a/h = 0.01, 0.5, 1.0, 2.0 such that the resultant force, Q is always equal to 1.
The load can be considered as concentrated force for a/h = 0.01. The shear modulus of the graded layer at
y = −h, μh , is defined as:

μh = μ0 exp(−βh). (45)

As can be seen from Eq. (45), the top of the layer becomes stiffer if the non-homogeneity parameter increases
or vice versa. Note that all quantities are normalized. The height of the graded layer h is taken as 1, whereas the
Poison’s ratios of the graded layer and the quarter plane ν1 and v2, respectively, are taken as 0.25. In addition,
for Table3 and Figs. 3, 4, 5, 6 and 7, iterations are continued until the resultant force tolerance, i.e., the absolute
value of (Q − 1), is less than 10−5 for N = 20 and the shear modulus of the FG layer at y = −h, μh , is taken
equal to the shear modulus of quarter plane μ2, μh = μ2.

Table1 shows the comparison of the half contact length b/h for a homogeneous layer, i.e., β = 0.001,
between the values reported in the literature and obtained in this study for various μh/μ2. It can be seen that
the b/h values of this study are approximately the same as given by Aksogan et al. [10] and close to the values
reported by Erdogan and Ratwani [7].

The comparison of the half contact length b/h and the resultant force, i.e., Q, each step of the iterative
procedure described at the end of Sect. 4 for various values of the non-homogeneity parameter β is given in
Table2. As can be seen from the table, firstly b/h is increased until Q becomes greater than one. Then, a
half-step approach is applied in order to find the solution of the problem. Iterations are continued until the



1762 G. Adıyaman et al.

Table 1 Comparison of the half contact length between the values reported in the literature and obtained in this study for various
μh/μ2 ( f/h = 1.0, a/h = 1.0)

μh/μ2 1/99 1/7 3/7

Erdogan and Ratwani [7] 0.108 0.123 0.156
Aksogan et al. [10] 0.111 0.140 0.192
This study 0.113 0.142 0.196

Table 2 Variation of resultant force, i.e., Q, at each iteration for various values of the non-homogeneity parameter β ( f/h =
1.0, a/h = 1.0,μh/μ2 = 1)

β = −1.0 β = 0.001 β = 1.0

Iter. no. b/h Q Iter. no. b/h Q Iter. no. b/h Q

1 0.100000 0.991071 1 0.100000 0.982432 1 0.100000 0.969057
2 0.200000 0.999510 2 0.200000 0.996077 2 0.200000 0.990529
3 0.300000 1.002177 3 0.300000 1.000501 3 0.300000 0.997527
4 0.250000 1.001150 4 0.250000 0.998765 4 0.400000 1.000808
5 0.200000 0.999510 … ………… ……… 5 0.350000 0.999437
6 0.225000 1.000430 8 0.284375 1.000032 6 0.375000 1.000178
7 0.212500 0.999998 9 0.282813 0.999981 7 0.362500 0.999822

10 0.283594 1.000007 8 0.368750 1.000004

absolute value of (Q − 1) is less than 10−5. As given in Table2, at most 10 iterations are required to solve the
problem with an acceptable error.

The variation of the half contact length b/h for various values of the non-homogeneity parameter β and
load amplitude a/h is given in Table3. It is seen from the table that for a fixed value of β, b/h increases for
increasing a/h and the smallest contact length is obtained in case of concentrated load (a/h = 0.01). Also,
the half contact length becomes larger for increasing values of β.

Figures3, 4 and 5 illustrate the effect of the non-homogeneity parameter β on the normalized contact
pressure p(x)/(Q/h) for various load cases (a/h = 0.01, 1.0, 2.0). It is seen from these figures that for a
fixed value of a/h, decreasing β results in the reduction of the contact zone in addition to a decrease the change
of pressure approaching infinity at the edge of the quarter plane.

The effect of the load amplitude a/h on the normalized contact pressure p(x)/(Q/h) for the homogeneous
layer, β = 0.001, is given in Fig. 6. It is seen that b/h increases while the change of pressure approaching
infinity decreases at the edge of the quarter plane for increasing values of a/h.

Fig. 3 Effect of the non-homogeneity parameter βon the normalized contact pressure p(x)/(Q/h) for the concentrated load
case, a/h = 0.01 ( f/h = 1.0, μh/μ2 = 1)
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Fig. 4 Effect of the non-homogeneity parameter βon the normalized contact pressure p(x)/(Q/h) for the uniformly distributed
load case, a/h = 0.5 ( f/h = 1.0, μh/μ2 = 1)

Fig. 5 Effect of the non-homogeneity parameter β on the normalized contact pressure p(x)/(Q/h) for the uniformly distributed
load case, a/h = 2.0 ( f/h = 1.0, μh/μ2 = 1)

Table 3 Variation of the half contact length b/h for the various values of the non-homogeneity parameter β and load amplitude
a/h ( f/h = 1.0, μh/μ2 = 1)

Parameters β = −2.0 β = −1.0 β = 0.001 β = 1.0 β = 2.0

a/h = 0.01 0.1135 0.1669 0.2350 0.3178 0.4204
a/h = 0.5 0.1212 0.1768 0.2457 0.3295 0.4327
a/h = 1.0 0.1541 0.2125 0.2835 0.3688 0.4725
a/h = 2.0 0.4715 0.4871 0.5267 0.5879 0.6731

