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Abstract The connection between geometry and dynamics is a canonical subject of analytical mechanics. A
very traditional issue of this topic is the transformation of the mechanical problem at hand into a shortest-path
problem. This means the mathematical translation of the dynamical problem into a problem of finding the
geodesic of a certain space. In the classical domain of conservative systems, especially following the famous
book of Lanczos, this translating bridge is established by the usual condition of constant total energy. By nature,
the motion of a particle with position-dependent mass is not a conservative problem. Therefore, the classical
geometrical theory of mechanics is not straightforwardly applicable. Given that, we here aim at developing the
geometrical theory for the mechanics of a position-dependent mass particle. This is our intended contribution.
To our best knowledge, the content of our single investigation is original within this variable mass context. Our
theory will be developed in the light of the inverse problem of Lagrangian mechanics, which will accordingly
sets the variational framework. From that, we will demonstrate the proper generalization of Euler-Maupertuis’
principle and the following generalization of Jacobi’s principle, which, analogously to the classical procedure,
can be seen as intermediate steps to enter geometrical arguments. Then, the corresponding geodesicwill appear.
Finally, as a closing result, a theorem on the mathematical equivalence between such geodesic and the equation
of motion of a position-dependent mass particle will be proved. Our investigation aims at providing the reader
with a fundamental contribution to the geometry of variable mass mechanics.

1 Introduction

The study of variable mass systems is recognized to be a particular research field of mechanics. The subject is
relevant to the solution of engineering problems and also drives forward investigations of fundamental nature
(see, e.g., [1–25]). The unfamiliar reader can find a comprehensive collection of these results in the recently
published book [16].

In view of the fact that the basic equations of mechanics were primarily conceived under the hypothesis
of constant mass, generalizing considerations are necessary for the treatment of variable mass systems. This
issue has been addressed in a series of articles, and an appropriate formulation has been constructed (see, in
particular, [3,4,9,12,15,19,22,23,25]). In the present contribution, we aim at giving an original step in this
theoretical field: our objective is to situate the dynamics of a position-dependent mass particle in a geometrical
level.

This type of problem is a canonical subject within analytical mechanics, but, as originally addressed, the
corresponding results do not involve variable mass systems. The intrinsic interest in the subject rests on the
elegant possibility ofmathematically transforming a conservativemechanical problem into a geodesic problem.
This meaningful connection is found to be treated, to some extent, in classical books of mechanics (see, e.g.,
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[26, Chap. I, Sect. 5 and Chap. V, Sect. 7], [27, Chap. XV, Sect. 186]). However, as commented by Lanczos
[26, p. 17, footnote 1], “The most exhaustive investigation of the subject, based on the systematic use of tensor
calculus, is due to Synge [28].”

To connect the dynamics of a position-dependent mass particle with geometry, we will adopt an approach
which is classical and well established: we will first demonstrate the generalized version of Euler-Maupertuis’
principle for a position-dependent mass particle and, in the next, the corresponding generalization of Jacobi’s
principle. This will give us a way toward our aimed geometric theory.

According to our best knowledge, such investigation has not been presented yet. We expect here to furnish
a single and original contribution in the field of the analytical mechanics of variable mass systems. We further
emphasize that our work essentially has a theoretical character.

The upcoming content is organized as explained in the following. In Sect. 2, we will introduce fundamental
notions on the classical Euler-Maupertuis principle and on the classical Jacobi principle. In Sect. 3, we will set
the mathematical groundworks of our article. First, in Sect. 3.1, we will briefly recover some of the results on
the inverse problem of Lagrangian mechanics for a position-dependent mass particle. These results are found
to be explained in detail in our previous articles [2,4]. This will be done with the intent of defining the initial
variational basis, fromwhich our theorywill be developed. Second, in Sect. 3.2, wewill bring out mathematical
identities of the calculus of variations. These identities will be used to guide, in Sect. 4, the demonstration of
the generalized Euler-Maupertuis principle for a position-dependent mass particle. Next, in Sect. 5, we will
demonstrate the corresponding generalization of Jacobi’s principle. In Sect. 6, we will use this form of Jacobi’s
principle to mathematically transform the dynamics of a position-dependent mass particle into a problem of
geometry. Such discussion will be divided into two parts: in Sect. 6.1, we will derive the geodesic equation
that is associated with the dynamics of a position-dependent mass particle; then, in Sect. 6.2, we will prove
that this particular geodesic equation is mathematically equivalent to the equation of motion of such particle.
This latter result will be presented via a theorem.

