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Abstract On the basis of the modified strain gradient theory, this research presents an analytical approach to
analyze elastic instability of an orthotropicmulti-microplate system (OMMPS) embedded in a Pasternak elastic
medium under biaxial compressive loads. Kirchhoff plate theory and the principle of total potential energy are
applied to obtain the partial differential equations and corresponding boundary conditions. Various types of
“chain” boundary conditions for the ends of the microplates system are assumed such as “Clamped-Chain,”
“Free-Chain” and “Cantilever-Chain” systems. In order to analytically obtain the buckling load of theOMMPS,
we use Navier’s approach which satisfies the simply supported boundary conditions and trigonometric method.
In order to show the dependability of the presented formulation in this paper, several comparison studies are
carried out to compare with existing data in the literature. Numerical results are presented to reveal variations
of the buckling load of OMMPS corresponding to various values of the number of microplates, the length
scale parameter

( h
l

)
, aspect ratio, Pasternak elastic medium parameters and the thickness of the microplate

and the biaxial compression ratio. Some numerical results of this paper illustrate that when the number of
microplates is small, especially becoming 2, there is an important difference between buckling loads obtained
for “Clamped-Chain,” “Free-Chain” and “Cantilever-Chain” systems. Also, it is shown that by increasing the
number of microplates in the system, the influence of the Pasternak elastic medium on the buckling load of
system is reduced. It is anticipated that the results reported in this work are applied as a benchmark in future
microstructure issues.

1 Introduction

Over the last years, micro- and nanoscale structures have been vastly applied in different engineering fields
due to their superior properties. Size-dependent effects are significant in micro- and nanoscale structures.
Classical theories do not include size effects and have inaccurate results for micro-/nanoscales [1–3]. Various
non-classical continuum approaches such as couple stress theory [4–6], strain gradient theory [7,8], non-local
elasticity theory [9,10] and micropolar theory [11] have been proposed in the literature. These theories were

M. Hosseini (B)
Department of Mechanical Engineering, Sirjan University of Technology, Sirjan 78137-33385, Islamic Republic of Iran
E-mail: hosseini@sirjantech.ac.ir
Tel.: +98 34 42 33 69 01
Fax: +98 34 42 33 69 00

M. Bahreman
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran

A. Jamalpoor
Department of Mechanical Engineering, Iran University of Science and Technology, Narmak,
Tehran 16846-13114, Islamic Republic of Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-016-1570-0&domain=pdf


1622 M. Hosseini et al.

developed based on the supposed constitutive law and strain energy of the structures and consider the effects of
small scales for micro-/nanoscale structures. Many types of research have been accomplished in recent years
to investigate the bending, buckling and free vibration behavior of these structures based on the mentioned
theories.

Non-local elasticity theory is a well-known theory that accounts for the scale effect. In this theory, it is
assumed that the stress at a reference point depends on the strains at all the points in the body. Many types of
research have been done to analyze nanoscale structures on the basis of non-local elasticity theory including
vibration [12–14], buckling [15,16] and bending [17].

Strain gradient theory (SGT) is one of the continuum approaches with five material length scale parameters
corresponding to the second-order gradient of deformations developed by Fleck and Hutchinson [8]. After that,
Lam et al. [18]modified and improved the strain gradient theory by decomposing the second-order deformation
gradients into three parts and assigning three length scales to each part. Based on the modified strain gradient
theory (MSGT), Kong et al. [19], Akgöz and Civalek [20] and Asghari et al. [21] carried out static and
dynamic analysis of microbeams on the basis of Bernoulli–Euler and Timoshenko beam models. Ansari et al.
[22] investigated the free vibration analysis of size-dependent functionally graded microbeams based on the
strain gradient Timoshenko beam theory. A solution for bending analysis of a rectangular microscale Kirchhoff
plate using MSGT was provided by Movassagh and Mahmoodi [23]. Jamalpoor and Hosseini [24] carried out
biaxial buckling analysis of double-orthotropic microplate systems including in-plane magnetic field based on
MSGT.

The modified couple stress theory (MCST) involving only one material length scale parameter was elab-
orated by [25]. This theory is derived from the classical couple stress theory and includes asymmetric couple
stress tensor. Using MCST, multiple size-dependent beam and plate models have been reported to consider
the size effects in micro- and nanoscale structures. An Euler–Bernoulli beam model for bending analysis of
nanobeams was proposed by Park and Gao [26]. On the basis of the MCST and Kirchhoff plate approach,
Tsiatas and Yiotis [27] proposed a new model to investigate the static, dynamic and buckling behavior of an
orthotropic skewmicroplate. Recently, Şimşek et al. [28] employedMCST in conjunction with Kirchhoff plate
theory to study the dynamic response of a rectangular microplate due to amoving force.Ma et al. [29] proposed
a Timoshenko beammodel to accommodate the effects of transverse shear deformation and rotary inertia. This
model was used to study the buckling of microtubules (Fu and Zhang [30]) and vibration of nanotubes (Ke
and Wang [31]). Yin et al. [32] studied the vibration of microplates based on MCST. Ma et al. [33] and Ke
et al. [34] proposed a Mindlin plate model to take into account the effects of transverse shear deformation
and rotary inertia in moderately thick microplates. In another study, Lou and He [35] extracted closed-form
solutions for nonlinear bending and free vibration of functionally graded microplates using MCST and the
Kirchhoff/Mindlin plate theory.

However, by review of papers reporting buckling analysis of microplates according to MSGT, it is found
that no study has been presented in the literature on biaxial buckling analysis of orthotropic multi-microplate
system (OMMPS) embedded in a Pasternak elastic medium. The present study focuses on modeling the
buckling behavior of a size-dependent OMMPS in a Pasternak elastic foundation. Also in this paper, a kind of
the analytical method (so-called trigonometric method) is used for the buckling analysis of a multi-microplate
system. Simply supported boundary conditions are assumed for all edges of the microplates for three different
“chain” conditions, “Clamped-Chain,” “Free-Chain” and “Cantilever-Chain.” Analogical results are presented
in tabular form to show the differences between the results obtained from exact and numerical solutions for
different “chain” conditions. Furthermore, the effects of various parameters including the additional length
scale parameter, higher modes, aspect ratio, Pasternak medium parameters and length scale parameter on the
buckling load are studied in detail.

