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Abstract The problem of an elastic beam under the periodic loading of successive moving masses is inves-
tigated as a pragmatic case for studying dynamic stability of linear time-varying systems. This model serves
to highlight the odds of multi-solutions coexistence, a form of hidden instability which reveals dangerous
as it may be precipitated by the slightest disturbance or variation in the model. Since no engineering model
perfectly represents a physical system, such situations for which Floquet theory naively predicts stability are
potentially inevitable. The harmonic balancing method is used in order to thoroughly explore the stability
diagrams for detecting these instability gaps. Although this phenomenon has also been described in other
physical systems, it has not been addressed for beam–moving mass systems. This result may find particular
importance in applications involving self-induced vibrations of elastic structures and hence also appears of
practical relevance.

1 Introduction

Investigating dynamic stability of a flexible beam carrying a moving mass is an extensive problem embracing
a wide variety of engineering applications. Examples are numerous, such as vehicles or trains transiting across
bridges and rails [1], loads transported along cranes span [2], suspended conveying pipe systems [3], high-
speed machining processes [4], to enumerate but a few. The presence of vibration instability induced by
moving bodies travelling along the elastic structure can be taken into account depending on different aspects
associated with the problem. Some of them include investigations by quasi-static methods [5,6], by Doppler
waves propagation [7,8], along finite or infinite span [9–11]. The principal concern depends on the case
and comprises problems like derailment [8], lateral buckling [12], improving cutting precision in high-speed
machining [4], or preventing load swaying in crane transport [2].

The generation of instability is the result of the interaction between the elastic structure and the moving
body,modeled in this case as amass or oscillator instead of a simple load.Different instability phenomenawhich
have been addressed and investigated in the problem of a beam under moving masses include external, internal
[13,14] and parametric resonances [15,16]. External resonance arises from closeness of forced excitation
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frequency to the natural frequencies of the mass–beam combined system. In other circumstances, the energy
transfer to the beam’s transversal oscillations, which is ensued from the negative damping effect, leads to
instability growth rather than resonance [17,18]. Internal resonance happens when the natural frequencies of
the system become commensurable and conditions for strong interaction between different modes subsist.
Consequently, energy is interchanged between involved modes, and the response becomes multi-modal. In
another instance, parametric excitation appears as another internal factor leading to self-energizing vibrations
and occurs when the frequency of excitation is close to twice one of the system’s natural frequencies. It is
important to clarify that this effect differs from regular resonance as it requires the initial amplitude to exhibit
amplification, whereas the latter grows linearly in time regardless of the initial state [18].

Although there is practically no analytic solution for most categories of parametrically excited systems,
useful properties can still be deduced for subclasses comprising periodically varying systems. Periodicity of
the coefficients results in unique response properties that permit a simplifying analysis. The stability study
of these systems is discussed with respect to parameters’ variations, represented as stability diagrams in the
plane of parameters. Among existing methods, Floquet’s theory provides the essential tools to differentiate
the multiple regions appearing in the stability diagram by numerically solving the problem for one single time
period [19,20]. The boundaries separating those regions, referred as transition curves, represent parameter
values for which periodic solutions occur (indeed an eigenvalue problem is resolved [21]). Instability regions
usually illustrate in the form of resonance tongues which is a generic feature of differential equations with
periodic coefficients [21,22].

As far as it concerns the present problem, it seems that only one article [23] has been published yet alluding
to instability tongues existence, in contrast to all other studies which demonstrated just one transition curve,
probably due to the insufficient sweeping resolution of the parameter plane by conventional methods. In fact,
the process of numerical integration required by Floquet’smethodmay change the system’s inherent trait which
makes detection of the tracked phenomena extremely difficult to capture numerically. Hence the necessity for
adopting semi-analytical tools to enhance the identification process is evident, especially when dealing with
structurally unstable systems (i.e., sensitive to the slightest changes).