We remark that, in the course of the article, classical references in analytical mechanics will be repeatedly
mentioned. With that, our intention is only to highlight the bases on which our results are being developed.

2 On the classical Euler-Maupertuis principle and on the classical Jacobi principle

According to Pars [29, Chap. XXVII], the Maupertuis principle (of least action) is such that “the action is
stationary for the actual path in comparison with neighboring paths having the same endpoints (in the q-space)
and the same energy.” As explained by Whittaker [27, Chap. IX, Sect. 100], this is what states the essential
difference with respect to Hamilton’s principle, that is, while in Hamilton’s principle it is the total time that is
constant, in Maupertuis’ principle it is the total energy that remains unaltered. Moreover, in the domain of the
calculus of variations, while Hamilton’s principle is associated with the well-known concept of synchronous
variations, Maupertuis’ principle, on the contrary, is written in terms of asynchronous variations (see, e.g., [30,
Chap. 2], [31, Chap. 2 and Chap. 8.6]).

There is a very interesting historical fact involving the Maupertuis principle. It is the so-called “Euler-
Maupertuis episode.” In the words of Lanczos [26, pp. 345–346]: “The priority of Maupertuis’ discovery was
assailed by Koenig, who claimed that Leibniz expressed the same idea in a private letter (…). In the ensuing
controversy, Euler defended most emphatically the priority rights of Maupertuis. The peculiar thing in this
defense is that Euler himself had discovered the principle at least one year beforeMaupertuis, and in an entirely
correct form (…). Although Euler must have seen the weakness of Maupertuis’ argument, he refrained from
any criticism, and refrained from so much as mentioning his own achievements in this field, putting all his
authority in favor of proclaiming Maupertuis as the inventor of the principle of least action.”

For this historical reason, we have adopted the terminology “Euler-Maupertuis’ principle” instead of
“Maupertuis’ principle.”

The Jacobi principle means a “geometrisation” of the Euler-Maupertuis principle. Dugas [32, p. 408]
expounds that “this geometrisation, which is obtained by considering trajectories which correspond to the
same total energy, and which explains the part played by this principle in many physical theories, was to be
the concern, after Jacobi, of Liouville (1856), Lipschitz (1871), Thomson and Tait (1879), Levi-Civita (1896)
and Darboux. The last-named devoted two chapters of his Leçons sur la théorie générale des surfaces to this
topic.” As explained by Lanczos [26, p. 135] and by Goldstein et al. [31, p. 361], Jacobi’s form of the least
action principle yields the path of the system in a certain space, not the motion in time.
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A significant property of Jacobi’s principle is that it overcomes an inconvenient aspect of the Euler-
Maupertuis principle. Lanczos [26, p. 134] comments that “(…) Jacobi pointed out that this (i.e. the Euler-
Maupertuis principle) is unsatisfactory because the time t cannot be used as an independent variable in the
variational problem.” The point in question is that, as emphasized by Whittaker [27, p. 248], “(…) time is
correlated to the coordinates in such a way as to satisfy the same equation of energy.” Therefore, in order
to obtain the equation of motion from the Euler-Maupertuis principle, it appears the necessity of using the
restriction of constant total energy as an auxiliary condition via the Lagrangian λ-method (see [26, pp. 136–
138], [29, pp. 545–546]). Jacobi’s principle then comes out as amodified formof theEuler-Maupertuis principle
in which this restriction is discarded (see [29, p. 546]). Owing to this modification, Jacobi’s principle acquires
the significance of a simplified variational problem with a geometrical character (see [26, Chap. V, Sect. 7]).
This noteworthy aspect, which is one of the mainstays of the geometry of the classical analytical dynamics
(see, e.g., [28], [33, Chap. IV]), will be here extended to the dynamics of a position-dependent mass particle.

3 Mathematical groundworks

This section sets the mathematical groundworks of the article.

3.1 The inverse problem of Lagrangian mechanics for a position-dependent mass particle

The Meshchersky’s equation

mq̈ − Q − (w − q̇)
dm

dt
= 0 (1)

is the basic equation of motion of a variable mass particle, where m is the varying mass, q is the generalized
coordinate, Q is the corresponding generalized force, and w is the absolute velocity at which mass is expelled
(or joined).