2 Modeling of the problem and formulation

2.1 Geometrical configuration

Consider a set of orthotropic multiple simply supported rectangular microplates embedded within a Pasternak
elastic medium represented by Winkler and shear layers with stiffness coefficients k and k1, respectively, as
shown in Fig. 1a. It is assumed that the geometrical and physical characteristics including the uniform thickness
of h, the length of Lx , width of Ly , Poisson’s ratios of ϑ12 and ϑ21 and Young’s modulus in the x − y plane
(E1 and E2) are identical for each microplate. Also, the transverse displacements of Q-coupled orthotropic
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Fig. 1 Orthotropic multi-microplate system (OMMPS): a the geometry of the OMMPS embedded in a Pasternak elastic medium,
b “Clamped-Chain,” c “Cantilever-Chain,” d “Free-Chain”

microplates are displayed by wς (x, y) , ς = 1, 2, . . . , Q. In this study, there is an influence of the size on
the elastic instability behavior of multi-microplates for three various types of “chain” boundary conditions
such as “Clamped-Chain” (in this case the first and last microplates in the multi-microplate system are linked
with a fixed surface by a Pasternak elastic medium, see Fig. 1b), “Cantilever-Chain” (in this case the bottom
microplate in the multi-microplate system is linked to the fixed surface by a Pasternak elastic medium, and
the top microplate is free, see Fig. 1c) and finally “Free-Chain” (as can be seen in Fig. 1d, the first and last
microplates are not linked with the fixed surface).

2.2 Formulations

The displacement field (uςx , uςy, uς z) of the plate for an arbitrary point of the ς -th plate based on the classic
(Kirchhoff) plate assumption in Cartesian coordinates is given as follows:

uςx (x, y, z) = −z
∂wς

∂x
, uςy (x, y, z) = −z

∂wς

∂y
, uς z (x, y, z) = wς (x, y) , (1)

where wς is the mid-plane transverse deflection of the microplate in the z direction. Also, the general strain
displacement relations ε = [εxxεyyεxy]T in terms of the deflections are expressed as
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εxx = −z
∂2wς

∂x2
, εyy = −z

∂2wς

∂y2
, γxy = −2z

∂2wς

∂x∂y
, (2)

where εxx and εyy are the normal strain components and γxy is the shear strain component. The classical
stress–strain relation for an orthotropic microplate for two-dimensional elasticity can be obtained as

⎡

⎣
σxx
σyy
σxy

⎤

⎦ =

⎡

⎢
⎢
⎣

E1
1−ϑ12ϑ21

ϑ12E2
1−ϑ12ϑ21

0
ϑ12E2

1−ϑ12ϑ21

E2
1−ϑ12ϑ21

0

0 0 E1
2(1+ϑ12)

⎤

⎥
⎥
⎦

⎡

⎣
εxx
εyy
γxy

⎤

⎦ . (3)

In order to obtain the governing equilibrium equations and corresponding boundary conditions along the
borders x and y, the principle of total potential energy is used as

� = U +Ub − V, (4)

where U,Ub and V denote the stored strain gradient energy of the microplate, the potential energy due to
the in-plane pre-buckling loads and the external work exerted by transverse load q(x, y) due to the Pasternak
elastic medium, respectively.

2.2.1 Strain gradient approach

It should be noted that to capture the size effect on the buckling behavior of the plate, three independent
higher-order internal length scale parameters (l0, l1, l2) should be considered based on the MSGT. MSGT
expresses that the total strain energy density of the microplate in addition to the dependence on the classical
strain tensor εi j is dependent on the dilatation gradient vector γi , the deviatoric stretch gradient tensor ηi jk
and the symmetric rotation gradient tensor χi j , which can be written as

U = 1

2

∫ (
σi jεi j + piγi + τi jkψi jk + mi jχi j

)
dv, (5)

in which pi , τi jk and mi j display the higher-order stress tensors, which are given by

σi j = λεkkδi j + 2μεi j , (6a)

pi = 2μl20γi , (6b)

τi jk = 2μl21ψi jk, (6c)

mi j = 2μl22χi j , (6d)

where λ and μ are the Lamé constants. Also, γi , ψi jk and χi j are given as

γi = εmm,i , (7a)

ψi jk = 1

3

(
ε jk,i +εki, j +εi j,k

)− 1

15

(
δi j

(
εmm,k+2εmk,m

) + δ jk
(
εmm,i + 2εmi,m

) + δki
(
εmm, j +2εmj,m

))
,

(7b)

χi j = 1

4

(
eipqεq j,p + e jpqεqi,p

)
, (7c)

where δi j and ei jk are the Kronecker delta and permutation symbol, respectively. Also, (, i) expresses ∂
∂i . By

inserting Eqs. (1) and (2) into Eq. (7), the nonzero constituents of dilatation gradient vector γi , the deviatoric
stretch gradient tensor ψi jk and the symmetric rotation gradient tensor χi j can be obtained as

γx = −z

(
∂3wς

∂x3
+ ∂3wς

∂x∂y2

)
, (8a)

γy = −z

(
∂3wς

∂y3
+ ∂3wς

∂x2∂y

)
, (8b)
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γz = −
(

∂2wς

∂x2
+ ∂2wς

∂y2

)
, (8c)

ψxxx = 1

5
z

(
−2

∂3wς

∂x3
+ 3

∂3wς

∂x∂y2

)
, (8d)

ψyyy = 1

5
z

(
−2

∂3wς

∂y3
+ 3

∂3wς

∂x2∂y

)
, (8e)

ψzzz = 1

5

(
∂2wς

∂x2
+ ∂2wς

∂y2

)
, (8f)

ψxxz = ψxzx = ψzxx = 1

15

(
−4

∂2wς

∂x2
+ ∂2wς

∂y2

)
, (8g)

ψyyz = ψyzy = ψzyy = 1

15

(
−4

∂2wς

∂y2
+ ∂2wς

∂x2

)
, (8h)