The particular parametric phenomenon we seek to study is coexistence. Coexistence occurs when the
tongues of instability cross or overlap, effectively closing the unstable region. The coexistence phenomenon
has been treated from a theoretical and practical point of view in [24–28]. In [21,25], the authors addressed
conditions underwhich a special case class of linearODEswith periodic coefficients can exhibit the coexistence
phenomenon. Suchproblemsmaybe encounteredwhen studying the stability of parametrically excited systems,
but the phenomenon is sensitive to slight model variations. The influence of this factor may even be more
pronounced when the system is structurally unstable. In regular problems, a change in the system’s parameters
will result in widening or retracting of the instability tongues, such as those appearing in Mathieu’s case,
for example. According to the continuous dependency of response characteristics with respect to parameters’
variation in regular systems, there is no expectation for the appearance of suddenly born regions of instability
or a morphology change in the middle of a quiescent part of the diagram. In contrast, systems for which a
small change in parameters results in a severe change of behavior, like coexistence cases, are characterized to
belong to the subgroup of “structurally” sensitive systems.

There are various physical systems which are known to exhibit coexistence, including the vibrating elastica
[29], the elastic pendulum [30], rain–wind-induced vibrations [21], Josephson junctions [31], variable mass
oscillators [28,32], and quasi-periodic potentials in the Schrödinger equation [33]. The present problem is
nowadays relevant for the case of modern high-speed transportation trains transiting over bridges or fast
lifting/moving cranes in which the dynamic stability of the structure under the sequential rapid loading is an
issue of great concern. Any related engineering design process has to be concerned with the importance of
recognizing the odds of coexistence occurrence in order to reach a sufficient safety margin, otherwise posing
unexpected challenges if neglected. The purpose of diverse studies was to identify instability areas in the space
of the system parameters. Nevertheless, the prediction of unattended dynamic behaviors due to the existence
of hidden instability traps triggered by eventual modeling uncertainties has not been yet studied.

2 Governing equations

The model upon which the analysis is based may be looked as one of the simplest, nonetheless still including
the essentials to take into account the interaction. The vehicle is assumed as a single inertia pointmass travelling
at constant speed along the bridge span, represented as an Euler–Bernoulli beam. The linear partial differential
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equation governing the vibrations of the beam excited by the moving mass sequences is derived as [15]

ρAv̈ + E Iv(4) + (
mv̈ + 2mU v̇′ + mU 2v′′)∣∣

x=Ut = mgδ (x −Ut) (1)

where v (x, t) represents the beam deflection from its static state at the interval x and instant t . Gravitational
acceleration, mass density, cross-sectional area, length and flexural rigidity of the uniform beam are denoted
by g, ρ, A, l, E I , respectively.m andU are the mass and velocity of the moving load, and δ is the Dirac delta
function.

The partial differential Eq. (1) is converted to a set of ordinary differential equations on the modal coordi-
nates by the Galerkin method according to the following solution expansion:

v (x, t) =
∞∑

i=1

ϕi (x) qi (t), ϕi (x) =
√
2

l
sin

(
iπ

x

l

)
(2)

where qi (t) is the corresponding generalized coordinate of the i th free shape mode function ϕi(x). Considering
the orthogonality condition between modes, the discretized set of differential equations is obtained as

M (t)
d2q
dt2

+ B (t)
dq
dt

+ K (t)q = f (t) (3)

where q = [q1(t), q2(t), . . . , qn(t)]T is the array of the modal coordinates. The components of the defined
matrices are expressed as

Mi j = δi j + m

ρA
ϕi (xm) ϕ j (xm) ,

Bi j = 2mU

ρA
ϕi (xm) ϕ j,x (xm) ,

Ki j = ω2
i δi j + mU 2

ρA
ϕi (xm) ϕ j,xx (xm) ,

fi = mg

ρA
ϕi (xm) (4)

where δi j and ωi = ( iπ
l

)2 √
E I/ρA are the Kronecker delta and the i-th natural frequency of a simply

supported beam, respectively. The shape functions are evaluated at x = xm , representing the particle’s instant
position along the beam. The equation governing the modal coordinate truncated to the first mode becomes

(
1 + 2

m

ρAl
sin2

(
πUt

l

))
d2q1
dt2

+
(
4
mπU

ρAl2
sin

(
πUt

l

)
cos

(
πUt

l

))
dq1
dt

+
(

ω2
1 − 2mπ2U 2

ρAl3
sin2

(
πUt

l

))
q1 =

√
2

l

m

ρA
g sin

(
πUt

l

)
. (5)

