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Abstract Free vibration analysis of functionally graded sandwich beams with general boundary conditions
and resting on a Pasternak elastic foundation is presented by using strong form formulation based on modified
Fourier series. Two types of common sandwich beams, namely beams with functionally graded face sheets
and isotropic core and beams with isotropic face sheets and functionally graded core, are considered. The
bilayered and single-layered functionally graded beams are obtained as special cases of sandwich beams. The
effective material properties of functionally graded materials are assumed to vary continuously in the thickness
direction according to power-law distributions in terms of volume fraction of constituents and are estimated
by Voigt model and Mori–Tanaka scheme. Based on the first-order shear deformation theory, the governing
equations and boundary conditions can be obtained by Hamilton’s principle and can be solved using the
modified Fourier series method which consists of the standard Fourier cosine series and several supplemented
functions. A variety of numerical examples are presented to demonstrate the convergence, reliability and
accuracy of the present method. Numerous new vibration results for functionally graded sandwich beams with
general boundary conditions and resting on elastic foundations are given. The influence of the power-law
indices and foundation parameters on the frequencies of the sandwich beams is also investigated.

1 Introduction

Sandwich structures are widely used in a variety of engineering applications including transportation, con-
structions, aerospace and marine engineering due to their high specific stiffness and strength for a low-weight
consideration. Availability of a wide selection of face sheet and core materials makes it possible to obtain mul-
tifunctional benefits. However, this composition has several disadvantages that restrict the structure’s usage
and reduce its reliability due to the abrupt changes in materials. In order to improve the sandwich structure
performance, a new class of composite materials called functionally graded materials (FGMs) is utilized for
the face sheets or core in the sandwich structures. Since the FGMs possess continuous and smooth spatial
variations of material properties in the desired direction, the functionally graded (FG) sandwich structures
have more extensive potential applications.
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Beams are one of the most fundamental structural elements, and the analysis of beam structures is of high
interest. Comparedwith isotropic beams [1–6], FGbeams [7–19] and sandwich beams [20–26], the literature on
FG sandwich beams is limited. Among those available, Amirani et al. [27] analyzed the free vibration behavior
of a sandwich beam with FG core using the element free Galerkin method in conjunction with penalty method
used for satisfaction of essential boundary condition and continuity of the beam. Apetre et al. [28] described
the behavior of the sandwich beams with FG core using four available models. Rahmani et al. [29] investigated
the free vibration of sandwich beams with syntactic foam as a functionally graded flexible core using a new
model based on high-order sandwich panel theory. The formulation uses the classical beam theory for the
face sheets and an elasticity theory for the FG core. A new beam finite element is developed by Chakraborty
et al. [30] to study the thermoelastic behavior of FG beams and FG sandwich beams based on the first-order
shear deformation theory. Pradhan and Murmu [31] presented thermomechanical vibration analysis of FG
beams and FG sandwich beams resting on elastic foundations in which the modified differential quadrature
method (MDQM) is used to solve the governing differential equations and modified weighting coefficient
matrix (MWCM) is used to implement the applied kinematic boundary conditions. Chakraborty et al. [32]
analyzed the wave propagation behavior in functionally graded beam structures subjected to high-frequency
impulse loading using a new spectrally formulated element method based on the first-order shear deformation
theory. The investigation of the bending response of a simply supported functionally graded (FG) viscoelastic
sandwich beam resting on Pasternak’s elastic foundation is presented by Zenkour et al. [33] on the basis of a
refined sinusoidal shear deformation beam theory. Vo et al. [34] presented vibration and buckling analysis of
functionally graded sandwich beams based on a refined shear deformation theory and finite element model.
The core of sandwich beam is fully metallic or ceramic, and skins are composed of a functionally graded
material. Bui et al. [35] proposed a novel truly mesh-free method to analyze the transient responses and free
vibration of sandwich beams with functionally graded (FG) core, in which the penalty technique is adopted to
treat the material discontinuities at the interface between the core and the two face sheets.

The above review indicates that there exists some literature on the free vibration of a functionally graded
sandwich beam, but the numerical solutions for free vibration of an FG sandwich beam resting on elastic
foundations seem to be limited.Moreover, the aforementionedwork onFGsandwich beams focuses on classical
boundary conditions, and most of the existing methods require modifications of the solution procedures and
corresponding computation codes to adapt to different boundary cases. Therefore, the establishment of a
unified, efficient and accurate formulation for free vibration of functionally graded sandwich beams with
general boundary conditions and resting on elastic foundations is necessary and significant.

This paper presents an accurate solution for the free vibration of functionally graded sandwich beams with
general boundary conditions and resting on a Pasternak elastic foundation. Two types of common sandwich
beams, namely beams with functionally graded face sheets and isotropic core and beams with isotropic face
sheets and functionally graded core are considered. The bilayered and single-layered functionally graded beams
are obtained as special cases of sandwich beams. The effective material properties of functionally graded
materials are assumed to vary continuously in the thickness direction according to power-law distributions in
terms of the volume fraction of the constituents and are estimated by Voigt model and Mori–Tanaka scheme.
Based on the first-order shear deformation theory, the governing equations and boundary conditions can be
obtained by Hamilton’s principle and can be solved using the modified Fourier series method which consists
of the standard Fourier cosine series and several supplemented functions. A variety of numerical examples
are presented to demonstrate the convergence, reliability and accuracy of the present method. Numerous
new vibration results for functionally graded sandwich beams with general boundary conditions and resting
on elastic foundations are given. The influence of the power-law indices and foundation parameters on the
frequencies of the sandwich beams is also investigated.

2 Theoretical formulation

2.1 Description of the model

Consider an FG sandwich beam with length L , width b and thickness h, as depicted in Fig. 1a. The coordinate
system composed of x and z is used to describe the dimensions of the sandwich beam. The middle surface of
the sandwich beam is defined by z = 0. The vertical positions of the bottom and top, and of the two interfaces
between the layers are denoted by z0 = −h/2, z1, z2, z3 = h/2. The beam is resting on an elastic foundation
with foundation moduli of ks and kw. The u0 and w0 are the displacements of the beam in x and z direction,
respectively.
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Fig. 1 Schematic diagram of an FG sandwich beam resting on an elastic foundation: a geometry and coordinates; b materials
profile

It is assumed that the FGM layers of the sandwich beam are made of a mixture of two material constituents
M1 and M2. Both Voigt model and Mori–Tanaka scheme are employed to evaluate the effective material
properties. The Voigt model assumes that the material properties including Young’s modulus E f , Poisson’s
ratio μ f and mass density ρ f are proportional to the volume fraction according to

En
f = (En

1 − En
2 )V n

1 + En
2 , μn

f = (μn
1 − μn

2)V
n
1 + μn

2, ρn
f = (ρn
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2 )V n

1 + ρn
2 (1. 1–3)

where V n
1 is the volume fraction of the M1 of the nth layer.

According to the Mori–Tanaka scheme, the effective local bulk modulus K f and the shear modulus G f of
the nth FGM layer of the sandwich beams can be given by
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where Kn
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i /[3(1 − 2μn
i )], Gn

i = En
i [2(1 + μn

i )] (i = 1, 2). The effective mass density defined by Eq.
(1.2) is also used in the Mori–Tanaka scheme. The effective Young’s modulus E f and Poisson’s ratio μ f can
be expressed as
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Two common types of FG sandwich beams are considered in this study, as shown in Fig. 1b. The volume
fraction V1 of the FG sandwich beam is defined as:

Type I

⎧
⎪⎪⎨

⎪⎪⎩

V 1
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)k1
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where the k, k1, and k2 are the power-law indices which can determine the material profile in FGMs. A type
I sandwich beam is the beam with FG face sheets and isotropic core, whereas Type II sandwich beam is the
beam with isotropic face sheets and FG core. The ratio of thickness of each layer from bottom to top is denoted
by the combination of three numbers, for example, “1–2–1” denotes that h1:h2:h3 = 1:2:1 (hi = zi − zi−1).