ψxyy = ψyxy = ψyyx = 1

5
z

(
−4

∂3wς

∂x∂y2
+ ∂3wς

∂x3

)
, (8i)

ψxxy = ψxyx = ψyxx = 1

5
z

(
−4

∂3wς

∂x2∂y
+ ∂3wς

∂y3

)
, (8j)

ψzxz = ψzzx = ψxzz = 1

5
z

(
∂3wς

∂x∂y2
+ ∂3wς

∂x3

)
, (8k)

ψzzy = ψzyz = ψyzz = 1

5
z

(
∂3wς

∂x2∂y
+ ∂3wς

∂y3

)
, (8l)

ψxyz = ψyxz = ψyzx = ψzxy = ψzyx = ψxzy = −1

3

∂2wς

∂x∂y
, (8m)

χxx = ∂2wς

∂x∂y
, (8n)

χyy = −∂2wς

∂x∂y
, (8o)

χxy = 1

2

(
∂2wς

∂y2
− ∂2wς

∂x2

)
. (8p)

Finally, the variational form of total stored strain gradient energy of the microplate is given as

δU =
∫ ∫ h

2

− h
2

(σxxδεxx + σyyδεyy + 2σxyδεxy + pxδγx + pyδγy + pzδγz

+ τxxxδψxxx + 3τxxyδψxxy + 3τxxzδψxxz + 3τxyyδψxyy + τyyyδψyyy

+ 3τyyzδψyyz + 3τxzzδψxzz + 3τyzzδψyzz + τzzzδψzzz + 6τxyzδψxyz

+mxxδχxx + myyδχyy + 2mxyδχxy)dzdA. (9)

2.2.2 Variation of potential energy due to the pre-buckling forces

The variation of the potential energy under in-plane compressive forces N 0
x and N 0

y and shear force N 0
xy is

defined as

δUb = −
∫ ((

N 0
x

) ∂2wς

∂x2
+ 2N 0

xy
∂2wς

∂x∂y
+

(
N 0
y

) ∂2wς

∂y2

)
δwςdA. (10)
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2.2.3 Variation of work exerted by external forces

The variation of the external work can be expressed as

δV =
∫ (

qδwς

)
dA, (11)

where q displays the total reaction pressure exerted on each orthotropic microplate by the Pasternak elastic
foundation, which is given as

q = k
(
wς − wς−1

) − k
(
wς+1 − wς

) − k1

(
∂2wς

∂x2
− ∂2wς−1

∂x2

)
− k1

(
∂2wς

∂y2
− ∂2wς−1

∂y2

)

+k1

(
∂2wς+1

∂x2
− ∂2wς

∂x2

)
+ k1

(
∂2wς+1

∂y2
− ∂2wς

∂y2

)
. (12)

On the basis of the principle of minimum potential energy δ� = 0, the following equilibrium equation for
the ς -th orthotropic microplate is achieved:

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
− ∂3�xxx

∂x3
− ∂3�xxy

∂x2∂y
− ∂3�xyy

∂x∂y2

−∂3�yyy

∂y3
− N 0

x
∂2wς

∂x2
− N 0

y
∂2wς

∂y2
− 2N 0

xy
∂2wς

∂x∂y
+ q = 0, (13)

where the new parametersMxx , Myy ,Mxy, �xxx ,�xxy, �xyy and�yyy are expressed by the following integral
expressions:

Mxx =
∫ h

2

− h
2

(
σxx z + pz + 4

5
τxxz − 1

5
τyyz − 1

5
τzzz + mxy

)
dz, (14a)

Mxy =
∫ h

2

− h
2

(
σxyz + τxyz − 1

2
mxx + 1

2
myy

)
dz, (14b)

Myy =
∫ h

2

− h
2

(
σyyz + pz − 1

5
τxxz + 4

5
τyyz − 1

5
τzzz − mxy

)
dz, (14c)

�xxx =
∫ h

2

− h
2

(
px + 2

5
τxxx − 3

5
τxyy − 3

5
τxzz

)
zdz, (14d)

�xxy =
∫ h

2

− h
2

(
py + 12

5
τxxy − 3

5
τyyy − 3

5
τyzz

)
zdz, (14e)

�xyy =
∫ h

2

− h
2

(
px + 12

5
τxyy − 3

5
τxxx − 3

5
τxzz

)
zdz, (14f)

�yyy =
∫ h

2

− h
2

(
py + 2

5
τyyy − 3

5
τxxy − 3

5
τyzz

)
zdz. (14g)

The above integral expressions can be expressed in terms of deflection by applying Eqs. (3), (6) and (8), which
are provided in the Appendix

Also, the boundary condition along the borders x and y with normal vectors nx and ny for the ς -th
orthotropic microplate is written as

wς = 0 or nx

(
∂Mxx

∂x
+ ∂Mxy

∂y
− ∂2�xxx

∂x2
− 1

2

∂2�xxy

∂x∂y
− 1

2

∂2�xyy

∂y2
+ k1

(
∂wς

∂x
− ∂wς−1

∂x

)

−k1

(
∂wς+1

∂x
− ∂wς

∂x

))
+ ny

(
∂Myy

∂y
+ ∂Mxy

∂x
− 1

2

∂2�xxy

∂x2
− 1

2

∂2�xyy

∂x∂y
− ∂2�yyy

∂y2

)
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+k1

(
∂wς

∂y
− ∂wς−1

∂y

)
− k1

(
∂wς+1

∂y
− ∂wς

∂y

))
= 0, (15a)

∂wς

∂x
= 0, nx

(
−Mxx + ∂�xxx

∂x
+ 1

2

∂�xxy

∂y

)
+ ny

(
−Mxy + 1

2

∂�xxy

∂x
+ 1

2

∂�yyy

∂y

)
= 0, (15b)

∂wς

∂y
= 0, nx

(
−Mxy + 1

2

∂�xxy

∂x
+ 1

2

∂�xyy

∂y

)
+ ny

(
−Myy + 1

2

∂�xyy

∂x
+ 1

2

∂�yyy

∂y

)
= 0, (15c)

∂2wς

∂x2
= 0, nx�xxx + 1

2
ny�xxy = 0, (15d)