By defining the non-dimensional parameters

α
�= m

ρAl
, τ

�= πUt

l
, 


�= πU

lω1
, ḡ

�= g

lω2
1

, Q
�= q1

l3/2
, β

�= 1


2 , (6)

the governing equation can be reformulated in dimensionless form,


2 (
1 + α sin2(τ )

)
Q̈ + 4α
2 sin(τ ) cos(τ )Q̇ + (

1 − 2α
2 sin2(τ )
)
Q = √

2αḡ sin(τ ), (7)

where a dot denotes derivation with respect to the dimensionless time τ .
While the moving mass has not left the beam span, the induced vibration is governed by the time-varying

Eq. (7). As soon as it exits the beam, the mass will have no more influence on the beam, and consequently
the governing equation will lose its time-varying character (α = 0), resulting in the removal of any vibration
amplification factor. By considering a repeating sequence of mass entrance and departure, the coefficients of
Eq. (7) become periodical with period T = l/U which necessitates to substitute the coefficients of Eq. (7) by
their Fourier expansion of period T . In the sequel, the right-hand side of Eq. (7) can be disregarded assuming
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a negligible gravity effect while keeping the inertia of the transient masses in the dynamic stability analysis of
the system. This leads to a homogeneous parametrically excited system with period T = π :


2 (1 + α (1 − cos(2τ))) Q̈ + 2α
2 sin(2τ)Q̇ + (
1 − α
2 (1 − cos(2τ))

)
Q = 0. (8)

In linear time-varying systems, parametric as well as external resonance conditions can be met. According
to the fact that the Fourier expansion of the right-hand side of Eq. (7) is reviving exciting terms of different
frequencies, the authors have previously shown that if a solution becomes synchronized with the excitation, a
generalized form of resonance for time-varying systems can occur [15,34].

3 Analysis of periodic systems by Harmonic Balance

In parametrically excited systems, conditions of internal stability have to be established according to the
parameters involved in the equation. Regions corresponding to instability are identified in the space of system
parameters. A well-known stability diagram is that established for the Mathieu equation [25]. In the present
system, the parameters that are dealt with are (α, β) which respectively represent the mass ratio and transition
frequency of moving loads. As alluded, the solutions to T -periodic differential equations are not generally
periodic but just for certain parameters valueswhich, according to Floquet’s theory, delimit stable fromunstable
regions in the parameters’ plane. This fact serves as the main principle for a majority of methods employed to
study the stability of periodic differential equations.

A review of the studies accomplished on the dynamic stability of beam–moving mass systems reported
the existence of just one such separating boundary with transition behavior except for one study [23], due to
accuracy limitation caused by the process of numerical integration or the insufficient sweeping resolution of
the parameter plane. So the necessity for employing a more efficient approach, stimulated by the expectation
to find other transient curves, is justified. The incremental harmonic balance method was successfully applied
as a semi-analytic alternative by the authors in order to explicitly recognize conditions for periodic solutions
[34]. Although additional boundary curves were detected by this method, the expected transition behavior
across them did not arise for all cases. In what follows, an explanation for this singular observation apparently
contradictory with the theory will be held by applying a more subtle analysis.

Returning back to Eq. (8) and rewriting it in a more concise form in terms of perturbation parameters

ε
�= α/(1 + α) and δ

�= 1/β2 will result in

(1 + a cos (2τ))
d2V

dτ 2
+ b sin (2τ)

dV

dτ
+ (c + d cos (2τ)) V = 0, (9)

recognized as Ince’s equation where

a
�= −ε, b

�= 2ε, c
�= δ

1 + α
− ε, d

�= ε. (10)

As mentioned, the boundary curves partitioning the regions of stability of Eq. (9) are T and 2T-periodic which,
according to the period of the dimensionless equation, can be both expanded as a Fourier series of period
T = π ,

V (τ ) =
∞∑

n=0

An cos (nτ) +
∞∑

n=1

Bn sin (nτ). (11)