2.2 Energy functional

Within the context of first-order shear deformation beam theory, the displacement field can be expressed as

u0 = u(x, t) + zφ(x, t), w0 = w(x, t) (5)

where the u and w are the displacement components of the mid-surface in x and z directions, respectively. φ is
the rotation of cross section. t is the time

The linear strain–displacement relations in the beam space are expressed as

εx = ε0x + zχx , γxz = φ + ∂w

∂x
(6)

where ε0x is the membrane strain of the mid-surface defined as ε0x = ∂u/∂x ; χx is the curvature change of the
beam and defined as χx = ∂φ/∂x . γxz is the transverse shear strain.

The constitutive relation in the nth layer of the FG sandwich beam can be given as
{

σx
σxz

}

n
=
[
Qn

11 0
0 Qn

55

]{
εx
γxz

}

n
(7)

where σx and σxz are the normal and shear stress, respectively. The elastic stiffness coefficients Qn
11 and Qn

55
are defined as

Qn
11 = En

f , Qn
55 = En

f

2(1 + μn
f )

. (8)

The force and moment resultants are obtained by integrating the stresses over the beam thickness and can
be written as

{Nx , Mx , Qxz} =
h/2∫

−h/2

{σx , zσx , κσxz}dz (9)

where Nx , Mx and Qxz are the in-plane force resultant, bending moment resultant and transverse shear force
resultant. The shear correction factor κ is taken as 5/6 in this study. Substituting Eqs. (5–8) into Eq. (9), the
force and moment resultants can be rewritten as

⎧
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where the coefficients A11, B11, D11 and A55 can be expressed as

{A11, B11, D11} =
3∑

n=1
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{
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}
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The strain energy (U ) of the FG sandwich beams can be expressed in integral form as

U = b

2

L∫

0

{
Nxε

0
x + Mxχx + Qxzγxz

}
dx . (12)
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kx0 kx1

Kx0 Kx1

kz0 kz1

Fig. 2 General boundary conditions of a beam

Substituting Eqs. (5–6) and (10–11) into Eq. (12), the strain energy (U) can be rewritten as

U = b

2

L∫

0

{
A11

∂u

∂x

∂u

∂x
+ 2B11

∂u

∂x

∂φ

∂x
+ D11

∂φ

∂x

∂φ

∂x
+ A55φφ + A55

∂w

∂x

∂w

∂x
+ 2A55φ

∂w

∂x

}
dx . (13)

The kinetic energy (T ) of the beam can be given as
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Substituting Eq. (5) into Eq. (14), the kinetic energy can be expressed as
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where the inertia terms I0, I1 and I2 are defined as

{I0, I1, I2} =
3∑

n=1

zn∫

zn−1

ρn
f

{
1, z, z2

}
dz. (16)

In this paper, the boundary conditions are represented as two sets of independent linear springs (kx and
kz) and one set of rotational spring (Kx ) arranged at both ends of the beam. kx and kz are used to restrain
the displacements at the ends in x and z direction, respectively. The rotation of the cross section is restrained
by Kx . The general boundary conditions can be easily obtained by setting proper springs’ stiffness, as shown
in Fig. 2. kx0, kz0, Kx0 and kx1, kz1, Kx1 are used to indicate the rigidities (per unit length) of the boundary
springs at the boundary x = 0 and L , respectively. The potential energy (Usp) stored in the boundary springs
can be obtained as

Usp = b

2

[(
kx0u

2 + kz0w
2 + Kx0φ

2)∣∣
x=0 + (

kx1u
2 + kz1w

2 + Kx1φ
2)∣∣

x=L

]
. (17)

Since the FG sandwich beams are resting on an elastic foundation, the potential energy (Uef ) stored in the
elastic foundation needs to be considered and is given as

Uef = b

2

L∫

0

[

kw (w)2 + ks

(
∂w

∂x

)2
]

dx (18)

where kw is the Winkler foundation stiffness, while ks is the shear stiffness of the elastic foundation.
The total energy functional of the FG sandwich beam resting on an elastic foundation can be given as

L = T −U −Usp −Uef . (19)
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2.3 Equations of motion

The equations of motion can be obtained by taking a differential element of the beam and requiring the sum
of the external and internal body force and moments each to be zero, and they also can be derived by using
Hamilton’s principle. In this work, Hamilton’s principle is employed, and we can obtain:

δ

t∫

0

(
T −U −Usp −Uef

)
dt = 0. (20)

Using Eqs. (13), (15), (17) and (18), Eq. (20) can be rewritten as
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Integrating by parts to relieve the virtual displacements δu, δw and δφ, Eq. (21) can be expressed as
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⎪⎪⎪⎭
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The equations of motion for the FG sandwich beam resting on an elastic foundation can be obtained as

A11
∂2u

∂x2
+ B11

∂2φ

∂x2
− I0

∂2u

∂t2
− I1

∂2φ

∂t2
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∂x2
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∂x
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∂x2
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− kww + ks

∂2w

∂x2
− I0

∂2w

∂t2
= 0. (23.1–3)
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The boundary conditions can be expressed as

x = 0

⎧
⎨

⎩

A11
∂u
∂x + B11

∂φ
∂x − kx0u = 0,

B11
∂u
∂x + D11

∂φ
∂x − Kx0φ = 0,

A55
∂w
∂x + A55φ + ks

∂w
∂x − kz0w = 0

x = L

⎧
⎨

⎩

A11
∂u
∂x + B11

∂φ
∂x + kx1u = 0,

B11
∂u
∂x + D11

∂φ
∂x + Kx1φ = 0,

A55
∂w
∂x + A55φ + ks

∂w
∂x + kz1w = 0

(24.1–6)

2.4 Admissible functions and solution procedure

Constructing of appropriate admissible displacement functions is of crucial importance. The admissible func-
tions are common in the forms of the polynomials. However, when using only lower-order polynomials, the
solution becomes less definitive in regard to its convergence due to the fact that those polynomials do not
form a complete set [36]. The higher-order polynomials trend to become numerically unstable owing to the
computer round-off errors [36,37]. Those difficulties can be avoided by the Fourier series due to the fact that
the Fourier series constitute a complete set and exhibit an excellent numerical stability. However, conventional
Fourier series has a convergence problem along the boundary conditions except for a few simple boundary
edges. Therefore, a modified Fourier series is employed in this paper. Unlike traditional Fourier series, the
modified Fourier series consists of standard Fourier cosine series and supplemented functions introduced to
ensure and accelerate the convergence of series representation. The displacement and rotation components of
the FG sandwich beam can be expressed as [36,38–40]:

u(x, t) =
⎧
⎨

⎩

M∑

m=0

Am cos λmx +
P∑

p=1

ap f p(x)

⎫
⎬

⎭
e jωt ,

φ(x, t) =
⎧
⎨

⎩

M∑

m=0

Bm cos λmx +
P∑

p=1

bp f p(x)

⎫
⎬

⎭
e jωt ,

ω(x, t) =
⎧
⎨

⎩

M∑

m=0

Cm cos λmx +
P∑

p=1

cp f p(x)

⎫
⎬

⎭
e jωt (25.1–3)

where λm = mπ/L . ω is the angular frequency of the beam. Am , ap, Bm , bp, Cm and cp are the unknown
coefficients of the modified Fourier series. All of them need to be determined in future. P is the number of
supplemented functions. According to Eqs. (23) and (24), it is required that at least two-order derivatives of
the displacement and rotation components exist and are continuous for the beam. Therefore, two closed-form
auxiliary functions are introduced, namely P = 2. The functions are defined as follows:

f1(x) = x
( x
L

− 1
)2

, f2(x) = x2

L

( x
L

− 1
)

.