∂2wς

∂y2
= 0,

1

2

(
nx�xyy + ny�yyy

) = 0. (15e)

In order to simplify, we assume N 0
xy = 0, λ = N0

y

N0
x
, and by substituting the relationships (12) and (14) into

Eq. (13) in conjunction with Eqs. (2, 6, 8), an explicit term of the governing equation for the ς -th orthotropic
microplate in terms of transverse deflections can be obtained as follows:

(
D11 + E1h

2 (1 + ϑ12)

(
2l0

2 + 8

15
l1
2 + l2

2
))

∂4wς

∂x4

+
(
2 (D12 + 2D66) + E1h

2 (1 + ϑ12)

(
2l0

2 + 8

15
l1
2 + l2

2
))

∂4wς

∂x2∂ y2

+
(
D22 + E1h

2 (1 + ϑ12)

(
2l0

2 + 8

15
l1
2 + l2

2
))

∂4wς

∂ y4

− E1h3

2 (1 + ϑ12)

(
l02

6
+ l12

15

) (
∂2wς

∂x2
+ ∂2wς

∂ y2

)3

− N 0
x

(
∂2wς

∂x2
+ λ

∂2wς

∂ y2

)
− kwς−1 + 2kwς − kwς+1

+ k1

(
∂2wς−1

∂x2
+ ∂2wς−1

∂ y2

)
− 2k1

(
∂2wς

∂x2
+ ∂2wς

∂ y2

)
+ k1

(
∂2wς+1

∂x2
+ ∂2wς+1

∂ y2

)
= 0. (16)

Also D11, D12, D66 and D22 are the in-plane bending stiffnesses of the orthotropic microplate, which can be

expressed as (D11, D12, D66, D22) = ∫ h
2

− h
2

(
E1

(1−ϑ12ϑ21)
, ϑ12E2

(1−ϑ12ϑ21)
, E1
2(1+ϑ12)

, E2
(1−ϑ12ϑ21)

)
z2dz.

3 Analytical solutions of the biaxial buckling

In this work, it is assumed that all edges of each rectangular microplate are simply supported; thus, deflection
and moment conditions in the classical boundary conditions can be given as

wς (0, y) = wς (Lx , y) = wς (x, 0) = wς

(
x, Ly

) = 0 , ς = 1, 2, . . . , Q, (17a)

Mςxx (0, y) = Mςxx (Lx , y) = Mςyy (x, 0) = Mςyy
(
x, Ly

) = 0. (17b)

Also, the non-classical boundary condition is expressed as [36,37]

wς = 0, wςxx = wςyy = 0, wςxxxx = wςyyyy = wςxxyy = 0 at x = 0, Lx and y = 0, Ly . (18)

The buckling equations solution due to the simply supported boundary conditions can be considered in the
form of [38]

wς (x, y) =
∞∑

m=1

∞∑

n=1

W ςmnsin

(
mπ

Lx
x

)
sin

(
nπ

Ly
y

)
, ς = 1, 2, . . . ,Q, (19)

where m and n demonstrate half wave numbers. Also, W ςmn denotes the amplitude for the ς -th orthotropic
microplate. By employing the assumed solution (19) into Eq. (16) and then applying non-dimensional para-
meters, we have a new non-dimensional homogeneous system of Q algebraic equations as below:

αW ς−1mn + βW ςmn + αW ς+1mn = 0, (20)
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where

α = −K − K1((mπ)2 + R2(nπ)2), (21a)

β =
(
1 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

(mπ)4

+
(
2 (Z12 + 2Z66) + 6 (1 − ϑ12)

h2

(
4l0

2 + 16

15
l1
2 + 2l2

2
))

(mπ)2(nπ)2R2

+
(
Z22 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

(nπ)4R4 + 6 (1 − ϑ12)

(
l02

6
+ l12

15

)
(mπ)6

Lx
2

+ 6 (1 − ϑ12)

(
l02

2
+ l12

5

)
(mπ)4(nπ)2

Ly
2 + 6 (1 − ϑ12)

(
l02

2
+ l12

5

)

× (mπ)2(nπ)4R2

Ly
2 + 6 (1 − ϑ12)

(
l02

6
+ l12

15

)
(nπ)6R4

Ly
2 − N

(
(mπ)2 + λR2(nπ)2

)

+ 2K + 2K1
(
(mπ)2 + R2(nπ)2

)
, (21b)

where the non-dimensional parameters implemented in Eq. (21) are illustrated as follows:

Z12 = D12

D11
, Z66 = D66

D11
, Z22 = D22

D11
, R = Lx

L y
, K = K L4

x

D11
, K1 = k1L2

x

D11
, N = −N 0

x L
2
x

D11
. (22)

3.1 Clamped-Chain system

As seen in Fig. 1b, we assumed that the first and last microplates in the multi-microplate system are connected
with a fixed surface by a Pasternak elastic medium. Thus, we introduce the following matrix form of the
algebraic equation (20):

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

β α 0 · · · 0 0 0 · · · 0 0 0
α β α · · · 0 0 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · β α 0 · · · 0 0 0
0 0 0 · · · α β α · · · 0 0 0
0 0 0 · · · 0 α β · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 · · · α β α
0 0 0 · · · 0 0 0 · · · 0 α β

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W 1mn

W 2mn
· · ·

W ς−1mn

W ςmn

W ς+1mn
. . .