Assuming that m = m(q), Q = −dV (q)/dq , where V = V (q) is the potential energy, and that w = kq̇ ,
where k = const.; Eq. (1) becomes

m(q)q̈ + dV (q)

dq
− αq̇2

dm(q)

dq
= 0, (2)

where α = k − 1 = const.
Respecting such assumptions, Eq. (2) will be here called the equation of motion of a position-dependent

mass particle.
The inverse problem of Lagrangian mechanics asserts that Eq. (2) comes from the variational principle

δ

t2∫

t1

L̃dt = 0, (3)

where t1, t2 are the limiting instants and

L̃ = 1

2
m(q)−2αq̇2 −

∫
m(q)−2α−1 dV (q)

dq
dq. (4)

Using Eq. (4) in the classical identity H̃ = (∂ L̃/∂q̇)q̇ − L̃ , where H̃ is the Hamiltonian, we find

H̃ = 1

2
m(q)−2αq̇2 +

∫
m(q)−2α−1 dV (q)

dq
dq. (5)

The canonical momentum p̃ is obtained inserting Eq. (4) into the corresponding definition p̃ = ∂ L̃/∂q̇ ,
that is,

p̃ = m(q)−2αq̇. (6)
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Substituting Eq. (6) in (5), we alternatively write the Hamiltonian H̃ in terms of the canonical variables q
and p̃:

H̃ = 1

2

p̃2

m(q)−2α +
∫

m(q)−2α−1 dV (q)

dq
dq. (7)

Once the Lagrangian L̃ as in Eq. (4) does not explicitly depend on time t , that is, L̃ = L̃(q, q̇), we have
that H̃ = Ẽ = const., where Ẽ means the generalized energy within the formulation of the inverse problem
of Lagrangian mechanics.

Thus, looking at Eqs. (5) and (7), it is immediate that

1

2
m(q)−2αq̇2 +

∫
m(q)−2α−1 dV (q)

dq
dq = Ẽ = const. (8)

and
1

2

p̃2

m(q)−2α +
∫

m(q)−2α−1 dV (q)

dq
dq = Ẽ = const. (9)

Still based on this formulation, we derive a next identity.
Take the virtual variation δ of L̃ = L̃(q, q̇):

δ L̃ = ∂ L̃

∂q
δq + ∂ L̃

∂q̇
δq̇. (10)

The second term of the right-hand side of Eq. (10) can be expressed as

∂ L̃

∂q̇
δq̇ = d

dt

(
∂ L̃

∂q̇
δq

)
−

(
d

dt

∂ L̃

∂q̇

)
δq. (11)

Combining Eqs. (10) and (11), we have

δ L̃ = d

dt

(
∂ L̃

∂q̇
δq

)
+

(
− d

dt

∂ L̃

∂q̇
+ ∂ L̃

∂q

)
δq. (12)

In virtue of the variational principle as inEq. (3), the second termof the right-hand side ofEq. (12) identically
vanishes, which renders

δ L̃ = d

dt

(
∂ L̃

∂q̇
δq

)
. (13)

This is the required identity.
The results of this Section provide our starting basis. For a more detailed discussion on the formulation of

variable mass systems from the perspective of the inverse problem of Lagrangian mechanics, see our previous
articles [2–4].

3.2 Synchronous variations and asynchronous variations

Having in mind that q is the coordinate on the actual motion, we introduce q∗ to represent a near coordinate
on the varied motion. From that, two types of coordinate variations can be defined: (i) synchronous variations
δq , which occur without variation of time, that is,

δq = q∗(t) − q(t); (14)

and (ii) asynchronous variations �q , which happen with variation of time, that is,

�q = q∗(t∗) − q(t), (15)

where, in accordance,
t∗ = �t + t. (16)
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Regarding the coordinate, synchronous variations and asynchronous variations are related through the
expression

�q = δq + q̇�t. (17)

The mathematical form of Eq. (17) holds for an arbitrary function h(q, q̇, t), namely

�h = δh + dh

dt
�t, (18)

in which �h = h(q + �q, q̇ + �q̇, t + �t) − h(q, q̇, t), δh = h(q + δq, q̇ + δq̇, t) − h(q, q̇, t) and
dh/dt = (∂h/∂q)q̇ + (∂h/∂q̇)q̈ + ∂h/∂t .