It is easy to verify that

f1(0) = f1(L) = f2(0) = f2(L) = f ′
1(L) = f ′

2(0) = 0, f ′
1(0) = f ′

2(L) = 1.

The purpose of introducing the auxiliary terms is to remove any discontinuities potentially of the original
displacement functions and their derivatives at the edges. All the unknown expansion coefficients are sought in
a strong form by letting the solution satisfy both the boundary conditions and governing equations. Substituting
Eq. (25) into Eq. (23), the governing equations of the beam can be written as

A11

⎛

⎝
M∑

m=0

−λ2m Am cos λmx +
2∑

p=1

ap f
′′
p (x)

⎞

⎠+ B11

⎛

⎝
M∑

m=0

−λ2mBm cos λmx +
2∑

p=1

bp f
′′
p (x)

⎞

⎠

+I0ω
2

⎛

⎝
M∑

m=0

Am cos λmx +
2∑

p=1

ap f p(x)

⎞

⎠+ I1ω
2

⎛

⎝
M∑

m=0

Bm cos λmx +
2∑

p=1

bp f p(x)

⎞

⎠ = 0, (26.1)
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B11

⎛

⎝
M∑

m=0

−λ2m Am cos λmx +
2∑

p=1

ap f
′′
p (x)

⎞

⎠+ D11

⎛

⎝
M∑

m=0

−λ2mBm cos λmx +
2∑

p=1

bp f
′′
p (x)

⎞

⎠

−A55

⎛

⎝
M∑

m=0

Bm cos λmx +
2∑

p=1

bp f p(x)

⎞

⎠− A55

⎛

⎝
M∑

m=0

−λmCm sin λmx +
2∑

p=1

cp f
′
p(x)

⎞

⎠

+I1ω
2

⎛

⎝
M∑

m=0

Am cos λmx +
2∑

p=1

ap f p(x)

⎞

⎠+ I2ω
2

⎛

⎝
M∑

m=0

Bm cos λmx +
2∑

p=1

bp f p(x)

⎞

⎠ = 0, (26.2)

(A55 + ks)

⎛

⎝
M∑

m=0

−λ2mCm cos λmx +
2∑

p=1

cp f
′′
p (x)

⎞

⎠+ A55

⎛

⎝
M∑

m=0

−λmBm sin λmx +
2∑

p=1

bp f
′
p(x)

⎞

⎠

−kw

⎛

⎝
M∑

m=0

Cm cos λmx +
2∑

p=1

cp f p(x)

⎞

⎠+ I0ω
2

⎛

⎝
M∑

m=0

Cm cos λmx +
2∑

p=1

cp f p(x)

⎞

⎠ = 0. (26.3)

In order to derive the constraint equations for the unknown expansion coefficients, all the sine terms, the
supplementary terms and their derivatives in Eq. (26) should be expanded into cosine series, and by collecting
the coefficients for the similar cosine terms, the following equations can be obtained:

M∑

m=0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−A11λ
2
m Am − B11λ

2
mBm +

2∑

p=1

(
A11α

2
pap + B11α

2
pbp
)
+

ω2

(

I0Am + I1Bm +
2∑

p=1

(
I0α0

pap + I1α0
pbp
)
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

cos λmx = 0, (27.1)

M∑

m=0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−B11λ
2
m Am − D11λ

2
mBm − A55Bm + A55λmCm

∞∑
i=0

βm
i +

2∑

p=1

(
A11α

2
pap + B11α

2
pbp − A55α

0
pbp − A55α

1
pcp
)
+

ω2

(

I1Am + I2Bm +
2∑

p=1

(
I1α0

pap + I2α0
pbp
)
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

cos λmx = 0, (27.2)

M∑

m=0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− (A55 + ks) λ2m Am − A55λmBm

∞∑
i=0

βm
i − kwCm

2∑

p=1

(
(A55 + k) χ2

pcp − A55α
1
pbp − kwα0

pcp
)
+

ω2

(

I0Cm +
2∑

p=1
I0α0

pcp

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

cos λmx = 0 (27.3)

where α0
p, α

1
p and α2

p (p = 1, 2) are the coefficients of Fourier cosine series for the two supplementary terms
and their derivatives. βm

i are the coefficients of Fourier cosine series for sine terms. The detailed expressions for
the above symbols are given in “Appendix A”. Multiplying Eq. (27) with cosλmx in the left side and integrating
it from 0 to L with respect to x , we have

Kc

⎧
⎨

⎩

A
B
C

⎫
⎬

⎭
+ Ks

⎧
⎨

⎩

a
b
c

⎫
⎬

⎭
− ω2

⎧
⎨

⎩
Mc

⎧
⎨

⎩

A
B
C

⎫
⎬

⎭
+ Ms

⎧
⎨

⎩

a
b
c

⎫
⎬

⎭

⎫
⎬

⎭
= 0 (28)

where

Kc =
⎡

⎣
Kc

11 Kc
12 Kc

13
Kc

21 Kc
22 Kc

23
Kc

31 Kc
32 Kc

33

⎤

⎦ , Kc =
⎡

⎣
Ks

11 Ks
12 Ks

13
Ks

21 Ks
22 Ks

23
Ks

31 Ks
32 Ks

33

⎤

⎦ ,
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Fig. 3 Influence of spring parameters on the first three frequency parameters � for sandwich beams (h/L = 10, k = 1): a Type
I and Voigt model; b Type II and Mori–Tanaka scheme

Mc =
⎡

⎣
Mc

11 Mc
12 Mc

13
Mc

21 Mc
22 Mc

23
Mc

31 Mc
32 Mc

33

⎤

⎦ , Kc =
⎡

⎣
Ms

11 Ms
12 Ms

13
Ms

21 Ms
22 Ms

23
Ms

31 Ms
32 Ms

33

⎤

⎦ .

The superscripts c and s denominate the matrices obtained from the terms related to the coefficients of standard
cosine series and supplemented functions, respectively. The elements of the matrices Kc, Ks ,Mc andMs can
be directly obtained from Eq. (27).

