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Abstract The influence of surface effect, including surface elasticity and surface piezoelectricity, on the
fracture behavior of piezoelectricmaterialswith an anti-plane crack is studied. Based on the coupled surface and
interface elasticitymodel, the solutions to the problemare obtained by applying the singular integralmethod.By
comparing the solutions influenced by the surface piezoelectricity with those affected by the surface elasticity,
it is found that the influence of the surface piezoelectricity on the crack opening displacement, the crack
electric potential jump across the crack center, the crack tip stress and electric displacement intensity factors
cannot be ignored. Under various electrical boundary conditions, the influence of surface piezoelectricity on
the sliding displacement, crack tip stress and electric displacement intensity factors exhibits the same tendency.
Besides, the influence of surface piezoelectricity on the electric displacement intensity factor is independent
of the electrical boundary conditions, which is different from the results where only the surface elasticity is
considered.

1 Introduction

Owing to their unique mechanical and physical properties, piezoelectric nanostructured materials have found
wide applications in engineering such as powering nanodevices and sensors in the field of medical science,
defense technology and environment/infrastructure monitoring. There are increasing demands for studying
the mechanic behaviors and properties of piezoelectric nanostructures for their reliability applications [1–4].
Investigation of fracture behavior of piezoelectric nanostructures is very significant for the design and safety
analysis of these structures.

However, for piezoelectric nanomaterials, the surface effect becomesmore evident due to the larger surface-
to-volume ratio. To study the surface effect, the surface model [5] has been widely used by many researchers
in predicting the strength of nanostructures and characterizing the effective properties of nanosized structural
elements [6–9]. For piezoelectric nanomaterials, surface piezoelectricity may become essential at small scale
which is pointed out earlier by Tagantsev [10]. Therefore, it is significant to incorporate electric field dependent
surface effects when investigating the fracture behavior of the nanoscale piezoelectric structures. To deal with
the surface effect on electro-mechanical properties of piezoelectric nanostructures, this surface model [5] was
developed for the piezoelectric nanostructures [11–13]. In this coupling surface model, the surface elasticity,
the residual surface stress and electric displacement are both considered to analyze the surface effect. This
model was proposed and widely used to study the response of piezoelectric nanostructures. The pioneering
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work was done by Huang and Yu [14] to study the surface piezoelectricity on the electromechanical behavior
of a piezoelectric ring. In their work a considerable effect of surface piezoelectricity on the stress and electric
fields when the ring size reduced to nanometers was observed. Using the electro-elastic surface theory, Fang
et al. [15] carried out the size-dependent effect on electro-mechanical behavior of a multilayer piezoelectric
nanocylinder under electro-elastic waves.

Recently, adopting the continuum-based surface model, there has been a growing interest in studying the
crack problems at nanoscale and it has proved that when considering fracture behaviors of nanomaterials,
the surface effect is inevitable (see for example [16–19]). However, the works listed above did not give the
analysis of surface piezoelectricity on the fracture of piezoelectric nanomaterials. Moreover, as a parameter
to measure the fracture behavior of the materials, the crack tip field intensity factors play a significant role in
assessing the structural safety and the residual life of the structures. For the future applications of fracture in
micro/nanoscale material, it is vital to incorporate the influence of surface piezoelectricity in the crack tip field
quantities (such as the stress and electric displacement intensity factors). Therefore, researches on an infinite
piezoelectric matrix containing nanoscale cracks are relatively limited.

In the present paper, the problem of an anti-plane crack located within a nanoscale piezoelectric material
is studied. To analyze the surface piezoelectricity effect, on the crack tip field of an anti-plane crack, the
electro-elastic surface/interface theory is adopted. Using Fourier integrals and singular integral methods, the
solutions to the problem are derived. The solutions to the sliding displacement, electric potential jump along
the crack faces, stress and electric displacement intensity factors are obtained, and some useful conclusions
are drawn.

2 Description of the problem

Consider a piezoelectric medium with an anti-plane crack of length 2a along the x direction as shown in
Fig. 1, where (x, y) is a coordinate system. It is assumed that all the field variables are functions of x and y
only, respectively. Let the medium be loaded by a remote uniform anti-plane stress τ∞ and in-plane electric
displacement D∞ along the y direction. The solving technique employed in the remaining part of this section
is not new. There are many references related to this technique. The displacements w along z axis and the
electric potential φ will be derived from Fourier integrals and characteristic equations. Throughout the paper,
for convenience the following notations are used:

{b} = {b1, b2}T = {
τyz, Dy

}T
, (1.1)

{b∞} = {b∞1, b∞2}T = {τ∞, D∞}T , (1.2)

{U } = {U1,U2}T = {w, φ}T (1.3)

where τyz and Dy are the stresses and electric displacements, respectively.