WQ−1mn

WQmn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
· · ·
0
0
0
. . .
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

Also, the trigonometric method presented by Raskovic [39,40] and developed by Stojanović et al. [41] is
exerted to achieve an explicit closed-form expression to predict size effects on the buckling load of OMMPS.
According to the trigonometric approach, we consider the following solution of the amplitude of the ς -th
algebraic equation for the OMMPS as

W ςmn = Y cos (ςθCC) + Gsin (ςθCC) , (24)

in which Y and G denote nonzero constants which should satisfy the boundary conditions and θCC is an
unknown parameter. Substituting the solution (24) into the ς -th equation of the OMMPS (23) leads to

Y (αcos ((ς − 1) θCC) + βcos (ςθCC) + αcos ((ς + 1) θCC)) = 0, ς = 2, 3, . . . ,Q − 1, (25a)

G (αsin ((ς − 1) θCC) + βsin (ςθCC) + αsin ((ς + 1) θCC)) = 0 , ς = 2, 3, . . . ,Q − 1. (25b)

After applying some trigonometric operations on Eq. (25), we have the following new form

Y (β + 2αcosθCC) cos (ςθCC) = 0, ς = 2, 3, . . . ,Q − 1, (26a)

G (β + 2αcosθCC) sin (ςθCC) = 0, ς = 2, 3, . . . ,Q − 1. (26b)
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It should be noted that in Eq. (26), Y,G, cos (ςθCC) and sin (ςθCC) cannot be equal to zero because then
W ςmn would be zero; thus, we obtain the following buckling load equation:

β + 2αcosθCC = 0. (27)

Also, to obtain unknown parameter θCC , we apply the first and the last equations of the OMMPS of Eq. (23)
satisfied with a solution (24). For this purpose, the following relations can be assumed:

W 1mn = Y cos (θCC) + Gsin (θCC) , (28a)

W 2mn = Y cos (2θCC) + Gsin (2θCC) , (28b)

and

WQ−1mn = Y cos ((Q − 1) θCC) + Gsin ((Q − 1) θCC) , (29a)

WQmn = Y cos (QθCC) + Gsin (Q2θCC) . (29b)

Substituting Eq. (28) into the first equation of the system (23) and Eq. (29) into the Q-th equation of the system
(23) yields

Y {βcosθCC + αcos2θCC} + G {βsinθCC + αsin2θCC} = 0, (30a)

Y {βcos (QθCC) + αcos ((Q − 1) θCC)} + G {βsin(QθCC) + αsin ((Q − 1) θCC)} = 0. (30b)

According to the non-trivial solutions acquired from the constants Y and G of Eq. (30) and after some
trigonometric operations, the following trigonometric equation is expressed:

∣
∣∣
∣

1 0
cos ((Q + 1) θCC) sin ((Q + 1) θCC).

∣
∣∣
∣ = 0. (31)

The unknown parameter θCC can be obtained by taking the determinant of Eq. (31) as

sin ((Q + 1) θCC ) = 0 ⇒ θCC = rπ

Q + 1
, r = 1, 2, . . . , Q. (32)

Applying θCC from Eq. (32) into Eq. (27), a non-dimensional explicit closed-form expression for buckling
load of the multi-microplate system can be obtained as

NCC = NCC

MCC
, (33a)

NCC =
(
1 + 6 (1 − ϑ12)

h2

(
2l20 + 8

15
l21 + l22

))

(mπ)4 +
(
2 (Z12 + 2Z66) + 6 (1 − ϑ12)

h2

(
4l20 + 16

15
l21 + 2l22

))

(mπ)2(nπ)2R2 +
(
Z22 + 6 (1 − ϑ12)

h2

(
2l20 + 8

15
l21 + l22

))

(nπ)4R4 + 6 (1 − ϑ12)

(
l20
6

+ l21
15

)

(mπ)6

L2
x

+ 6 (1 − ϑ12)

(
l20
2

+ l21
5

)

(mπ)4(nπ)2

L2
y

+ 6 (1 − ϑ12)

(
l20
2

+ l21
5

)

(mπ)2(nπ)4R2

L2
y

+ 6 (1 − ϑ12)

(
l20
6

+ l21
15

)
(nπ)6R4

L2
y

+ 2K (1 − cosθCC) + 2K1((mπ)2 + R2(nπ)2)(1 − cosθCC), (33b)

MCC = (
(mπ)2 + λR2 (nπ)2

)
. (33c)
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3.2 Cantilever-Chain system

In this case of chain boundary conditions, the bottom microplate in the multi-microplate system is connected
to the fixed surface by a Pasternak elastic medium, while the top microplate in the multi-microplate system
is free, see Fig. 1c. The matrix form of the algebraic equation (20) compatible with the “Cantilever-Chain”
system can be obtained as

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

β α 0 · · · 0 0 0 · · · 0 0 0
α β α · · · 0 0 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · β α 0 · · · 0 0 0
0 0 0 · · · α β α · · · 0 0 0
0 0 0 · · · 0 α β · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 · · · α β α
0 0 0 · · · 0 0 0 · · · 0 α β + α

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W 1mn

W 2mn
· · ·

W ς−1mn

W ςmn

W ς+1mn
. . .

WQ−1mn

WQmn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
· · ·
0
0
0
. . .
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (34)

In order to determine the closed form of the buckling load of the OMMPS for the “Cantilever-Chain”
system, by applying the assumed solution (24) into the ς -th algebraic equation of system (34), the following
buckling load expression will be achieved:

β + 2αcosθCaC = 0, (35)

where θCaC is the unknown parameter for the “Cantilever-Chain” system. Applying the same steps that were
carried out in the “Clamped-Chain” system, the unknown parameter θCaC will be obtained as

cos

((
2Q + 1

2

)
θCaC

)
= 0 ⇒ θCaC = (2r − 1) π

2Q + 1
, r = 1, 2, . . . , Q. (36)

The dimensionless closed-form expression for the buckling load of the OMMPS for the “Cantilever-Chain”
system can be obtained by inserting relation (36) into Eq. (35) as

NCaC = NCaC

MCaC
, (37a)

NCaC =
(
1 + 6 (1 − ϑ12)

h2

(
2l20 + 8

15
l21 + l22

))
(mπ)4

+
(
2 (Z12 + 2Z66) + 6 (1 − ϑ12)

h2

(
4l20 + 16

15
l21 + 2l22

))
(mπ)2(nπ)2R2

+
(
Z22 + 6 (1 − ϑ12)

h2

(
2l20 + 8

15
l21 + l22

))
(nπ)4R4

+ 6 (1 − ϑ12)

(
l20
6

+ l21
15

)
(mπ)6

L2
x

+ 6 (1 − ϑ12)

(
l20
2

+ l21
5

)
(mπ)4(nπ)2

L2
y

+ 6 (1 − ϑ12)

(
l20
2

+ l21
5

)
(mπ)2(nπ)4R2

L2
y

+ 6 (1 − ϑ12)