A next relation can be derived from applying the notion of �-variation on an arbitrary functional
t2∫
t1
H(q, q̇, t)dt . By definition, we have

�

t2∫

t1

H(q, q̇, t)dt =
t∗2∫

t∗1

H

(
q∗(t∗), dq

∗(t∗)
dt∗

, t∗
)
dt∗ −

t2∫

t1

H(q, q̇, t)dt, (19)

where

�q̇ ≡ dq∗(t∗)
dt∗

− q̇(t). (20)

Using Eqs. (15), (16) and (20), the first term of the right-hand side of Eq. (19) can be expanded as

t∗2∫

t∗1

H

(
q∗(t∗), dq

∗(t∗)
dt∗

, t∗
)
dt∗ =

t∗2∫

t∗1

H(q + �q, q̇ + �q̇, t + �t)dt∗

=
t∗2∫

t∗1

H(q, q̇, t)dt∗ +
t∗2∫

t∗1

(
∂H

∂q
�q + ∂H

∂q̇
�q̇ + ∂H

∂t
�t

)
dt∗. (21)

Changing the variable of integration as
∫ t∗2
t∗1

(.)dt∗ = ∫ t2
t1

(.)(dt∗/dt)dt , and also recognizing the notation

�H = (∂H/∂q)�q + (∂H/∂q̇)�q̇ + (∂H/∂t)�t , Eq. (21) becomes

t∗2∫

t∗1

H

(
q∗(t∗), dq

∗(t∗)
dt∗

, t∗
)
dt∗ =

t2∫

t1

H(q, q̇, t)
dt∗

dt
dt +

t2∫

t1

�H
dt∗

dt
dt . (22)

Now, putting Eq. (22) in (19), we find

�

t2∫

t1

H(q, q̇, t)dt =
t2∫

t1

�H
dt∗

dt
dt +

t2∫

t1

H(q, q̇, t)

(
dt∗

dt
− 1

)
dt . (23)

Seeing Eq. (16), we have
dt∗

dt
= d�t

dt
+ 1. (24)

Introducing Eq. (24) into the right-hand side of (23), and retaining only first-order terms in �(.), we find
the identity

�

t2∫

t1

Hdt =
t2∫

t1

�Hdt +
t2∫

t1

H
d�t

dt
dt . (25)

The content of this section, which assumes a fundamental role within the mathematical theory of the
variational principles of mechanics, will be used to develop the demonstration of the next section. For a more
complete explanation on this aspect of analytical mechanics, we indicate [27, Chap. IX], [30, Chap. 2].



1524 L. Casetta

4 The generalized Euler-Maupertuis principle for a position-dependent mass particle

The demonstration of such generalization of Euler-Maupertuis principle will be developed from the variational
basis which is presented in Sect. 3.1. We will nearly follow the mathematical steps that are employed in [30,
Chap. 2, Sect. 2.8], where the demonstration of the classical form of this principle is addressed. This procedure
starts from the so-called Lagrange’s central equation. In the present context, it is Eq. (13) that correspondingly
plays such starting role.

For the sake of initiating with a simplified notation, we rewrite Eqs. (4) and (8) as

L̃ = T̃ − Ṽ (26)

and
T̃ + Ṽ = Ẽ = const., (27)

where

T̃ = 1

2
m(q)−2αq̇2, (28)

Ṽ =
∫

m(q)−2α−1 dV (q)

dq
dq. (29)

The first step is to express the left-hand side of Eq. (13) in terms of (26):

δT̃ − δṼ = d

dt

(
∂ L̃

∂q̇
δq

)
. (30)

This equation is our starting point.
Applying δ(.) on both sides of Eq. (27), which is our generalized condition of constant energy Ẽ , we have

δT̃ + δṼ = 0. (31)

Using Eq. (31), we can write the left-hand side of Eq. (30) solely in terms of T̃ :

2δT̃ = d

dt

(
∂ L̃

∂q̇
δq

)
. (32)

Then, specifying Eq. (18) for h = T̃ , we obtain

�T̃ = δT̃ + dT̃

dt
�t. (33)

In view of Eqs. (17) and (33), Eq. (32) can be put in terms of �-variations:

2

(
�T̃ − dT̃

dt
�t

)
= d

dt

[
∂ L̃

∂q̇
(�q − q̇�t)

]
, (34)

that is,

2�T̃ − 2
dT̃

dt
�t = d

dt

(
∂ L̃

∂q̇
�q

)
− d

dt

(
∂ L̃

∂q̇
q̇�t

)
. (35)

To continue from this point, we evoke the identity

∂ L̃

∂q̇
q̇ = 2T̃ , (36)

which can be easily verified from manipulating Eqs. (26), (28) and (29).
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Inserting Eq. (36) into the second parcel of the right-hand side of (35), we arrive at