Fig. 1 A piezoelectric nanomaterial with a through-thickness crack, subjected to far-field anti-plane stress and in-plane electrical
loads
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After a series of solving strategies, the anti-plane stress and in-plane electric displacement can be expressed
as [20]

{b (x, 0)} = Λ

2π

∫ a

−a

1

r − x
{g (r)}dr + {b∞} (2)

where Λ is the material parameter matrix, defined below,

Λ =
[
c44 e15
e15 − ∈11

]
, (3)

and {g(x)} is an auxiliary vector along the crack surface, which can be expressed as

gJ = 2
∂UJ (x, 0)

∂x
, J = 1, 2. (4)

The continuity condition requires that {g(x)} vanishes for |x | > a.
Under the crack impermeable assumption, the mixed crack boundary condition considering the surface

effect is written as follows [21]:
Inside the crack:

τyz (x, 0) = 0, Dy (x, 0) = 0, |x | < a. (5)

Along the anti-plane crack surface:

τyz (x, 0) + ∂σ s
yz

∂y
= 0, |x | < a, (6.1)

Dy (x, 0) + ∂Ds
y

∂y
= 0, |x | < a. (6.2)

Based on the coupling surface piezoelectric model, the surface stress and surface electric displacement on
the crack surface can be expressed as [12]

σ s
yz = τ0 + cs44

∂w

∂y
+ es15

∂φ

∂y
, (7.1)

Ds
y = Ds

0 + es15
∂w

∂y
− ∈s

11
∂φ

∂y
(7.2)

where τ0 and Ds
0 can be termed as the residual surface stress and surface electric displacement without applied

strain and electric field; cs44, e
s
15 and ∈s

11 are, respectively, the surface elastic constant, surface piezoelectric
constant and surface dielectric constant, which are often determined by extensive atomistic simulations. Thus
in the following formulation, the elastic stiffness, dielectric constant and piezoelectric constant of the surface
are considered as known quantities.

Substituting the expressions of surface stress and surface electric displacement into Eq. (6) yield

{
τyz (x, 0)
Dy (x, 0)

}
= −Λs

⎧
⎨

⎩

∂2w
∂y2

∂2φ

∂y2

⎫
⎬

⎭
(8)

where Λs is a surface parameter matrix, which can be expressed as:

Λs =
[
cs44 es15
es15 − ∈s

11

]

. (9)

In the piezoelectric material, the governing equations for the bulk are expressed, in the absence of body force
and body charge, as:

c44∇2w + e15∇2φ = 0, e15∇2w− ∈11 ∇2φ = 0 (10)

where c44, e15 and ∈11 are the elastic, piezoelectric and dielectric coefficients, respectively.
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With conventional materials, c44 ∈11 +e215 �= 0 [22], thus the above equations can be simplified to two
independent biharmonic equations,

∇2w = 0, ∇2φ = 0. (11)

Then considering the surface effect, the boundary conditions along the crack surface of piezoelectric nanoma-
terial can be expressed as

{b (x, 0)} = Λs

2

{
g′ (x)

}
. (12)

3 Solution to the problem

Inserting the anti-plane stresses and in-plane electric displacements into themixed boundary conditionsEq. (12)
at y = 0 gives

Λ

2π

∫ a

−a

1

r − x
{g (r)} dr + {b∞} = Λs

2

{
g′ (x)

}
. (13)

It can be seen that the residual surface stress τ0 and surface electric displacement Ds
0 have no influence on

mechanical and electric fields. As a result, surface piezoelectricity and surface elasticity contribute to this
anti-plane crack problem. That is, in this problem, the surface effect includes only the surface piezoelectricity
and surface elasticity. Equation (13) is a system of singular integral equations which has Cauchy-type integral
kernel 1/(r − x). Let r̄ = r/a and x̄ = x/a, then, under the theory of the integral equation, the solution to
{g(x)} can be expressed as [23,24]

{g (x)} =
{
g1 (ar̄)
g2 (ar̄)

}
=

∞∑

m=1

{
Cwm
Cφm

}
Tm (r̄)√
1 − r̄2

(14)

where Tm (r̄) = cos(marccos(r̄)) are the Chebyshev polynomials of the first kind, andCwm,Cφm are unknown
constants to be determined.