By substituting in the main equation and applying some algebraic operations, we obtain
∞∑

n=0

{
(−n2 (1 + α) + δ − α

)
An cos (nτ) + 1

2
α (n + 1)2 An cos (n + 2) τ

+1

2
α (n − 1)2 An cos (n − 2) τ

}

+
∞∑

n=1

{(−n2 (1 + α) + δ − α
)
Bn sin (nτ) + 1

2
α (n + 1)2 Bn sin (n + 2) τ

+1

2
α (n − 1)2 Bn sin (n − 2) τ

}
= 0. (12)
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Noting that the first half of the equation is an even function and the second half is odd, the first summation can
get decoupled from the second one, resulting in the two following equations:

∞∑

n=0

{(−n2 (1 + α) + δ − α
)
An cos (nτ) + 1

2
α (n + 1)2 An cos (n + 2) τ

+1

2
α (n − 1)2 An cos (n − 2) τ

}
= 0, (13)

∞∑

n=1

{
(−n2 (1 + α) + δ − α

)
Bn sin (nτ) + 1

2
α (n + 1)2 Bn sin (n + 2) τ

+1

2
α (n − 1)2 Bn sin (n − 2) τ

}
= 0. (14)

Regarding that the trigonometric terms are independent functions, each coefficient has to be set equal to
zero. Thus an infinite number of coupled equations in terms of An and Bn are obtained. By inspecting more
attentively, it can be deduced that the odd-index terms of each expression are not interfering with the even-
index terms and can further be decoupled into terms of similar parity. This can be explained by the fact that
the even and odd terms correspond to the T -periodic and 2T -periodic Floquet’s solutions, respectively. The
result is summarized in four independent sets of coupled homogeneous equations gathering A-even, A-odd,
B-even and B-odd indices terms. The condition for existence of a nontrivial solution is that at least one of the
determinants of those matrices be equal to zero:

Aeven : det

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

c Q (−1) 0 0 0 · · ·
2Q (0) c − 4 Q (−2) 0 0 · · ·

0 Q (1) c − 16 Q (−3) 0 · · ·
0 0 Q (2) c − 36 Q (−4) · · ·
0 0 0 Q (3) c − 64 · · ·
· · · · · · · · · · · · · · · . . .

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

= 0, (15)

Beven : det

⎡

⎢⎢
⎢⎢
⎣

c − 4 Q (−2) 0 0 · · ·
Q (1) c − 16 Q (−3) 0 · · ·
0 Q (2) c − 36 Q (−4) · · ·
0 0 Q (3) c − 64 · · ·
· · · · · · · · · · · · . . .

⎤

⎥⎥
⎥⎥
⎦

= 0, (16)

Aodd : det

⎡

⎢⎢
⎢⎢
⎣

c − 1 + P (0) P (−1) 0 0 · · ·
P (1) c − 9 P (−2) 0 · · ·
0 P (2) c − 25 P (−3) · · ·
0 0 P (3) c − 49 · · ·
· · · · · · · · · · · · . . .

⎤

⎥⎥
⎥⎥
⎦

= 0, (17)

Bodd : det

⎡

⎢
⎢⎢
⎢
⎣

c − 1 − P (0) P (−1) 0 0 · · ·
P (1) c − 9 P (−2) 0 · · ·
0 P (2) c − 25 P (−3) · · ·
0 0 P (3) c − 49 · · ·
· · · · · · · · · · · · . . .

⎤

⎥
⎥⎥
⎥
⎦

= 0, (18)

in which

Q (m) = d

2
+ bm − 2am2, (19)

P (m) = Q

(
m − 1

2

)
= d + b (2m − 1) − a (2m − 1)2

2
. (20)

In the next Section, this situation will be explored in more details.
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4 Instability boundary curves

In this Section, it is shown how to deduce the transition curves separating stable and unstable regions by using
the resulting matrices in Eqs. (15–18). As a first instance, solving Eq. (15) for A-even indices is considered.
In order to reach a non-trivial solution, the determinant of the coefficients has to be set to zero, i.e,

det

⎡

⎢
⎢⎢
⎢⎢
⎣

δ − α α
2 0 0 · · ·

α δ − α − 4 (1 + α) 9α
2 0 · · ·

0 9α
2 δ − α − 16 (1 + α) 25α

2 · · ·
0 0 25α

2 δ − α − 36 (1 + α) · · ·
· · · · · · · · · · · · . . .