2�T̃ − 2
dT̃

dt
�t = d

dt

(
∂ L̃

∂q̇
�q

)
− 2

d(T̃�t)

dt
. (37)

Taking the identity
d(T̃�t)

dt
= dT̃

dt
�t + T̃

d�t

dt
, (38)

Equation (37) can be simplified to

2

(
�T̃ + T̃

d�t

dt

)
= d

dt

(
∂ L̃

∂q̇
�q

)
. (39)

Now, we integrate both sides of Eq. (39) between instants t1, t2:

2

⎛
⎝

t2∫

t1

�T̃ dt +
t2∫

t1

T̃
d�t

dt
dt

⎞
⎠ =

(
∂ L̃

∂q̇
�q

)∣∣∣∣∣
t2

t1

. (40)

Specifying Eq. (25) for H = T̃ , we obtain the expression

�

t2∫

t1

T̃ dt =
t2∫

t1

�T̃ dt +
t2∫

t1

T̃
d�t

dt
dt . (41)

Last, we substitute Eq. (41) in (40):

2�

t2∫

t1

T̃ dt =
(

∂ L̃

∂q̇
�q

)∣∣∣∣∣
t2

t1

, (42)

that is,

�

t2∫

t1

2T̃dt =
(

∂ L̃

∂q̇
�q

)∣∣∣∣∣
t2

t1

. (43)

If we suppose that the varied motion and the actual motion have the same limiting coordinates, where time
and coordinate are accordingly related through Eq. (27), then �q(t1) = �q(t2) = 0. This simply transforms
Eq. (43) into

�

t2∫

t1

2T̃dt = 0. (44)

The demonstration is concluded. Namely, Eq. (44) states the generalized Euler-Maupertuis principle for a
position-dependent mass particle.

This result can be interpreted as: within the class of paths that satisfy the generalized energy equation
Ẽ = const. (see Eq. (27)) and that also have the same end-coordinates, in the sense that time is correlated to
coordinate in such a way as to satisfy Ẽ = const., it is the actual path that gives to the integral

∫ t2
t1
2T̃ dt a

stationary value (see [27, Chap. IX, Sect. 100], [29, Chap. XXVII]).
Note also that Eq. (44) is totally analogous to the traditional form of the Euler-Maupertuis principle, that is,

�
∫ t2
t1
2T dt = 0, where T signifies kinetic energy (see, in particular, [30, p. 48], [31, p. 359]). The difference

is that, instead of the real kinetic energy, Eq. (44) contains the generalized energy T̃ = 1
2m(q)−2αq̇2. This is

expected because the inverse problem of Lagrangian mechanics, which is being taken as the starting basis of
our investigations, mathematically fits the dynamics of a position-dependent mass particle into the traditional
standards of analytical mechanics.
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5 The generalized Jacobi principle for a position-dependent mass particle

With the Euler-Maupertuis principle as in Eq. (44) at hand, we become ready to demonstrate the corresponding
generalization of Jacobi principle. To achieve this result, we will proceed in order to change the variable of
integration, in Eq. (44), from t to q . For that, the generalized condition of constant energy Ẽ (see Eq. (8), or,
equivalently, (27)) will be invoked.1 This is the classical method, but, as originally conceived for conservative
systems, it involves the condition of constant total (real) energy instead (see [26, Chap. V, Sect. 6], [31, pp.
360–361], [34, pp. 141–142]).

Due to the trivial identity q̇ = dq/dt , we can manipulate Eq. (8) to

dt =
√√√√ m(q)−2α

2
(
Ẽ − Ṽ (q)

)dq. (45)

Next, we take Eq. (27), which is equivalent to (8), in the form of

T̃ = Ẽ − Ṽ (q). (46)

Now, we simply substitute Eqs. (45) and (46) in (44):

�

t2∫

t1

2T̃ dt = 0 ⇒ �

q2∫

q1

2
(
Ẽ − Ṽ (q)

) √√√√ m(q)−2α

2
(
Ẽ − Ṽ (q)

)dq = 0, (47)

that is,

�

q2∫

q1

√
2m(q)−2α

(
Ẽ − Ṽ (q)

)
dq = 0. (48)

This concludes the demonstration: Eq. (48) states the generalized Jacobi’s principle for a position-dependent
mass particle.