Substituting Eq. (25) into the boundary conditions, as shown in Eq. (24), yields

−Lc

⎧
⎨

⎩

A
B
C

⎫
⎬

⎭
+ Ls

⎧
⎨

⎩

a
b
c

⎫
⎬

⎭
= 0 (29)

where

Lc =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

kx0H0 0 0
−kx1H1 0 0

0 Kx0H0 0
0 −Kx1H1 0
0 −A55H0 kz0H0
0 A55H1 −kz1H1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Ls =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A11 0 B11 0 0 0
0 A11 0 B11 0 0
B11 0 D11 0 0 0
0 B11 0 D11 0 0
0 0 0 0 A55 + ks 0
0 0 0 0 0 A55 + ks

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where H0 = [1, . . . , 1]1×(M+1),H1 = [cos 0, cosπ, . . . , cosmπ, . . . , cosMπ]1×(M+1).
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Fig. 4 Convergence of the frequency parameters � versus the truncated number M for sandwich beams (h/L = 10, k = 1;
Boundary conditions: F–C) a Type I and Voigt model; b Type II and Mori–Tanaka scheme

Table 1 Comparison of fundamental frequency parameter � for FG beams with different power-law exponent (Voigt model)

BC L/h k = 0 k = 0.2 k = 0.5 k = 1 k = 2 k = 5 k = 10

C–C 20
Ref. [14] 12.2235 11.3850 10.4263 9.4314 8.6040 8.1699 7.9128
Present 12.2217 11.3807 10.4242 9.4305 8.6032 8.1687 7.9113
Diff (%) 0.0143 0.0377 0.0199 0.0095 0.0090 0.0153 0.0188

5
Ref. [14] 10.0344 9.4176 8.7005 7.9253 7.2113 6.6676 6.3406
Present 9.9986 9.3836 8.6715 7.9007 7.1889 6.6436 6.3155
Diff (%) 0.3563 0.3616 0.3333 0.3102 0.3113 0.3600 0.3960

C–F 20
Ref. [14] 1.9496 1.8146 1.6604 1.5010 1.3697 1.3038 1.2650
Present 1.9554 1.8197 1.6658 1.5063 1.3744 1.3075 1.2682
Diff (%) 0.2954 0.2835 0.3229 0.3503 0.3417 0.2856 0.2586

5
Ref. [14] 1.8948 1.7655 1.6174 1.4630 1.3338 1.2645 1.2240
Present 1.8948 1.7652 1.6173 1.4631 1.3339 1.2645 1.2239
Diff (%) 0.0022 0.0181 0.0044 0.0100 0.0062 0.0019 0.0028

S–S 20
Ref. [14] 5.4603 5.0827 4.6514 4.2051 3.8368 3.6509 3.5416
Present 5.4790 5.0995 4.6684 4.2216 3.8517 3.6631 3.5523
Diff (%) 0.3429 0.3303 0.3652 0.3917 0.3879 0.3349 0.3040

5
Ref. [14] 5.1525 4.8066 4.4083 3.9902 3.6344 3.4312 3.3134
Present 5.1540 4.8069 4.4093 3.9916 3.6356 3.4322 3.3143
Diff (%) 0.0284 0.0054 0.0227 0.0347 0.0330 0.0282 0.0255
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Table 2 Comparison of fundamental frequency parameter � for Type I FG sandwich beams with various boundary conditions
(L/R = 20; Voigt model)

BC k 1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1 1–8–1

C–C 0.5
Ref. [34] 9.6942 9.9501 10.1001 10.1800 10.3668 10.5460 11.4459
Present 9.6840 9.9402 10.0913 10.1710 10.3588 10.5388 11.4434

1
Ref. [34] 8.3594 8.7241 8.9474 9.0722 9.3550 9.6411 11.0421
Present 8.3482 8.7131 8.9376 9.0621 9.3458 9.6329 11.0391

2
Ref. [34] 7.1563 7.5417 7.8293 7.9727 8.3430 8.7262 10.6336
Present 7.1445 7.5306 7.8191 7.9625 8.3334 8.7176 10.6303

5
Ref. [34] 6.4064 6.6116 6.9389 7.0170 7.4461 7.8692 10.2298
Present 6.3931 6.5998 6.9282 7.0064 7.4361 7.8603 10.2261

S–S 0.5
Ref. [34] 4.3148 4.4290 4.4970 4.5324 4.6170 4.6979 5.1067
Present 4.3321 4.4468 4.5149 4.5505 4.6353 4.7162 5.1254

1
Ref. [34] 3.7147 3.8768 3.9774 4.0328 4.1602 4.2889 4.9233
Present 3.7313 3.8943 3.9952 4.0508 4.1784 4.3073 4.9421

2
Ref. [34] 3.1764 3.3465 3.4754 3.5389 3.7049 3.8769 4.7382
Present 3.1918 3.3636 3.4929 3.5567 3.7231 3.8954 4.7571

5
Ref. [34] 2.8439 2.9310 3.0773 3.1111 3.3028 3.4921 4.5554
Present 2.8568 2.9470 3.0940 3.1284 3.3208 3.5105 4.5744

C–F 0.5
Ref. [34] 1.5397 1.5805 1.6048 1.6175 1.6477 1.6766 1.8229
Present 1.5454 1.5863 1.6106 1.6233 1.6536 1.6825 1.8288

1
Ref. [34] 1.3253 1.3831 1.4191 1.4388 1.4844 1.5304 1.7573
Present 1.3308 1.3889 1.4250 1.4448 1.4904 1.5364 1.7633

2
Ref. [34] 1.1330 1.1937 1.2398 1.2623 1.3217 1.3831 1.6911
Present 1.1383 1.1995 1.2457 1.2684 1.3278 1.3893 1.6971

5
Ref. [34] 1.0145 1.0453 1.0977 1.1096 1.1781 1.2456 1.6257
Present 1.0189 1.0509 1.1034 1.1156 1.1842 1.2519 1.6318

Table 3 Comparison of the first seven natural frequencies (Hz) for Type II FG sandwich beam subjected to C–F boundary
conditions (L = 1m, h = 0.02m, h1:h2:h3 = 3:14:3)

f = 1 f = 2 f = 3 f = 4 f = 5 f = 6 f = 7

M-T scheme
Ref. [27] 18.31 114.61 320.42 626.54 1033.2 1287.7 1538.9
Present 18.69 115.95 323.28 629.23 1034.6 1263.7 1531.4

Voigt model
Ref. [27] 18.32 114.66 320.57 626.81 1033.7 1290.1 1539.6
Present 18.76 116.37 324.50 631.64 1038.7 1283.2 1537.7

Combining Eqs. (28) and (29), the final system equation can be obtained as

[Kc + KsL−1
s Lc]

⎧
⎨

⎩

A
B
C

⎫
⎬

⎭
− ω2 [Mc + MsL−1

s Lc
]
⎧
⎨

⎩

A
B
C

⎫
⎬

⎭
= 0. (30)

All the natural frequencies of the FG sandwich beams can be determined easily by solving the standard
characteristic equation (30).
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Table 4 Comparison of fundamental frequency parameter for the isotropic beams resting on an elastic foundation (μ = 0.3)

L/h Kw Kp/π
2

0 0.5 1.0 2.5

Ref. [6] Present Ref. [6] Present Ref. [6] Present Ref. [6] Present

C–C
120 0 4.7314 4.7351 4.8683 4.8715 4.9938 4.9976 5.3195 5.3243

102 4.9515 4.9541 5.0718 5.0755 5.1834 5.1868 5.4783 5.4817
104 10.1227 10.1232 10.1373 10.1377 10.1517 10.1524 10.1942 10.1949

15 0 4.6655 4.6602 4.8039 4.7998 4.9303 4.9273 5.2567 5.2559
102 4.8927 4.8889 5.0135 5.0107 5.1254 5.1234 5.4198 5.4196
104 10.0490 10.1060 10.0640 10.1204 10.0788 10.1346 10.1223 10.1762

S–S
120 0 3.1414 3.1879 3.4766 3.5113 3.7359 3.7641 4.2969 4.3159

102 3.7482 3.7759 3.9607 3.9843 4.1436 4.1644 4.5823 4.5980
104 10.0240 10.0256 10.0361 10.0376 10.0481 10.0497 10.0839 10.0855