(
l20
6

+ l21
15

)
(nπ)6R4

L2
y

+ 2K (1 − cosθCaC) + 2K1
(
(mπ)2 + R2 (nπ)2

)
(1 − cosθCaC) , (37b)

MCaC = (
(mπ)2 + λR2 (nπ)2

)
. (37c)

3.3 Free-Chain system

In this case of chain boundary conditions, it is considered that the first and last microplates are not connected
with the fixed surface. Thematrix form of the algebraic equation (20) compatible with the “Free-Chain” system
can be presented as
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⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

β + α α 0 · · · 0 0 0 · · · 0 0 0
α β α · · · 0 0 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · β α 0 · · · 0 0 0
0 0 0 · · · α β α · · · 0 0 0
0 0 0 · · · 0 α β · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 · · · α β α
0 0 0 · · · 0 0 0 · · · 0 α β + α

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W 1mn

W 2mn
· · ·

W ς−1mn

W ςmn

W ς+1mn
. . .

WQ−1mn

WQmn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
· · ·
0
0
0
. . .
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (38)

Following the steps implemented to achieve the closed form for the buckling load in the previous sections,
substituting the assumed solution (24) into the ς -th equation of system (38), we have

β + 2αcosθFC = 0, (39)

where θFC is the unknown parameter related to “Free-Chain,” which is obtained from the first and last equation
of system (38) as follows:

sin (QθFC) = 0 ⇒ θCaC = rπ

Q
, r = 0, 1, 2, . . . ,Q − 1. (40)

A closed-form expression for the buckling load of the OMMPS for the “Free-Chain” state is achieved by
substituting relation (40) into Eq. (39) as

NFC = NFC

MFC
, (41a)

NFC =
(
1 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

(mπ)4

+
(
2 (Z12 + 2Z66) + 6 (1 − ϑ12)

h2

(
4l0

2 + 16

15
l1
2 + 2l2

2
))

(mπ)2(nπ)2R2

+
(
Z22 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

× (nπ)4R4 + 6 (1 − ϑ12)

(
l02

6
+ l12

15

)
(mπ)6

Lx
2 + 6 (1 − ϑ12)

(
l02

2
+ l12

5

)
(mπ)4(nπ)2

Ly
2

+ 6 (1−ϑ12)

(
l02

2
+ l12

5

)
(mπ)2(nπ)4R2

Ly
2 +6 (1−ϑ12)

(
l02

6
+ l12

15

)
(nπ)6R4

Ly
2 + 2K (1 − cosθFC)

+2K1
(
(mπ)2 + R2(nπ)2

)
(1 − cosθFC) , (41b)

MFC = (
(mπ)2 + λR2 (nπ)2

)
. (41c)

4 Numerical examples and discussion

4.1 Comparison studies

In order to test the dependability of the formulation derived in this paper, several comparison studies are
carried out to compare with existing data in the literature. Firstly, we have considered a state that the number
of orthotropic microplates Q tends to infinity. Based on this case, we propose the critical buckling load of the
system as
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Table 1 Comparison of the critical buckling loads (104N/m) of OMMPS based on MSGT (m = 1, n = 1).

Lx
h Current Ref. [42]

5 3.616 3.616
10 0.873 0.873
15 0.385 0.385
20 0.216 0.216

NQ→∞, = N

M
, (42a)

N =
(
1 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

× (mπ)4 +
(
2 (Z12 + 2Z66) + 6 (1 − ϑ12)

h2

(
4l0

2 + 16

15
l1
2 + 2l2

2
))

(mπ)2

× (nπ)2R2 +
(
Z22 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

(nπ)4R4

+ 6 (1−ϑ12)

(
l02

6
+ l12

15

)
(mπ)6

Lx
2 + 6 (1 − ϑ12)

(
l02

2
+ l12

5

)
(mπ)4(nπ)2

Ly
2

+ 6 (1 − ϑ12)

(
l02

2
+ l12

5

)
(mπ)2(nπ)4R2

Ly
2 + 6 (1 − ϑ12)

(
l02

6
+ l12

15

)
(nπ)6R4

Ly
2 , (42b)

M = (
(mπ)2 + λR2(nπ)2

)
. (42c)

It is found from Eq. (42) that when the number of the microplate of the system tends to infinity, the effect
of the Pasternak elastic medium on the buckling load of the system vanishes and the buckling behavior is
similar to the buckling behavior of a single microplate. After proposing the critical buckling load in the above
form, a comparison between critical buckling loads obtained for a single isotropic microplate based on MSGT
as a function of different length to thickness with those obtained by Akgöz and Civalek [42] is shown in
Table 1. After briefly reviewing the demonstrated data in Table 1, the dependability of our formulation will be
determined.

In another comparison study, we analytically verified the accuracy of our formulation obtained using the
trigonometric method for a case of chain systems suggested in this paper such as the “Cantilever-Chain”
system. By taking Q =1 in the buckling load presented in Eq. (37), we have an orthotropic microplate resting
on a Pasternak elastic foundation. Thus, Eq. (37) can be reformulated for this state as follows:

NCaC,Q=1 = NCaC

MCaC
, (43a)

NCaC,Q=1 =
(
1 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

(mπ)4

+
(
2 (Z12 + 2Z66) + 6 (1 − ϑ12)

h2

(
4l0

2 + 16

15
l1
2 + 2l2

2
))

× (mπ)2(nπ)2R2 +
(
Z22 + 6 (1 − ϑ12)

h2

(
2l0

2 + 8

15
l1
2 + l2

2
))

× (nπ)4R4 + 6 (1 − ϑ12)

(
l02

6
+ l12

15

)
(mπ)6

Lx
2

+ 6 (1 − ϑ12)

(
l02

2
+ l12

5

)

× (mπ)4(nπ)2

Ly
2 + 6 (1 − ϑ12)

(
l02

2
+ l12

5

)
(mπ)2(nπ)4R2

Ly
2

+ 6 (1 − ϑ12)

(
l02

6
+ l12

15

)
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Fig. 2 Comparison of the buckling loads of OMMPS for “Cantilever-Chain” system based on MCST (Q = 1)

× (nπ)6R4

Ly
2 + K + K1

(
(mπ)2 + R2(nπ)2

)
, (43b)

MCaC,Q=1 = (
(mπ)2 + λR2(nπ)2

)
. (43c)

Buckling loads predicted by MCST for isotropic microplate resting on the elastic medium are plotted in
Fig. 2 along with those reported previously by Akgöz and Civalek [43], and a good agreement is found.