Equation (48) is analogous to the classical form of Jacobi’s principle

�

q2∫

q1

√
2m(E − V (q))dq = 0, (49)

where m is the (constant) mass of a particle, V (q) is the potential energy, and E is the total energy, for which
T + V = E = const., with T = 1

2mq̇2 being the kinetic energy (see, e.g., [31, p. 361]).
In fact, since we are embedding our discussion in the formulation that follows from the inverse problem

of Lagrangian mechanics, it is expected that the generalized energies Ẽ and Ṽ appear in the place of E and V
(compare Eqs. (48) and (49)). To explain the substitution of m by m(q)−2α , which also can be observed when
going from Eq. (49) to (48), we evoke an interesting remark of Lanczos [26, pp. 21–22]: “The principles of
analytical mechanics have shown that the really fundamental quantity which characterizes the inertia of mass
is not the momentum but the kinetic energy.” Within the formulation of the inverse problem, this remark can
be extended to a position-dependent mass particle through the definition of T̃ , that is, m(q)−2α = 2T̃ /q̇2 (see
Eq. (28)). Given the direct analogy between the right-hand side of the expressions m(q)−2α = 2T̃ /q̇2 and
m = 2T/q̇2, the occurrence ofm(q)−2α in Eq. (48) can be then understood in terms of such energy arguments.

In the next section, we will use Eq. (48) to bring out the elegant perspective of considering the dynamics
of a position-dependent mass particle as a problem of geometry.

1 Emphatically, we remark that, to establish this bridge of understanding between the dynamics of a position-dependent mass
particle and the theoretical framework of the classical analytical mechanics, we are harmoniously using the formulation of the
inverse problem of Lagrangian mechanics (see Sect. 3.1).
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6 The connection between the dynamics of a position-dependent mass particle and geometry

The result of Sect. 5 (see Eq. (48)) gives us the way to connect the dynamics of a position-dependent mass
particle with geometry. This aspect begins to be revealed when, with the purpose of achieving a geometrical
interpretation, we write Eq. (48) in the form of

δ

s2∫

s1

ds = 0, (50)

in which

ds =
√
2m(q)−2α

(
Ẽ − Ṽ (q)

)
dq (51)

is understood, in the context of geometry, as the line-element associated with the dynamics of a position-
dependent mass particle.

This idea becomes clearer when we remember that the geometry of a space is determined by postulating
the line-element as2

ds2 = gi jdq
idq j , (52)

that is,

ds =
√
gi jdqidq j , (53)

where gi j are the metric coefficients and qi are the generalized coordinates (see, e.g., [26, Chap. I, Sect. 5],
[28], [33, p. 25], [35, Chap. 2.5]).

In the one-dimensional case, Eq. (53) becomes

ds = √
g11dq

1, (54)

and, omitting the indexes,

ds = √
gdq. (55)

Comparing Eqs. (51) and (55), we obtain

g = 2m(q)−2α
(
Ẽ − Ṽ (q)

)
. (56)

This is the metric coefficient associated with the dynamics of a position-dependent mass particle.
Noticing that Eq. (50) represents the minimizing of the integral

∫ s2
s1

ds, we have arrived at the geometrical
problem of finding the shortest-path, in a certain space, between two fixed endpoints. It signifies that we
have equivalently transformed the dynamical problem of a position-dependent mass particle into a problem of
geometry.

In the light of this idea, wewill in the following demonstrate a theorem asserting that the equation ofmotion
of a position-dependent mass particle (see Eq. (2)) is mathematically equivalent to the geodesic equation of
the metric 2m(q)−2α(Ẽ − Ṽ (q)) (see Eq. (56)). Before proceeding to the theorem, we will first derive such
geodesic equation. This derivation will be done by specifying the general geodesic equation for the metric
2m(q)−2α(Ẽ − Ṽ (q)).

2 The conventional nomenclature that appears in the textbooks of geometry (see, e.g., [33]) is being employed to write Eq. (52)
and, accordingly, the related expressions.
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6.1 The geodesic equation of the metric 2m(q)−2α(Ẽ − Ṽ (q))

For the general line-element ds =
√
gi jdqidq j (see Eq. (53)), the corresponding minimum principle on the

shortest-path, that is, δ
∫ s2
s1

ds = 0, assumes the form of

δ

s2∫

s1

√
gi j

dqi

ds

dq j

ds
ds = 0, (57)

where the generalized coordinates are parameterized in terms of the arc-length s. The solution of this variational
problem is given by the geodesic equations

d2qi

ds2
+ �i

jk
dq j

ds

dqk

ds
= 0, (58)

where

�i
jk = 1

2
gli

(
∂g jl

∂qk
+ ∂gkl

∂q j
− ∂g jk

∂ql

)
(59)

is the Christoffel symbol, and
gil glk = δik, (60)

with δik being the Kronecker delta symbol, namely δik = 1 when i = k, and δik = 0 when i �= k. This is found
to be shown in, for instance, [33, pp. 43–44], [35, pp. 106–108].