15 0 3.1302 3.1332 3.4667 3.4696 3.7266 3.7294 4.2881 4.2911
102 3.7389 3.7417 3.9517 3.9545 4.1347 4.1376 4.5735 4.5766
104 9.9958 10.0151 10.0078 10.0272 10.0197 10.0392 10.0552 10.0750

Table 5 Fundamental frequency parameter � for Type I FG sandwich beam with classical boundary conditions (L/R = 10)

BC k1 = k2 Rule of mixture M-T scheme

1–1–1 1–2–1 1–3–1 1–4–1 1–1–1 1–2–1 1–3–1 1–4–1

C–C 0 11.653 11.653 11.653 11.653 11.653 11.653 11.653 11.653
0.6 9.5365 9.9254 10.204 10.409 8.2001 8.8110 9.2646 9.6020
1 8.7640 9.2984 9.6836 9.9663 7.5834 8.2930 8.8304 9.2316
5 6.8298 7.6460 8.2905 8.7747 6.4913 7.3003 7.9780 8.4977

C–S 0 8.2487 8.2487 8.2487 8.2487 8.2487 8.2487 8.2487 8.2487
0.6 6.7114 6.9906 7.1919 7.3404 5.7550 6.1897 6.5146 6.7573
1 6.1555 6.5376 6.8146 7.0187 5.3142 5.8177 6.2016 6.4895
5 4.7765 5.3534 5.8125 6.1591 4.5383 5.1082 5.5898 5.9609

S–S 0 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988
0.6 4.3706 4.5555 4.6894 4.7885 3.7388 4.0246 4.2394 4.4004
1 4.0017 4.2539 4.4376 4.5734 3.4480 3.7782 4.0314 4.2220
5 3.0937 3.4708 3.7728 4.0017 2.9387 3.3101 3.6263 3.8709

F–F 0 12.007 12.007 12.007 12.007 12.007 12.0067 12.0067 12.007
0.6 9.7344 10.145 10.441 10.661 8.3276 8.9629 9.4400 9.7971
1 8.9159 9.4765 9.8842 10.185 7.6822 8.4170 8.9797 9.4028
5 6.8953 7.7368 8.4091 8.9179 6.5496 7.3784 8.0824 8.6264

S–F 0 8.3562 8.3562 8.3562 8.3562 8.3562 8.3562 8.3562 8.3562
0.6 6.7705 7.0563 7.2631 7.4159 5.7924 6.2346 6.5667 6.8155
1 6.2004 6.5905 6.8745 7.0842 5.3428 5.8540 6.2457 6.5404
5 4.7949 5.3795 5.8471 6.2012 4.5546 5.1305 5.6200 5.9986

C–F 0 1.9396 1.9396 1.9396 1.9396 1.9396 1.9396 1.9396 1.9396
0.6 1.5674 1.6341 1.6825 1.7183 1.3398 1.4426 1.5200 1.5781
1 1.4342 1.5251 1.5914 1.6405 1.2350 1.3537 1.4449 1.5136
5 1.1074 1.2427 1.3514 1.4339 1.0518 1.1850 1.2987 1.3868

3 Numerical examples and discussion

In this section, a variety of numerical examples are presented to demonstrate the convergence, reliability and
accuracy of the present method. Numerous new vibration results for functionally graded sandwich beams
with general boundary conditions and resting on elastic foundations are given, which can serve as benchmark
solutions. In addition, the influence of the power-law indices and foundation parameters on the frequencies
of the sandwich beams is also investigated. In order to simplify the presentation, F, S and C denominate
free, simply supported and clamped boundary conditions which are defined as Nx = Mx = Qxz = 0
for F; Nx = Mx = w = 0 for S; u = w = φ = 0 for C; unless stated otherwise, the nondimen-
sional frequency parameter is defined as � = ωL2/h

√
ρ2/E2. And the material properties for M1 and
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Table 6 Fundamental frequency parameter � for Type II FG sandwich beam with classical boundary conditions (L/R = 10)

BC k Rule of mixture M-T scheme

1–1–1 1–2–1 1–3–1 1–4–1 1–1–1 1–2–1 1–3–1 1–4–1

C–C 0 8.6374 9.2071 9.6191 9.9191 8.6374 9.2071 9.6191 9.9191
0.6 8.2663 8.5364 8.7370 8.8848 8.0190 8.1263 8.2099 8.2700
1 8.1503 8.3221 8.4490 8.5413 7.9522 8.0045 8.0438 8.0683
5 7.9558 7.9970 8.0193 8.0260 7.9185 7.9516 7.9594 7.9476

C–S 0 6.0636 6.4711 6.7675 6.9842 6.0636 6.4711 6.7675 6.9842
0.6 5.8049 5.9992 6.1442 6.2512 5.6341 5.7149 5.7776 5.8228
1 5.7246 5.8495 5.9420 6.0094 5.5892 5.6322 5.6640 5.6843
5 5.5955 5.6337 5.6557 5.6650 5.5725 5.6083 5.6226 5.6205

S–S 0 3.9406 4.2095 4.4061 4.5503 3.9406 4.2095 4.4061 4.5503
0.6 3.7736 3.9025 3.9989 4.0703 3.6643 3.7198 3.7628 3.7938
1 3.7221 3.8057 3.8677 3.9129 3.6362 3.6677 3.6908 3.7057
5 3.6426 3.6727 3.6907 3.6993 3.6295 3.6599 3.6743 3.6764

F–F 0 8.7634 9.3678 9.8073 10.129 8.7634 9.3678 9.8073 10.1287
0.6 8.3799 8.6698 8.8862 9.0460 8.1315 8.2561 8.3528 8.4225
1 8.2606 8.4479 8.5869 8.6883 8.0647 8.1342 8.1862 8.2199
5 8.0695 8.1312 8.1693 8.1878 8.0388 8.1015 8.1323 8.1375

S–F 0 6.1016 6.5193 6.8240 7.0471 6.1016 6.5193 6.8240 7.0471
0.6 5.8398 6.0400 6.1896 6.3003 5.6692 5.7553 5.8220 5.8700
1 5.7588 5.8884 5.9845 6.0546 5.6245 5.6729 5.7087 5.7318
5 5.6317 5.6765 5.7037 5.7166 5.6110 5.6562 5.6778 5.6810

C–F 0 1.4125 1.5092 1.5801 1.6322 1.4125 1.5092 1.5801 1.6322
0.6 1.3530 1.3994 1.4342 1.4600 1.3141 1.3344 1.3500 1.3613
1 1.3347 1.3650 1.3874 1.4037 1.3043 1.3160 1.3246 1.3301
5 1.3070 1.3185 1.3255 1.3289 1.3026 1.3144 1.3202 1.3214

Table 7 Fundamental frequency parameter � for Type I FG sandwich beam with elastic boundary conditions (L/R = 10)

k Γ Rule of mixture M-T scheme

1–1–1 1–2–1 1–3–1 1–4–1 1–1–1 1–2–1 1–3–1 1–4–1

E1 − E1

0.6 100 0.8188 0.8101 0.8051 0.8017 0.8188 0.8101 0.8051 0.8017
101 2.5873 2.5600 2.5440 2.5335 2.5870 2.5598 2.5439 2.5334
102 8.1183 8.0363 7.9881 7.9564 8.1069 8.0292 7.9830 7.9524

1 100 0.8309 0.8188 0.8119 0.8073 0.8308 0.8188 0.8119 0.8073
101 2.6251 2.5873 2.5654 2.5511 2.6247 2.5871 2.5652 2.5510
102 8.2309 8.1183 8.0525 8.0094 7.6822 8.1109 8.0474 8.0055