⎤

⎥
⎥⎥
⎥⎥
⎦

= 0. (21)

Considering a finite-dimension 4× 4 expansion of this determinant, the equation determining the boundary of
stability in the parameter plane will result as

δ4 − (60α + 56) δ3 + (
784 + 781α2 + 1736α

)
δ2

+ (−2034 − 2310α3 − 8836α2 − 8480α
)
δ + 2304α + 11025

8
α4 + 6580α3 + 7408α2 = 0. (22)

By solving the above equation, the parametric curve δ = δ (α) will arise. According to the fact that the
analytical solution is not reachable, a perturbation technique is applied. The expansion is performed with
respect to α as the perturbation parameter,

δ = δ0 + δ1α + δ2α
2 + δ3α

3 + · · · + δnα
n . (23)

Substituting Eq. (23) into (22) and collecting terms of similar order results in

α0 → δ0 (δ0 − 4) (δ0 − 16) (δ0 − 36) = 0 (24)

α1 → 1568δ0δ1 + 4δ30δ1 − 2304δ1 − 168δ20δ1 + 2304 − 8480δ0 − 60δ30 + 1736δ20 = 0

The first sub-equation for order α0 has multiple roots 0, 4, 16 and 36. It is worth to mention that these roots
are not depending on the considered order of determinant expansion. By selecting the first root (δ0 = 0) and
solving the next equations subsequently, the first transition curve equation in (δ − α) plane results as:

δ = α − α2

8
+ α3

8
+ O

(
α4) . (25)

To compare with previous results, δ = 1/β2 is back-substituted, leading to

β =
√

8

8α − α2 (1 − α)
, (26)

which is exactly the same expression obtained earlier by the authors via homotopy approach [35] or numeri-
cal integration method [19]. It is clear that this result can be enhanced by increasing the order of perturbation
expansion and determinant dimension considered. By repeating this trend about other roots and also expanding
other determinant equations, a complete map depicting the whole stability regions will be obtained similar to
Mathieu’s equation diagram, with multiple tongue-like regions of instability. Formally, these regions appear
between two consecutive separating curves emerging from a common root in the beam–moving mass para-
meters plane. The next Section will be devoted to special cases that may be present in the stability diagram of
this problem.
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5 Coexistence in the beam–moving mass problem

By conducting a more subtle investigation on the structure of matrices (17) and (18), one can perceive that they
are identical, therefore possessing the same determinant polynomial which results in a set of coinciding curves
in the parameter plane. This can be interpreted as the common occurrence (coexistence) of two independent
solutions for the same pair of parameters lying on these curves. As mentioned, the regions of instability are
limited to such curves. Coexistence is thus equivalent to the shrinkage of these regions to zero-thickness
tongues. Apparently, this internal collapse caused regions of potential instability to disappear. As will be
investigated, the persistence of these close-up tongues is sensitive to parameters variation, a fact which makes
dangerous to design in the vicinity of these potential “faults.”

As far as the present problem is concerned, it is clear that P (0) = 0 according to defined parameters in
Eq. (10). It is observed that determinants Aodd and Bodd become equal, resulting in one common equation
and hence causing the coexistence to occur. By putting ε = 0 in Eqs. (17, 18) as a first approximation, one
obtains that these coexistence curves (tongues of zero thickness) emanate from c = 1, 9, 25, . . .. Using a
finite-dimension expansion of determinants Eq. (17) or (18), say of fourth order, leads to

c4 − 84c3 + (
1974 − 392ε2

)
c2 + (

6736ε2 − 12916
)
c + 11025 − 10952ε2 + 1296ε4 = 0. (27)

In order to solve the above algebraic equation, the variable c is expanded with respect to ε around emanating
points. For example, to find the coexistence curve emanating from c = 1, one considers

c = 1 + εc1 + ε2c2 + ε3c3 + · · · . (28)