Finally, to confirm the obtained solution for the buckling load, analytical solutions of the homogenous set
of equations (Eqs. (33), (37) and (41)) are compared to the numerical solution of the same set of equations
(Eqs. (23), (34) and (38)) and tabulated in Table 2. Material properties and geometrical characteristics applied
in this section and the following sections are supposed as [24,44]

E1 = 2.473TPa, E2 = 2.433TPa, ϑ12 = ϑ21 = 0.197, h = 17.6µm, Lx = Ly = 10h,

l0 = l1 = l2 = 0.1h, K = 100, K1 = 20, R = 1, λ = 1,m = n = 1 (44)

It can be seen from Table 2 that the values of the buckling load extracted from the exact solution and those
obtained from the numerical solution are in good agreement for the three different boundary conditions, which
verifies the accuracy of the present solution. It is notable that in the “Free-Chain” system the buckling load
for r = 0 is independent of the number of microplates. Also, by increasing the number of microplates, the
first buckling load tends to the critical buckling load of the system for both the “Clamped-Chain” and the
“Cantilever-Chain” systems.

4.2 Benchmark results

The effect of thickness and material length scale parameter on the critical buckling load is investigated in
Fig. 3. The critical buckling load is plotted versus the thickness of a single orthotropic plate for different
values of material length scale parameters l0 = l1 = l2. The figure obviously elucidates that increasing the
value of the thickness causes a decrease of the critical buckling load toward the results of the classical theory
(CT) (l0 = l1 = l2 = 0). Also, an increase in the value of the independent material length scale parameters
leads to greater critical buckling load.

The variation of non-dimensional buckling load versus thickness-to-material length scale parameter ratio is
shown in Fig. 4 for three boundary conditions and four different numbers of plates by considering r = 1. Also,
the separate influence of the orthotropic and isotropicmaterials on the buckling load is demonstrated. As shown
in the figure, an increase in the thickness-to-material length scale parameter results in a significant decrease
in buckling load. Furthermore, it is seen that dimensionless buckling load of the multi-isotropic microplate is
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Table 2 Comparison study of analytical and numerical solutions for non-dimensional buckling load of the OMMPS based on
different chain systems.

Number of plates “Free-Chain” system “Cantilever -Chain” system “Clamped-Chain” system

N.S.£ of
Eq. (38)

A.S.§ of
Eq. (41)

N.S.£ of
Eq. (34)

A.S.§ of
Eq. (37)

N.S.£ of
Eq. (23)

A.S.§ of
Eq. (33)

Q = 2 1 23.03484985 23.03484986 32.60923250 32.60923251 48.10090904 48.10090904
2 73.16696820 73.16696822 88.65864474 88.65864472 98.23302738 98.23302744

Q = 3 1 23.03484984 23.03484986 27.99949030 27.99949030 37.71820738 37.71820738
2 48.10090907 48.10090904 62.01152238 62.01152244 73.16696817 73.16696822
3 98.23302736 98.23302744 104.4238328 104.4238328 108.6157291 108.6157290

Q = 5 1 23.03485000 23.03484986 25.06555290 25.06555290 29.75128020 29.75128017
2 32.60923187 32.60923251 40.33741218 40.33741240 48.10090856 48.10090904
3 57.67529325 57.67529171 66.03242477 66.03242391 73.16696991 73.16696822
4 88.65864277 88.65864472 93.99260158 93.99260279 98.23302509 98.23302744
5 113.7247048 113.7247039 115.3407904 115.3407899 116.5826573 116.5826562

Q = 10 1 23.03481663 23.03484986 23.59476288 23.59478420 25.06554939 25.06555290
2 25.48857358 25.48849038 27.99957233 27.99949030 30.99317757 30.99314654
3 32.60908507 32.60923251 36.41732925 36.41752502 40.33723223 40.33741240
4 43.70038487 43.70004838 48.10123228 48.10090904 52.34223753 52.34133363
5 57.67428896 57.67529171 62.01138644 62.01152244 66.02850095 66.03242391
6 73.17015650 73.16696822 76.91242246 76.91334609 80.31443297 80.30151252
7 88.65063474 88.65864472 91.48497266 91.48228766 93.96341123 93.99260279
8 102.6472777 102.6338881 104.4201672 104.4238328 106.0395927 105.9965240
9 113.7117672 113.7247039 114.5908245 114.5880682 115.3033317 115.3407899

10 120.8505784 120.8454461 121.0709529 121.0718572 121.2822158 121.2683835

£ Numerical solutions
§ Analytical solutions

Fig. 3 Variations of the critical buckling loads of the OMMPS as a function of plate thickness for various values of the independent
material length scale parameters

always larger than for OMMPS. This is due to the fact that the isotropic properties of the plate make it more
rigid than the orthotropic one.

In Fig. 5, a comparison is performed between buckling analysis based on MSGT and based on its reduced
forms, modified couple stress theory and classical theory for different values of thickness-to-material length
scale parameter ratio and a different number of plates. Here, we took r = 1 for all chain systems. All three
material length scale parameters are the same for MSGT, i.e., l0 = l1 = l2. Letting l0 = l1 = 0, this theory
will be converted to the modified couple stress theory, and if all three parameters are taken to be zero, we
will have the classical theory. The figure includes diagrams for three cases of boundary conditions. One can
observe from the figure that the buckling load predicted by MSGT is larger than for both modified couple
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Fig. 4 The separate influence of the orthotropic and isotropic materials on dimensionless buckling loads of OMMPS versus
non-dimensional length scale parameter for different number of microplates, a “Clamped-Chain,” b“Cantilever-Chain,” c “Free-
Chain”