5 100 0.8657 0.8434 0.8309 0.8228 0.8657 0.8434 0.8309 0.8228
101 2.7345 2.6646 2.6251 2.5998 2.7342 2.6645 2.6251 2.5997
102 6.8953 7.7368 8.2309 8.1554 6.5496 7.3784 8.0824 8.1534

E2 − E2

0.6 100 0.8075 0.8000 0.7957 0.7928 0.8034 0.7972 0.7936 0.7912
101 2.2726 2.2755 2.2783 2.2804 2.1781 2.2079 2.2271 2.2398
102 3.9250 4.0466 4.1324 4.1947 3.4511 3.6637 3.8175 3.9292

1 100 0.8168 0.8069 0.8011 0.7974 0.8120 0.8037 0.7989 0.7957
101 2.2451 2.2576 2.2659 2.2713 2.1415 2.1850 2.2123 2.2295
102 3.6623 3.8405 3.9658 4.0558 3.2255 3.4818 3.6702 3.8069

5 100 0.8394 0.8239 0.8150 0.8091 0.8366 0.8220 0.8137 0.8082
101 2.1043 2.1674 2.2063 2.2293 2.0565 2.1297 2.1786 2.2083
102 2.9430 3.2503 3.4853 3.6562 2.8088 3.1177 3.3694 3.5563

E3 − E3

0.6 100 2.3784 2.3884 2.3959 2.4013 2.2589 2.3011 2.3289 2.3476
101 3.9266 4.0505 4.1384 4.2022 3.4479 3.6625 3.8183 3.9317
102 4.3145 4.4916 4.6195 4.7139 3.7015 3.9785 4.1860 4.3410

1 100 2.3358 2.3592 2.3746 2.3850 2.2088 2.2676 2.3058 2.3306
101 3.6603 3.8410 3.9684 4.0601 3.2208 3.4787 3.6689 3.8074
102 3.9582 4.2015 4.3782 4.5084 3.4181 3.7396 3.9852 4.1694

5 100 2.1525 2.2347 2.2878 2.3210 2.0981 2.1899 2.2539 2.2946
101 2.9370 3.2453 3.4819 3.6544 2.8027 3.1122 3.3652 3.5536
102 3.0716 3.4408 3.7351 3.9573 2.9190 3.2832 3.5920 3.8301
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Table 8 Fundamental frequency parameter � for Type II FG sandwich beam with elastic boundary conditions (L/R = 10)

k Γ Rule of mixture M-T scheme

1–1–1 1–2–1 1–3–1 1–4–1 1–1–1 1–2–1 1–3–1 1–4–1

E1 − E1

0.6 100 0.8500 0.8467 0.8448 0.8435 0.8500 0.8467 0.8447 0.8434
101 2.6839 2.6739 2.6680 2.6640 2.6832 2.6730 2.6669 2.6629
102 8.3600 8.3410 8.3296 8.3219 8.2306 8.3109 8.2960 8.2864

1 100 0.8566 0.8566 0.8566 0.8566 0.8566 0.8566 0.8566 0.8566
101 2.7045 2.7047 2.7048 2.7049 2.7038 2.7037 2.7037 2.7037
102 8.3541 8.4190 8.4243 8.4281 8.1759 8.2410 8.2874 8.3164

5 100 0.8752 0.8849 0.8909 0.8949 0.8752 0.8849 0.8908 0.8949
101 2.7617 2.7920 2.8107 2.8234 2.7615 2.7916 2.8102 2.8229
102 8.2000 8.2664 8.3032 8.3188 8.1743 8.2399 8.2663 8.2653

E2 − E2

0.6 100 0.8330 0.8310 0.8299 0.8292 0.8320 0.8295 0.8280 0.8271
101 2.2414 2.2589 2.2716 2.2806 2.2201 2.2253 2.2300 2.2335
102 3.4981 3.5972 3.6705 3.7241 3.4109 3.4535 3.4864 3.5101

1 100 0.8388 0.8396 0.8401 0.8405 0.8380 0.8383 0.8385 0.8387
101 2.2433 2.2595 2.2711 2.2792 2.2258 2.2323 2.2371 2.2400
102 3.4610 3.5275 3.5765 3.6119 3.3920 3.4173 3.4359 3.4479

5 100 0.8554 0.8648 0.8706 0.8745 0.8553 0.8647 0.8705 0.8743
101 2.2587 2.2816 2.2956 2.3043 2.2559 2.2788 2.2920 2.2991
102 3.4068 3.4362 3.4539 3.4629 3.3962 3.4258 3.4405 3.4442

E3 − E3

0.6 100 2.3205 2.3437 2.3605 2.3724 2.2945 2.3024 2.3091 2.3139
101 3.4955 3.5953 3.6691 3.7231 3.4086 3.4515 3.4847 3.5085
102 3.7395 3.8648 3.9584 4.0276 3.6336 3.6877 3.7296 3.7597

1 100 2.3194 2.3392 2.3533 2.3633 2.2983 2.3061 2.3118 2.3154
101 3.4584 3.5253 3.5745 3.6101 3.3896 3.4153 3.4341 3.4461
102 3.6902 3.7717 3.8322 3.8762 3.6069 3.6379 3.6606 3.6752

5 100 2.3294 2.3525 2.3665 2.3751 2.3260 2.3491 2.3622 2.3690
101 3.4046 3.4344 3.4523 3.4613 3.3942 3.4242 3.4391 3.4428
102 3.6149 3.6455 3.6637 3.6725 3.6024 3.6333 3.6480 3.6503

M2 are given as: E1 = 380 GPa, ρ1 = 3960 kg/m3, μ1 = 0.3 and E2 = 70 GPa, ρ2 = 2702 kg/m3,
μ2 = 0.3.

3.1 Determination of spring stiffness

In this study, the boundary conditions are simulated by boundary springs. Therefore, the influence of spring
stiffness on the frequencies for sandwich beams is studied to determine the proper spring stiffness for different
boundary conditions. Figure 3 depicts variations of the first three frequency parameters � for sandwich beams
with different spring parameters. Type I beams with Voigt model and Type II beams withMori–Tanaka scheme
are considered. The geometry parameters of the FG sandwich beam are given as: h/L = 10, h1 : h2 : h3 = 1 :
1 : 1. The power-law index is taken as one. The restraint parameters are defined as Γu = kx/E1I, Γw = kz/E1I
and Γx = Kx/E1I (I = bh3/12). Both ends of the beam are restrained by only one kind of boundary springs
whose restraint parameters vary from 10−2 to 107. It is obvious that the frequency parameters increase rapidly
in a certain range and beyond the range the frequency parameters have little change.