In the one-dimensional case, Eqs. (57)–(60) are simplified as

δ

s2∫

s1

√
g11

dq1

ds

dq1

ds
ds = 0, (61)

d2q1

ds2
+ �1

11
dq1

ds

dq1

ds
= 0, (62)

�1
11 = 1

2
g11

∂g11
∂q1

, (63)

g11g11 = 1. (64)

Equations (63) and (64) can be used to write the one-dimensional geodesic equation (62) as

d2q1

ds2
+ 1

2g11

∂g11
∂q1

dq1

ds

dq1

ds
= 0. (65)

For the sake of simplicity, we now omit the indexes of Eqs. (61) and (65):

δ

s2∫

s1

√
g
dq

ds

dq

ds
ds = 0, (66)

d2q

ds2
+ 1

2g

∂g

∂q

dq

ds

dq

ds
= 0. (67)

Equation (67) is the solution of the shortest-path problem δ
∫ s2
s1

ds = 0 (or, equivalently, Eq. (66)) for the
line-element ds = √

gdq .
Seen that, we are ready to find the geodesic equation of themetric 2m(q)−2α(Ẽ−Ṽ (q)). For this derivation,

we transform Eq. (50) into

δ

s2∫

s1

√
2m(q)−2α

(
Ẽ − Ṽ (q)

) dq

ds

dq

ds
ds = 0, (68)
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whichmeans that, accordingly, we have parameterized the generalized coordinate of our variablemass problem
in terms of the arc-length s.

Equation (68) means the shortest-path problem associated with the dynamics of a position-dependent mass
particle.

Comparing Eqs. (66) and (68), we immediately recover the definition of the metric associated with the
dynamical problem (see Eq. (56)).

Now, we insert Eq. (56) into (67):

d2q

ds2
− 1

2
(
Ẽ − Ṽ (q)

)
[

2α

m(q)

dm(q)

dq

(
Ẽ − Ṽ (q)

)
+ dṼ (q)

dq

]
dq

ds

dq

ds
= 0. (69)

This is the geodesic equation which is connected with the dynamics of a position-dependent mass particle.

6.2 A theorem

As a closing result, we announce the following theorem:

Theorem the geodesic equation of the metric g = 2m(q)−2α(Ẽ − Ṽ (q)) (see Eq. (69)) is mathematically
equivalent to the equation of motion of our problem (see Eq. (2)).

Proof the metric g = 2m(q)−2α(Ẽ − Ṽ (q)) is such that it defines the line-element

ds =
√
2m(q)−2α(Ẽ − Ṽ (q))dq [see Eq. (51)]. Dividing both sides of Eq. (51) by dt , we obtain

ds

dt
=

√
2m(q)−2α

(
Ẽ − Ṽ (q)

)dq
dt

, (70)

that is,
ds

dt
=

√
2m(q)−2α

(
Ẽ − Ṽ (q)

)
q̇. (71)

Squaring both sides of Eq. (71), we find

(
ds

dt

)2

= 2m(q)−2α
(
Ẽ − Ṽ (q)

)
q̇2. (72)

It is known that the generalized energy equation T̃ + Ṽ (q) = Ẽ (see Eq. (27)) holds. Thence, using the
definition T̃ = 1

2m(q)−2αq̇2 (see Eq. (28)) in Eq. (27), we get

q̇2 =
2

(
Ẽ − Ṽ (q)

)

m(q)−2α . (73)

The substitution of Eq. (73) in the right-hand side of (72) gives

(
ds

dt

)2

= 4
(
Ẽ − Ṽ (q)

)2
, (74)

that is,
ds

dt
= 2

(
Ẽ − Ṽ (q)

)
. (75)

Now, we consider Eq. (75) to transform the derivatives with respect to the arc-length s, which appear in
the geodesic equation (69), into derivatives with respect to the time t . For that, the chain rule of differentiation
will be applied.