Figure7 shows the effect of the normalized half distance between the quarter planes f/h on the normalized
contact pressure p(x)/(Q/h). From the figure, it can be concluded that there is a reduction in the half contact
length b/h if f/h increases. On the other hand, the values of p(x)/(Q/h) increases for increasing values of
f/h.
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Fig. 6 Effect of the load amplitude a/h on the normalized contact pressure p(x)/(Q/h) for the homogeneous layer, β = 0.001
( f/h = 1.0, μh/μ2 = 1)

Fig. 7 Effect of the half distance between the quarter planes f/h on the normalized contact pressure p(x)/(Q/h) ( f/h = 1.0,
μh/μ2 = 1)

6 Conclusions

In this paper, a frictionless receding contact of a functionally graded layer resting on homogeneous quarter
planes was considered. The layer was subjected to a load distributed over a finite region of its top surface.
Using Fourier cosine and Fourier sine transforms for the graded layer and Mellin transform for the quarter
plane, the problem was converted into the solution of a Cauchy-type singular integral equation in which the
contact pressure and the receding contact half-length are the unknowns. The singular integral equation was
solved numerically using the Gauss–Jacobi integration formulation. An iterative procedure was employed to
obtain the correct receding contact half-length that satisfies the global equilibrium condition. The effect of the
non-homogeneity parameter β, loading and distance between the two quarter planes on the contact pressure
and on the half contact length was investigated for different loading cases using a parametric study.

The obtained results show that the contact zone between the graded layer and the quarter plane becomes
smaller if β increases. However, decreasing β results in a larger contact zone.
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Appendix 1

A11 = − 1


A

[
e−n2h (C3D2D4 − C4D2D3) + e−n3h (−C2D3D4 + C4D2D3) + e−n4h (C2D3D4 − C3D2D4)

]

A12 = − 1


A

[
e−(n2+n3)h (C2D3D4 − C3D2D4) + e−(n2+n4)h (−C2D3D4 + C4D2D3)

+e−(n3+n4)h (C3D2D4 − C4D2D3)
]

A21 = 1


A

[
e−n1h (C3D1D4 − C4D1D3) + e−n3h (−C1D3D4 + C4D1D3) + e−n4h (C1D3D4 − C3D1D4)

]

A22 = 1


A

[
e−(n1+n3)h (C1D3D4 − C3D1D4) + e−(n1+n4)h (−C1D3D4 + C4D1D3)

+e−(n3+n4)h (C3D1D4 − C4D1D3)
]

A31 = − 1


A

[
e−n1h (C2D1D4 − C4D1D2) + e−n2h (−C1D2D4 + C4D1D2) + e−n4h (C1D2D4 − C2D1D4)

]

A32 = − 1


A

[
e−(n1+n2)h (C1D2D4 − C2D1D4) + e−(n1+n4)h (−C1D2D4 + C4D1D2)

+e−(n2+n4)h (C2D1D4 − C4D1D2)
]

A41 = 1


A

[
e−n1h (C2D1D3 − C3D1D2) + e−n2h (−C1D2D3 + C3D1D2) + e−n3h (C1D2D3 − C2D1D3)

]

A42 = 1


A

[
e−(n1+n2)h (C1D2D3 − C2D1D3) + e−(n1+n3)h (−C1D2D3 + C3D1D2)

+e−(n2+n3)h (C2D1D3 − C3D1D2)
]


A = e−(n1+n2)h (C1C3D2D4 − C1C4D2D3 − C2C3D1D4 + C2C4D1D3)

+ e−(n1+n3)h (−C1C2D3D4 + C1C4D2D3 + C2C3D1D4 − C3C4D1D2)

+ e−(n1+n4)h (C1C2D3D4 − C1C3D2D4 − C2C4D1D3 + C3C4D1D2)

+ e−(n2+n3)h (C1C2D3D4 − C1C3D2D4 − C2C4D1D3 + C3C4D1D2)

+ e−(n2+n4)h (−C1C2D3D4 + C1C4D2D3 + C2C3D1D4 − C3C4D1D2)

+ e−(n3+n4)h (C1C3D2D4 − C1C4D2D3 − C2C3D1D4 + C2C4D1D3)

Appendix 2

α = log

(
t − (c − b)

x − (c − b)

)

N1(t, x) =
∞∫
0

⎡
⎣−ξ(κ1 − 1)

4∑
j=1

(
A j1m j exp(−n j h)

)− S

⎤
⎦ sin (ξ x) cos (ξ t) dξ

N2(t, x) =
∞∫
0

[
sinh (πλ)

−2λ2 − 1 + cosh (πλ)

]
sin (αλ) dλ

N3(x, t) =
∞∫
0

ξ (κ1 − 1)

⎡
⎣ 4∑

j=1

A j2m j exp
(−n j h

)
⎤
⎦ sin (ξ x) dξ

S = lim
ξ→∞

⎡
⎣−ξ(κ1 − 1)

4∑
j=1

(
A j1m j exp(−n j h)

)
⎤
⎦ = −κ1 + 1

4
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Appendix 3

P(a, b)
N (ri ) = 0, P(a−1, b)

N (sk) = 0, (i = 1, . . . , N ), (k = 1, . . . , N )

WN
i = − 2N + 2 + a + b

(N + 1)!(N + 1 + a + b)

�(N + 1 + a)�(N + 1 + b)

�(N + 1 + a + b)
x

2a+b

P(a,b)
N (ri )P

(a,b)
N+1 (ri )
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