3.2 Convergence and comparison studies

Figure 4 shows the variations of the first four frequency parameters� of the FG sandwich beams with different
truncated numbers M . The geometry parameters and material types are the same as in the above example. The
boundary conditions C–F are considered. It is observed that the results show a monotonic convergence trend,
and in the following examples the truncated numbers will be uniformly selected as M = 17.
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Table 9 Fundamental frequency parameter� for Type I FG sandwich beam resting on elastic foundation with various foundation
parameters (L/R = 10, 1–1–1)

BC Kw Kp/π
2 Rule of mixture M-T scheme

k = 0.6 k = 1 k = 2 k = 5 k = 0.6 k = 1 k = 2 k = 5

C–C 0 0 9.5365 8.7640 7.7356 6.8298 8.2001 7.5834 6.9387 6.4913
0.5 10.507 9.8421 8.9866 8.2743 9.3129 8.8087 8.3105 7.9962
1.0 11.383 10.799 10.064 9.4755 10.291 9.8643 9.4620 9.2308

102 0 11.145 10.539 9.7726 9.1562 10.025 9.5790 9.1546 8.9065
0.5 11.986 11.451 10.790 10.279 10.954 10.576 10.234 10.057
1.0 12.762 12.284 11.703 11.269 11.797 11.470 11.189 11.064

C–S 0 0 6.7114 6.1555 5.4198 4.7765 5.7550 5.3142 4.8552 4.5383
0.5 7.9711 7.5455 7.0133 6.5905 7.1838 6.8749 6.5845 6.4182
1.0 9.0434 8.6995 8.2839 7.9744 8.3536 8.1196 7.9190 7.8294

102 0 8.8491 8.4936 8.0645 7.7463 8.1473 7.9050 7.6964 7.6017
0.5 9.8390 9.5494 9.2117 8.9797 9.2126 9.0288 8.8895 8.8540
1.0 10.726 10.485 10.213 10.040 10.151 10.009 9.9189 9.9250

S–S 0 0 4.3706 4.0017 3.5159 3.0937 3.7388 3.4480 3.1462 2.9387
0.5 5.9427 5.7192 5.4540 5.2632 5.4947 5.3464 5.2233 5.1736
1.0 7.1784 7.0289 6.8652 6.7699 6.8121 6.7290 6.6833 6.7004

102 0 7.2381 7.0917 6.9321 6.8406 6.8750 6.7946 6.7520 6.7719
0.5 8.2828 8.1846 8.0894 8.0576 7.9674 7.9285 7.9356 7.9993
1.0 9.2097 9.1479 9.1007 9.1134 8.9270 8.9195 8.9643 9.0619

C–F 0 0 1.5674 1.4342 1.2592 1.1074 1.3398 1.2350 1.1263 1.0518
0.5 2.9902 2.9303 2.8546 2.7965 2.8389 2.7981 2.7663 2.7593
1.0 3.7913 3.7439 3.6850 3.6451 3.6407 3.6119 3.5970 3.6082

102 0 5.9891 6.0384 6.1161 6.2116 5.9336 5.9941 6.0901 6.2019
0.5 6.5102 6.5592 6.6338 6.7246 6.4425 6.5016 6.5965 6.7093
1.0 6.9156 6.9615 7.0318 7.1199 6.8344 6.8916 6.9861 7.1012

Table 10 Fundamental frequency parameter � for Type II FG sandwich beam resting on the elastic foundation with various
foundation parameters (L/R = 10, 1–1–1)

BC Kw Kp/π
2 Rule of mixture M-T scheme

k = 0.6 k = 1 k = 2 k = 5 k = 0.6 k = 1 k = 2 k = 5

C–C 0 0 8.2663 8.1503 8.0236 7.9558 8.0190 7.9522 7.9112 7.9185
0.5 9.4480 9.3631 9.2756 9.2399 9.2304 9.1890 9.1765 9.2064
1.0 10.481 10.418 10.358 10.346 10.282 10.259 10.267 10.314

102 0 10.204 10.137 10.073 10.059 10.004 9.9779 9.9837 10.029
0.5 11.183 11.136 11.097 11.103 10.999 10.989 11.014 11.075
1.0 12.068 12.036 12.017 12.039 11.895 11.899 11.938 12.012

C–S 0 0 5.8049 5.7246 5.6383 5.5955 5.6341 5.5892 5.5635 5.5725
0.5 7.3187 7.2754 7.2357 7.2313 7.1821 7.1674 7.1760 7.2126
1.0 8.5488 8.5281 8.5167 8.5363 8.4296 8.4338 8.4642 8.5195

102 0 8.3349 8.3124 8.2991 8.3179 8.2160 8.2189 8.2479 8.3022
0.5 9.4522 9.4479 9.4577 9.4962 9.3461 9.3644 9.4116 9.4818
1.0 10.434 10.443 10.470 10.524 10.336 10.366 10.427 10.510

S–S 0 0 3.7736 3.7221 3.6676 3.6426 3.6643 3.6362 3.6214 3.6295
0.5 5.6287 5.6183 5.6155 5.6337 5.5554 5.5612 5.5850 5.6251
1.0 7.0088 7.0197 7.0438 7.0857 6.9497 6.9737 7.0193 7.0788

102 0 7.0746 7.0863 7.1117 7.1546 7.0160 7.0408 7.0873 7.1477
0.5 8.2153 8.2418 8.2860 8.3461 8.1645 8.2022 8.2648 8.3400
1.0 9.2159 9.2540 9.3133 9.3874 9.1703 9.2185 9.2943 9.3820

C–F 0 0 1.3530 1.3347 1.3155 1.3070 1.3141 1.3043 1.2993 1.3026
0.5 2.9205 2.9238 2.9319 2.9476 2.8939 2.9027 2.9203 2.9441
1.0 3.7522 3.7617 3.7783 3.8026 3.7251 3.7400 3.7662 3.7987

102 0 6.1485 6.1899 6.2480 6.3106 6.1395 6.1829 6.2443 6.3095
0.5 6.6744 6.7179 6.7791 6.8455 6.6625 6.7084 6.7739 6.8439
1.0 7.0787 7.1234 7.1866 7.2557 7.0641 7.1118 7.1801 7.2536
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0

Fig. 5 Variations of the fundamental frequency parameters of the Type I FG sandwich beam with different boundary conditions:
a C–C; b C–S; c S–S; d C–F

Table 1 shows the fundamental frequency parameter� for an FG beamwith different power-law exponents
based on Voigt model. Three types of boundary conditions, namely C–C, C–F and S–S, are considered. The
length to thickness is taken as L/h = 20 and 5. The results are compared with other published solutions
by Şimşek [14] using the first-order shear deformation theory. Table 2 presents the fundamental frequency
parameter � for a Type I FGM sandwich beam with various boundary conditions based on the Voigt model.
The geometry parameters used in the analysis are given as: L/h = 20, h1:h2:h3 = 1:0:1, 2:1:2, 2:1:1, 1:1:1,
2:2:1, 1:2:1 and 1:8:1. The power-law index is the taken as k1 = k2 = 0.5, 1, 2 and 5. The same vibration
problem has been studied by Vo et al. [34] using the finite element method on the basis of a refined shear
deformation theory. Table 3 presents the first seven natural frequencies for a Type II FG sandwich beam
with C–F boundary conditions. Both Voigt model and Mori–Tanaka scheme are considered. The geometry
parameters are given as: L = 1m, h = 0.02m, h1 : h2 : h3 = 3 : 14 : 3. The material properties for M1
and M2 are given as: E1 = 151 GPa, ρ1 = 5700 kg/m3, μ1 = 0.3 and E2 = 70 GPa, ρ2 = 2700 kg/m3,
μ2 = 0.3. The properties of the face sheets are considered as: E = 210 GPa, ρ = 7860 kg/m3, μ = 0.3. The
reference results are given by Amirani et al. [27] using the element free Galerkin method. Table 4 presents the
fundamental frequency parameter for the isotropic beams resting on an elastic foundation. Different foundation
parameters are considered and defined as Kw = kwL4/E I , Ks = ks L2/E I . The comparison of the present
results with an available solution given by Chen et al. [6] is presented. It is seen that a good agreement of the
results is achieved from Tables 1, 2, 3 and 4.