Substituting Eq. (28) in Eq.(27) and gathering terms of similar order of ε, the first coexistence curve becomes

c = 1 − 1

2
ε2 − 13

96
ε4 + · · · . (29)

Recalling that c
�= δ

1+α
− ε and δ

�= 1/β2, the coexistence curve is expressed in the α − β plane as

β =
[
1 + 2α − α2

2 (1 + α)
− 13

96

α4

2 (1 + α)3

]− 1
2

(30)

which compared accurately to the 2T-periodic solution derived by the IHB method [15].
According to Floquet’s theory, it is expected to transit between stable/unstable regions upon crossing

over curves corresponding to periodic solutions. But as explained, this curve coexists with another one in the
present case, resulting in an unidentifiable instability region. This fact is verified by simulating the system with
parameters selected on both sides of this curve, demonstrating a uniform trend of stability as shown in Fig. 1.

Other plausible periodic solutions arise from expanding the determinants Aeven and Beven , Eqs. (15) and
(16). These expansions result in different equations and hence correspond to pairs of curves which no more
coincide and create tongues of instabilitywith roots emerging from c = 4, 16, 36, . . .. For example, by adapting
the aforementioned method, the solutions existing about c = 4 can be obtained as

c = 4 − 25

16
ε2 + · · · (31)

and

c = 4 − 27

16
ε2 + · · · (32)

respectively for Aeven and Beven determinants. The corresponding form of the above curves in the (α − β)
plane is as follows:

β =
√

16 (1 + α)

64 + 144α + 55α2 , (33)

and

β =
√

16 (1 + α)

64 + 144α + 53α2 , (34)

which are depicted in Fig. 2 with other tongues and coexistence curves.
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Fig. 1 Comparison of the system response for parameters selected on both sides of the coexistence boundary Eq. (30)

Fig. 2 Complete stability plane of the moving mass and beam interaction problem

The fact that these curves emerge from a common point is easily understood by substituting ε = 0 into the
determinants which lead to the vanishing of off-diagonal terms. The determinant expression results as

|Aeven| = c(c − 4)(c − 16)(c − 36) · · · (35)

and
|Beven| = (c − 4)(c − 16)(c − 36) · · · (36)

which also shows that c = 0 is a single transition curve and other curves emanating from c = 4, 16, 36, . . .
form tongues. These curves are represented in Fig. 2 as dashed lines originating from corresponding roots.

6 Opening of coexistence curves

The unique characteristic of the governing Eq. (9) which led to the conditions for the coexistence phenomenon
can get challenged by the slightest variation in themodel. In fact, it will be shown that the presence of negligible
modeling uncertainties or disturbances in the system may result in unpredictable behavior. For instance, one
can assume a small oscillating axial force as an arbitrary external loading or appearing due to the reaction of
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non-ideal supports modeled as horizontal springs. This force which is activated with double the frequency of
the moving load passage can be expressed as (p cos (2τ)) if the span shortening due to the first flexural mode is
considered. There is no surprise to note that this term appears alongside the beam stiffness term because of the
recognized influence of axial force on flexibility, resulting in the following form for the governing equation:

(1 + α (1 − cos (2τ)))
d2V

dτ 2
+ 2α sin (2τ)

dV

dτ
+ (δ − α (1 − cos (2τ)) − λδ cos (2τ)) V = 0 (37)

where λ = p/pcr and pcr = π2E I/l2. By performing some algebraic operations, Ince’s equation, Eq. (9),
reappears with the following coefficients:

a
�= −ε, b

�= 2ε, c
�= δ

1 + α
− ε, d

�= ε (1 + K ) . (38)

In the above definitions, K = λδ/α represents the axial stiffness reaction of the supports. Substituting these
parameters into Eqs. (19) and (20) results in

Q (m) = 2εm2 + 2εm + ε

2
(1 + K ) , (39)

P (m) = ε (1 + K ) + 2ε (2m − 1) + ε (2m − 1)2

2
. (40)

In contrast to the previous ideal case, P (0) = εK/2 �= 0 will no more vanish at m = 0, which results on
this occasion in different expressions for Aodd and Bodd determinants. Hence the condition for coexistence
curves emanating from c = 1, 9, 25, . . . will no more subsist. This effect will pronounce as the axial stiffness
augments, yielding a gradually K -dependent opening of the previously coexisting curve. Hence it can be stated
that Eq. (9) with coefficients described in Eq. (38) had buried in it closed-up instability segments which upon
being triggered result in unexpected instability regions.