Equation (13) can be solved by truncating the first M terms of Eq. (14), i.e. m = 1, . . . , M ,

and using the well-known integral
∫ 1
−1 Tm (r̄)/

[
(r̄ − x̄)

√
1 − r̄2

]
dr̄ = πUm−1 (x̄), where Um−1 (x̄) =

sin (m arccos x̄) /
√
1 − x̄2 is the Chebyshev polynomial of the second kind. By adopting collocation tech-

niques, Eq. (13) can be solved [23,24]. Let xk = cos[(2k − 1)π/(2M)], where k ∈ [1, M], then −1 ≤ xk ≤ 1.
Substitution of xk into Eq. (13) yields

{[
G 0
0 G

]
− 1

a

[
n11Q n12Q
n21Q n22Q

]}
{C} = 2 [Λ0] {b∞} (15)

where {C} is a column whose elements are Cwm and Cφm , respectively, m = 1 . . . M ; Λ0 is a 2M × 2 matrix
whose first M elements are {−Λ̄11, −Λ̄12} and the last M elements are

{−Λ̄21, −Λ̄22
}
; Λ̄i j is an element of

matrix Λ−1; ni j is an element of matrix Λ−1Λs; Q and G are M × M matrices whose elements respectively
are

(Q)mn = n sin(m arccos xm) + xm cos(n arccos xm)/
√
1 − x2m

1 − x2m
, (16)

and (G)mn = Un−1(xm). Then the solution of {g(x)} can be obtained by {C}, which can be calculated by
Eq. (15). Obviously, the crack sliding displacement δw, electric potential jump along the crack faces δφ, stress
intensity factor KIII and electric displacement intensity factor KD can be calculated by {C} as[22]

δw = 2w(0, 0) =
(
2a

∫ x̄

−1

g1 (ar̄)

2
dr̄

)

x̄=0
= −a

M∑

m=1

Cwm
sin(mπ/2)

m
, (17.1)

δφ = 2φ(0, 0) =
(
2a

∫ x̄

−1

g2 (ar̄)

2
dr̄

)

x̄=0
= −a

M∑

m=1

Cφm
sin(mπ/2)

m
, (17.2)

{KIII, KD}T = −Λ

2

√
πa

{
M∑

m=1

Cwm,

M∑

m=1

Cφm

}T

. (17.3)
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As the increase in M , the solutions of Eq. (15) converge to the exact solutions and the correspondence results
are shown graphically in the next section.

4 Numerical example

To illustrate the surface piezoelectric effect, PZT-5H piezoelectric medium is chosen, whose elastic and
piezoelectric constants are [21]: c44 = 3.53 × 1010 Nm−2, e15 = 17Cm−2, and the dielectric constant is:
∈11= 150.3 × 1010 C/Vm. For the purpose of this section is to depict the physics phenomenon which reveals
the effect of surface piezoelectricity, a characteristic factor η is introduced to reflect the relation between the
surface constants and piezoelectric constants, i.e.

cs44 = ηc44, es15 = ηe15, ∈s
11= η ∈11 . (18)

Then Eq. (15) is developed into
{[

G 0
0 G

]
− 1

a

[
ηQ 0
0 ηQ

]}
{C} = 2 [Λ0] {b∞} . (19)

Taking M = 1 as example, the solutions of sliding displacement, electric potential jump along the crack
faces, stress and electric displacement intensity factors can be obtained as follows:

δw = 2a
(
Λ̄11τ∞ + Λ̄12D∞

)

1 − η/a
, (20.1)

δφ = 2a
(
Λ̄21τ∞ + Λ̄22D∞

)

1 − η/a
, (20.2)

KIII =
√

πaτ∞
1 − η/a

, (20.3)

KD =
√

πaD∞
1 − η/a

. (20.4)

Let η = 0, then we can also obtain the sliding displacement δwo, electric potential jump along the crack faces
δφo, the stress intensity factor KIIIo, and electric displacement intensity factor KDo which ignored the surface
piezoelectric effect, i.e. the linear elastic fracture mechanics solution. It follows from Eq. (20) that

δw

δwo
= δφ

δφo
= KIII

KIIIo
= KD

KDo
= 1

1 − η/a
. (21)

According to the method of determining the value of the character factor for an anti-plane problem [21],
let η = −1 nm. Obviously, the characteristic length parameter of the piezoelectric material lc can be expressed
as lc = −η. As argued by Andreussi and Gurtin [25], it is feasible to apply the continuum surface model for
structures at a few nanometers scale. It can be seen from Eq. (21) that the influence of the surface effect is
not related to the applied load, but only related to the normalized half crack length a/ lc. The above results are
obtained under the crack impermeable assumption. For the crack permeable assumption, the electric potential
across the crack is continuous, the solution is more easily obtained, and the corresponding equations can be
derived as

{[
G 0
0 G

]
− 1

a

[
ηQ 0
0 ηQ

]} {
Cwm
0

}
= 2 [Λ0]

{
τ∞
D∞ − D0

}
(22)

where D0 is the unknown constant that can be calculated as D0 = (
Λ̄21τ∞ + Λ̄22D∞

)
/Λ̄22. In the case of

M = 1, the corresponding normalized solutions are:

δw

δwo
= KIII

KIIIo
= KD

KDo
= 1

1 − η/a
. (23)