1636 M. Hosseini et al.

Fig. 5 Variations of the dimensionless buckling loads of OMMPS predicted by MSGT, MCST and CT corresponding to various
values of the non-dimensional length scale parameter and different number of microplates, a “Clamped-Chain,” b “Cantilever-
Chain,” c “Free-Chain”
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Fig. 6 Variations of the dimensionless buckling loads of OMMPS against the aspect ratio for different number of microplates. a
“Clamped-Chain,” b “Cantilever-Chain,” c “Free-Chain”
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Fig. 7 Variations of the dimensionless buckling loads of OMMPS against the non-dimensional transverse stiffness coefficient K
and the non-dimensional length scale parameter for different number of microplates. a “Clamped-Chain” b “Cantilever-Chain,”
c“Free-Chain”
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Fig. 8 Variations of the dimensionless buckling loads of OMMPS against the non-dimensional shear stiffness coefficient K1 and
the non-dimensional length scale parameter for different number of microplates. a “Clamped-Chain,” b “Cantilever-Chain,” c
“Free-Chain”
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Fig. 9 Effect of the axial force ratio on the dimensionless buckling loads of OMMPS for different number of microplates. a
“Clamped-Chain,” b “Cantilever-Chain,” c “Free-Chain”
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stress and classical theories. This is due to the higher bending rigidity of the plates in MSGT in comparison
with the two other theories. Also it is seen that the difference between dimensionless buckling load obtained
by MSGT, MCST and CT is negligible for higher values of dimensionless length scale parameter.

The effect of an increase of aspect ratio on buckling load for a different number of microplates and three
boundary conditions is depicted in Fig. 6. Here, we took r = 1 for all chain systems. As can be seen from the
diagrams (a), (b) and (c), the buckling load increases with increasing aspect ratio and decreases with increasing
number of plates.

Figure 7 presents the effects of variations of transverse stiffness coefficient and thickness-to-material length
scale parameter on the dimensionless buckling load. Here, we took r = 1 for all chain systems. It is obvious
from the figure that the buckling load considerably decreases with increasing thickness-to-material length scale
parameter and slightly increases with increasing transverse stiffness coefficient. The results reveal that there
is a little difference between the buckling loads extracted by using the different set of boundary conditions.
In Fig. 8, the same diagrams are plotted to exhibit the effects of variations of shear stiffness coefficient and
thickness-to-material length scale parameter on the dimensionless buckling load. The figure illustrates that
in the case of “Free-Chain” boundary condition the difference between the values of the buckling loads for
different numbers of plates is larger than the two other boundary conditions.

Variation of the buckling load against the axial force ratio for the different set of boundary conditions is
delineated in Fig. 9. Here, we took r = 1 for all chain systems. The compression ratio λ = 0 shows uniaxial
compression. An increase in the axial force ratio leads to a reduction in the buckling load for all numbers of
microplates. The results also demonstrate that the higher number of plates does not significantly affect the
buckling load in the case of the “Cantilever-Chain” condition in comparison with the other chain conditions.

5 Conclusion

In the present paper, biaxial buckling behavior of an OMMPS embedded in a Pasternak elastic medium is
investigated based on the MSGT and the Kirchhoff plate approach. It is assumed that the boundary condi-
tions of all four edges of each microplate are simply supported. The governing equations and corresponding
boundary conditions are derived using the principle of total potential energy. Explicit closed-form expressions
for the buckling load of the OMMPS for different “chain” conditions, “Clamped-Chain,” “Free-Chain” and
“Cantilever-Chain,” are proposed using Navier’s method and the trigonometric method. Several comparison
studies were carried out to check the accuracy of the obtained exact closed-form solutions. It is found from
numerical results that the buckling load is significantly influenced by the number of microplates, the length
scale parameter

( h
l

)
, the aspect ratio and the microplate thickness. Also, we found that when the number of

microplates in the OMMPS increases, the influence of the stiffness parameters of the Pasternak elastic medium
on the buckling load decreases toward zero. Moreover, an increase in the microplate thickness causes the
buckling load computed from MSGT and MCST to decrease toward the results of the classical approach for
all three chain systems.

Appendix

Substituting Equations (3), (6) and (8) into equation (14), Mxx, Myy, Mxy, �xxx, �xxy, �xyy and �yyy are given
in terms of the plate deflection as below:

Mxx = −
{

E1h3

12 (1 − ϑ12ϑ21)
+ E1h

2 (1 + ϑ12)

(
2l20 + 8

15
l21 + l22

)}
∂2wς

∂x2

−
{

ϑ12E2h3

12 (1 − ϑ12ϑ21)
+ E1h

2 (1 + ϑ12)

(
2l20 − 2

15
l21 − l22

)}
∂2wς

∂y2
, (45a)

Myy = −
{

ϑ12E2h3

12 (1 − ϑ12ϑ21)
+ E1h

2 (1 + ϑ12)

(
2l20 − 2

15
l21 + l22

)}
∂2wς

∂x2

−
{

E1h3

12 (1 − ϑ12ϑ21)
+ E1h

2 (1 + ϑ12)

(
2l20 + 8

15
l21 − l22

)}
∂2wς

∂y2
, (45b)
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Mxy = − E1h

2 (1 + ϑ12)

{
h2

3
+ 4

(
l21
3

+ l22

)}
∂2wς

∂x∂y
, (45c)

�xxx = − E1h

2 (1 + ϑ12)

{(
l20
6

+ l21
15

)
∂3wς

∂x3
+

(
l20
6

− l21
10

)
∂3wς

∂x∂y2

}

, (45d)

�xxy = − E1h

2 (1 + ϑ12)

{(
l20
6

+ 2l21
5

)
∂3wς

∂x2∂y
+

(
l20
6

− l21
10

)
∂3wς

∂y3

}

, (45e)

�xyy = − E1h

2 (1 + ϑ12)

{(
l20
6

+ 2l21
5

)
∂3wς

∂x∂y2
+

(
l20
6

− l21
10

)
∂3wς

∂x3

}

, (45f)

�yyy = − E1h

2 (1 + ϑ12)

{(
l20
6

+ l21
15

)
∂3wς

∂y3
+

(
l20
6

− l21
10

)
∂3wς

∂x2∂y

}

. (45g)
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