First, we express dq/ds as
dq

ds
= dq

dt

dt

ds
= dq

dt

(
ds

dt

)−1

. (76)
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In view of Eq. (75), Eq. (76) becomes

dq

ds
= dq

dt

1

2
(
Ẽ − Ṽ (q)

) . (77)

This is the required transformation for dq/ds.
To find the transformation of d2q/ds2, we initially write the trivial identity

d2q

ds2
= d

ds

(
dq

ds

)
. (78)

Then, the right-hand side of Eq. (78) is conveniently rewritten by means of the chain rule:

d2q

ds2
= dt

ds

d

dt

(
dq

dt

dt

ds

)
=

(
ds

dt

)−1 d

dt

[
dq

dt

(
ds

dt

)−1
]

. (79)

Developing the derivative d[.]/dt of the right-hand side of Eq. (79), we have
d2q

ds2
=

(
ds

dt

)−1
{
d2q

dt2

(
ds

dt

)−1

− dq

dt

(
ds

dt

)−2 d2s

dt2

}
. (80)

Since the differentiation of Eq. (75) with respect to t produces

d2s

dt2
= −2

dṼ (q)

dq

dq

dt
, (81)

we can finally put Eq. (80) in terms of (75) and (81):

d2q

ds2
= 1

4
(
Ẽ − Ṽ (q)

)2
⎧⎨
⎩
d2q

dt2
+ 1(

Ẽ − Ṽ (q)
)

(
dq

dt

)2 dṼ (q)

dq

⎫⎬
⎭ . (82)

This is the required transformation for d2q/ds2.
Then, we substitute Eqs. (77) and (82) into (69):

d2q

dt2
+ 1

2
(
Ẽ − Ṽ (q)

) dṼ (q)

dq

(
dq

dt

)2

− α

m(q)

dm(q)

dq

(
dq

dt

)2

= 0, (83)

that is,
d2q

dt2
+ 1

2
(
Ẽ − Ṽ (q)

) dṼ (q)

dq
q̇2 − α

m(q)

dm(q)

dq
q̇2 = 0. (84)

Note that, inserting Eq. (28) into (27), we can write

q̇2

2
(
Ẽ − Ṽ (q)

) = 1

m(q)−2α . (85)

Considering Eq. (85) in the second term of (84), we arrive at

d2q

dt2
+ 1

m(q)−2α

dṼ (q)

dq
− α

m(q)

dm(q)

dq
q̇2 = 0. (86)

Finally, taking the definition of Ṽ as in Eq. (29), Eq. (86) becomes

d2q

dt2
+ 1

m(q)

dV (q)

dq
− α

m(q)

dm(q)

dq
q̇2 = 0. (87)
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In fact, multiplying Eq. (87) by m(q) and writing d2q/dt2 = q̈ , we obtain

m(q)q̈ + dV (q)

dq
− α

dm(q)

dq
q̇2 = 0, (88)

which is precisely Eq. (2).
This concludes the proof of our theorem. ��

7 Conclusions

As the reader can verify in [26, Chap. I, Sect. 5], the idea of transforming a mechanical problem into a
geometrical problem is canonical. Here, we have introduced this idea to the mechanics of a position-dependent
mass particle, which represents the overall result of our work.

The inverse problem of Lagrangian mechanics has laid the variational basis for the demonstration of our
results. The point in question is that, within the formulation following from the inverse problem, themotion of a
position-dependent mass particle as in Eq. (2) is such that it obeys the generalized energy equation Ẽ = const.
(see Eq. (27)). This has motivated us to proceed toward the realm of geometry in accordance to the classical
approach, that is, going from Euler-Maupertuis’ principle to Jacobi’s principle and, thence, arriving at the
geodesic problem. Pursuing this way, we have demonstrated a chain of original results, which are specially
written for the dynamics of a position-dependent mass particle:

1. The generalized Euler-Maupertuis principle (see Eq. (44));
2. The corresponding generalization of Jacobi’s principle (see Eq. (48));
3. The particular line-element (see Eq. (51));
4. The corresponding metric (see Eq. (56));
5. The associated shortest-path problem (see Eq. (68));
6. The resulting geodesic equation (see Eq. (69));
7. The theorem of Sect. 6.2.

This chain of results is such that it establishes the translating bridge between the dynamics of a position-
dependent mass particle and geometry. As a closure, the theorem of Sect. 6.2 mathematically proves such a
translation.

In conclusion, the reader finds here an original contribution to the mathematical theory of the analytical
mechanics of variable mass systems. This contribution is such that it situates the dynamics of a position-
dependent mass particle in the level of geometry.
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