By selecting K = −1 and substituting into Eqs. (39–40), it arises that the coefficients Q (0) and Q (−1)
both vanish, resulting in the following determinants:

Aeven : det

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

c 0 0 0 0 · · ·
0 c − 4 Q (−2) 0 0 · · ·
0 Q (1) c − 16 Q (−3) 0 · · ·
0 0 Q (2) c − 36 Q (−4) · · ·
0 0 0 Q (3) c − 64 · · ·
· · · · · · · · · · · · · · · . . .

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

= 0, (41)

Beven : det

⎡

⎢
⎢⎢
⎢
⎣

c − 4 Q (−2) 0 0 · · ·
Q (1) c − 16 Q (−3) 0 · · ·
0 Q (2) c − 36 Q (−4) · · ·
0 0 Q (3) c − 64 · · ·
· · · · · · · · · · · · . . .

⎤

⎥
⎥⎥
⎥
⎦

= 0. (42)

In this case, the upper finite part disconnects from the remaining infinite lower portion of the determinant. A
comparison between Eqs. (41) and (42) shows that the latter appears as a common factor. Hence, for parameters
selected on curves emanating from c = 4, 16, 36, . . ., the conditions for coexistence arise. Consequently, the
stability diagram (Fig. 2) will change morphologically with respect to model precision employed, as shown
in Fig. 3. The vanishing or appearance of instability regions is noticeable as a critical point to be considered
when dealing with such systems. As shown, Fig. 3 is a replot of Fig. 2 with coexistence curves that opened
and other zero-thickness instability regions that appeared as dashed lines.

For K = 1 (a 180-degree phase difference with the previous loading), no common factor exists between
the determinants Aodd and Bodd or Aeven and Beven . So, the condition for coexistence will no more subsist,
and all instability regions will appear as finite tongues. The corresponding stability plane is depicted as shown
in Fig. 4.
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Fig. 3 Modified stability diagram due to in-phase axial force presence

Fig. 4 Modified stability diagram due to out-of-phase axial force presence

7 Simulation results on coexistence occurrence

In purpose of underlying the importance of coexisting solutions, a design whose system parameters are inno-
cently selected in the vicinity of a coexistence curve (dashed line of Fig. 3) is considered. Although selected
parameters are apparently situated in the ‘middle’ of a stable region, the introduction or negligence of certain
disturbances effects will lead to the appearance of an instability region at this operating point. Simulations
performed under conditions lying on this coexistent curve, before and after the application of the slight
deflection-dependent axial force, show an abrupt change of behavior as maintained by the theory (Figs. 5, 6).
The fact that system’s parameters may be precariously located on a hidden tongue of instability that could
open at the first occasion necessitates that the designer be more cautious in the designing process.

8 Conclusions

In this paper, it is shown that the governing equation of amodel for the study ofmovingmass-induced vibrations
of a simple beam is reducible to a linear second-order equation with time-periodic coefficients, categorized as
a special case of Ince’s equation. By using the harmonic balance method, new remarkable stability diagrams
are obtained in a more qualitative sense compared to other studies. It is shown that some curves corresponding
to periodic solutions for the beam–moving mass system display “coexistence.” This situation corresponds to
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Fig. 5 Simulations performed under conditions lying on the coexistent curve

Fig. 6 Simulations performed under conditions lying on the coexistent curve after altering the model

parameters in the stability diagram for which two linearly independent periodic solutions exist simultaneously.
They can also be considered as a limiting case of the closure of instability gaps delimited by these curves.

A refined modeling of the original system, such as the reassignment of beam stiffness or readjustment
of boundary conditions, may result in the opening-up of the zero-thickness instability region, regarding that
conditions leading to coexistence are relatively singular. The designer has to be conscious of the potential
incidence of such traps which may emerge in various engineering problems.
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