It can be seen from Eq. (22) that the sliding displacement, the stress and electric displacement intensity factors
are the same as those under the crack impermeable condition. Therefore, in this section only the surface effect
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Fig. 2 Normalized sliding displacement as a function of normalized half crack length

under the impermeable crack condition is given. Next, with increasing M , the solutions are very close to the
exact solutions. Then, with the consideration of surface piezoelectricity, the normalized results as functions of
the normalized half crack length are given. To compare the results with andwithout the surface piezoelectricity,
the normalized solutions which only incorporate the influence of the surface elasticity are also given, i.e. terms
related to es15 and ∈s

11 in Eq. (19) are ignored. To obtain the corresponding results one can see the similar
work where only the residual surface stress is included [26]. Similar to this work, Ref. [22] also found that
the electric displacement intensity factor is related to the electric boundary condition. These two results are all
normalized by the linear elastic fracture mechanics solutions.

How the surface piezoelectricity affects the sliding displacement is plotted in Fig. 2. It can be seen that
surface piezoelectricity decreases the value of the sliding displacement which is the same as that of surface
elasticity. However, these two effects have different degree; obviously the influence incorporated by surface
piezoelectricity has far more effect on the sliding displacement. For example, when a/ lc = 80, the normalized
sliding displacement δw/δwo = 0.94, i.e., with consideration of surface piezoelectricity, the value of the
sliding displacement is 6% less than that of linear elastic fracture mechanics theory, while ignoring the
surface piezoelectricity the normalized sliding displacement is δw/δwo = 0.98, i.e., if only surface elasticity
is considered, the value of the sliding displacement is 2% less than that of linear elastic fracture mechanics
theory; when a/ lc = 20, with the consideration of surface piezoelectricity, δw/δwo = 0.81, i.e. in this case the
value of sliding displacement is 19% less than that of linear elastic fracture mechanics theory; while ignoring
the surface piezoelectricity the obtained solution is δw/δwo = 0.89, i.e. the value of sliding displacement is
11% less than that of linear elastic fracture mechanics theory.

Figure 3 depicts the normalized electric potential jump along the crack faces as a function of normalized
the half crack length with and without consideration of surface piezoelectricity. It is found that all the curves
in this figure approach 1. Similar to sliding displacement, the value of the electric potential jump along the
crack faces is decreased with the influence of surface elasticity and surface piezoelectricity, especially for the
latter. In other words the two effects have the same tendency, but with different degree of variations.

Incorporating the surface piezoelectricity, the variation of the normalized stress intensity factor KIII/KIIIo
with the normalized half crack length is displayed in Fig. 4. It can be seen that similar to δw/δwo and δφ/δφo,
the normalized stress intensity factor approaches 1 with the increase in a/ lc. It means that when the size of
the piezoelectric material shrinks to nanoscale, the surface elasticity and surface piezoelectricity cannot be
ignoring. Furthermore, ignoring the surface piezoelectricity will overestimate the stress intensity factor.

Finally, Fig. 5 gives the relation between the normalized electric displacement intensity factor and the
half crack length. It is found that the normalized solution KD/KDo is equal to 1, i.e. ignoring the surface
piezoelectricity, the solution of KD is the same as that of linear elastic fracture mechanics theory. Under such
circumstances if only the surface elasticity is considered, the electric displacement is independent of the surface
effect. However, when the surface piezoelectricity is included, the influence of surface piezoelectricity on the
electric displacement intensity factor is remarkable. Apparently, under the two different electric boundaries,
the surface effect on the electric displacement is different when the surface piezoelectricity is ignored.With the
consideration of surface piezoelectricity, the surface effect does not rely on the electric boundary conditions.
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Fig. 3 Normalized electric potential jump across the crack center as a function of normalized half crack length

Fig. 4 Normalized crack tip stress intensity factor as a function of normalized half crack length

Fig. 5 Normalized crack tip electric intensity factor as a function of normalized half crack length
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5 Conclusion

Applying the Fourier integral and the singular integral equation technique, the problem of an infinite piezoelec-
tric material with a nanoscale anti-plane crack is studied. The coupling surface elasticity model is introduced
to express the electro-elastic coupling fields. The solutions to the sliding displacement, electric potential jump
along the crack faces, stress and electric displacement intensity factors are obtained. The surface piezoelectric-
ity effect is found to be remarkable on the crack deformation and crack near-tip stress field. It is also found that
when the influence of surface piezoelectricity is included, the electric displacement intensity factor is indepen-
dent of the electric boundary conditions on the crack faces. If only the surface elasticity is incorporated, the
electric displacement intensity factor is dependent of electric boundary conditions on the crack faces. Finally,
influences of surface elasticity and surface piezoelectricity on the solutions of the problem are consistent under
the two electric boundary condition assumptions. The obtained theoretical results are helpful for studying the
size-dependent fracture phenomena of nanomaterial containing nanoscale cracks and the design nanodevices
in NEMS.
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