3.3 FG sandwich beams with general boundaries and elastic foundations

Tables 5 and 6 present the fundamental frequency parameters of the Types I and II FG sandwich beams
with classical boundary conditions including C–C, C–S, S–S, F–F, S–F and C–F. The geometry parame-
ters of the sandwich beam used in the study are given as L/R = 10, and h1:h2:h3 = 1:1:1, 1:2:1, 1:3:1
and 1:4:1. Both Voigt model and Mori–Tanaka scheme are considered. The power-law indices are taken as
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Fig. 6 Variations of the fundamental frequency parameters of the Type II FG sandwich beam with different boundary conditions:
a C–C; b C–S; c S–S; d C–F

k1 = k2 = 0, 0.6, 1 and 5. It is found that the fundamental frequencies of the sandwich beam are strongly
influenced by the boundary conditions and power-law indices. The increase of the power-law indices leads
to the decrease of the fundamental frequency parameters. The thickness ratios have also a significant effect
on the frequency parameters of the beams. It is worth noting that when k1 = k2 = 0 the Type I sand-
wich beam becomes isotropic, thus the fundamental frequencies have no change with different thickness
ratios.

Tables 7 and 8 present the fundamental frequency parameter � for a Type I and Type II FG sandwich
beam with elastic boundary conditions. The geometry parameters used are the same as in the above example.
The E1, E2, E3 denominate three types of elastic boundary conditions which are defined as Γu �= 0, Γw =
Γx = 0 for E1; Γw �= 0, Γu = Γx = 0 for E2; Γx �= 0, Γu = Γw = 0 for E3. It is obvious that
the increase of the spring parameters leads to an increase of the fundamental frequency parameters of the
beam. It is interesting that for FG sandwich beams with elastic boundary conditions some of the fundamental
frequency parameters decrease as the power-law index increases, while some increase as the power-law index
increases.

Tables 9 and 10 present the fundamental frequency parameter � for Type I and Type II FG sandwich
beams resting on an elastic foundation with various foundation parameters. The thicknesses of each layer are
considered to be the same. Four types of boundary conditions (i.e., C–C, C–S, S–S and C–F) are considered.
It is observed that the increase of the two foundation parameters leads to an increase of the fundamental fre-
quency parameters. It is seen from the tables that for an FG sandwich beam of fixed foundation parameters and
boundary conditions, in most cases, the fundamental frequency parameters decrease as the power-law index
increases. There exist some cases where the fundamental frequency parameters increase as the power-law
index increases.
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Fig. 7 Variations of the fundamental frequency parameters of the Type I FG sandwich beam resting on an elastic foundation with
Kw = 100 and Ks/π

2 = 1: a C–C; b C–S; c S–S; d C–F

3.4 Parameter study

Figures 5 and 6 depict the variations of the fundamental frequency parameters for FG sandwich beams with
different power-law indices. Both Voigt model and Mori–Tanaka model are used. Four types of boundary
conditions including C–C, C–S, S–S and C–F are considered. It is obvious from the figures that the Voigt
solution is always larger than the M-T solution for the same condition. It is observed that, on the whole, the
increase of the power-law indices leads to a decrease of the frequency parameters. It is worth noting that for the
Type II beam the frequency parameters increase slowly as the power-law index increases when the power-law
index is larger than some certain value.

Figures 7, 8, 9 and 10 show the variation of fundamental frequency parameters for FG sandwich beams
resting on an elastic foundation. Only the Mori–Tanaka scheme is used in this study. It is seen that the
variations of fundamental frequency parameters versus power-law index are more complex. Those variations
of frequency parameters are strongly influenced by the boundary conditions and foundation parameters. When
the foundation parameters are taken as Kw = 100 and Ks/π

2 = 1, for Type I beams with C–C and C–S
boundary conditions, the frequency parameters decrease as the power-law indices increase; for the Type I
beams with S–S and C–F boundary conditions, the frequency parameters decrease and then increase as the
power-law indices increase. When the foundation parameters are taken as Kw = 1000 and Ks/π

2 = 2, for
Type I beams with C–C and C–S boundary conditions the frequency parameters decrease and then increase as
the power-law indices increase; for the Type I beams with S–S and C–F boundary conditions, the frequency
parameters increase as the power-law indices increase. There exist similar conditions for the Type II sandwich
beams.
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Fig. 8 Variations of the fundamental frequency parameters of the Type I FG sandwich beam resting on an elastic foundation with
Kw = 1000 and Ks/π

2 = 2: a C–C; b C–S; c S–S; d C–F
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Fig. 9 Variations of the fundamental frequency parameters of the Type II FG sandwich beam resting on an elastic foundation
with Kw = 100 and Ks/π

2 = 1: a C–C; b C–S; c S–S; d C–F
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Fig. 10 Variations of the fundamental frequency parameters of the Type II FG sandwich beam resting on an elastic foundation
with Kw = 1000 and Ks/π

2 = 2: a C–C; b C–S; c S–S; d C–F

4 Conclusions

An accurate solution is presented for free vibration of functionally graded sandwich beams with general
boundary conditions and resting on a Pasternak elastic foundation. Two types of common sandwich beams,
namely beams with functionally graded face sheets and isotropic core and beams with isotropic face sheets
and functionally graded core, are considered. The bilayered and single-layered functionally graded beams
are obtained as special cases of sandwich beams. The effective material properties of functionally graded
materials are assumed to vary continuously in the thickness direction according to simple power-law distrib-
utions in terms of the volume fraction of constituents and are estimated by Voigt’s model and Mori–Tanaka’s
scheme. Based on the first-order shear deformation theory, the governing equations and boundary condi-
tions can be obtained by Hamilton’s principle and can be solved using the modified Fourier series method
which consists of the standard Fourier cosine series and several supplemented functions. A variety of numer-
ical examples are presented to demonstrate the convergence, reliability and accuracy of the present method.
Numerous new vibration results for functionally graded sandwich beams with general boundary conditions
and resting on elastic foundations are given, which can serve as benchmark solutions. In addition, the influ-
ence of the power-law indices and foundation parameters on the frequencies of the sandwich beams is also
investigated.
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Appendix A

f1(x) =
M∑

m=0

α0
1 cos λmx ⇒ α0

1 =
{

1
12 m = 0
2L
(
6−6(−1)m−m2π2

)

m4π4 m �= 0
, (A.1)

f2(x) =
M∑

m=0

α0
2 cos λmx ⇒ α0

2 =
{− 1

12 m = 0
2L
(
6−6(−1)m+m2π2(−1)m

)

m4π4 m �= 0
, (A.2)

f ′
1(x) =

M∑

m=0

α1
1 cos λmx ⇒ α1

1 =
{
0 m = 0
8+4(−1)m

m2π2 m �= 0
, (A.3)

f ′
2(x) =

M∑

m=0

α1
2 cos λmx ⇒ α1

2 =
{
0 m = 0
4+8(−1)m

m2π2 m �= 0
, (A.4)

f ′′
1 (x) =

M∑

m=0

α2
1 cos λmx ⇒ α2

1 =
{

− 1
L m = 0

−12+12(−1)m

Lm2π2 m �= 0
, (A.5)

f ′′
2 (x) =

M∑

m=0

α2
2 cos λmx ⇒ α2

2 =
{

1
L m = 0
−12+12(−1)m

Lm2π2 m �= 0
, (A.6)

sin λmx =
M∑

i=0

βm
i cos λi x ⇒ βm

i =

⎧
⎪⎨

⎪⎩

0 i = 0
1−(−1)i

iπ i �= 0,m = 0
2i((−1)m+i−1)

(m2−i2)π
i �= 0,m �= 0

. (A.7)
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