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Abstract In incompressible isotropic elasticity, the Valanis and Landel strain energy function has certain
attractive features from both the mathematical and physical view points. This separable form of strain energy
has been widely and successfully used in predicting isotropic elastic deformations. We prove that the Valanis–
Landel hypothesis is part of a general form of the isotropic strain energy function. The Valanis–Landel form is
extended to take anisotropy into account and used to construct constitutive equations for anisotropic problems
including stress-softeningMullinsmaterials. The anisotropic separable forms are expressed in terms of spectral
invariants that have clear physical meanings. The elegance and attractive features of the extended form are
demonstrated, and its simplicity in analysing anisotropic and stress-softening materials is expressed. The
extended anisotropic separable form is able to predict, and compares well with, numerous experimental data
available in the literature for different types of materials, such as soft tissues, magneto-sensitive materials and
(stress-softening)Mullins materials. The simplicity in handling some constitutive inequalities is demonstrated.
Thework here sets an alternative direction in formulating anisotropic solids in the sense that it does not explicitly
use the standard classical invariants (or their variants) in the governing equations.

1 Introduction

The Valanis and Landel [40] separable strain energy function has certain attractive features, and this form
of strain energy function has been widely and successfully used in predicting isotropic elastic deformations
[23,26,30]. It is simple in form in the sense that it contains only a general single-variable function of a principal
stretch with a clear physical meaning, and this facilitates the seeking of specific forms of the single-variable
function via experimental data [26,30]. Inspired by the principal stretch successes and the simple form of
the Valanis–Landel function, the author [4,31,36,37] recently developed, similar but somewhat different,
separable forms to model anisotropic solids. In this paper, we report on the efficacy of such separable forms to
model anisotropic problems. We use new and existing results to show that the proposed anisotropic separable
forms have the potential to model anisotropic solids. The main aim of this paper is to set a platform for future
modelling in a setting different from the classical invariant setting, where most of anisotropic models in the
current literature are based on.

Spectral (principal axis) invariants are required to formulate a separable constitutive equation. These
invariants have clear physical meanings, and hence they can be more attractive when looking for expressions
for the total energy function via experimental data; they also can bemore attractive in seeking to design a rational
programme of experiments for anisotropic solids. In addition to this, the classical invariants (and most of their
variants) can be explicitly expressed in terms of spectral invariants, and hence if the constitutive equation is
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initially written in terms of the classical invariants, the relevant formulations can be easily formulated in terms
of both classical and spectral invariants. However, if on the onset the constitutive equation is written in terms
of spectral invariants, it is generally impossible to convert it explicitly in terms of classical invariants, and we
cannot write the corresponding constitutive equations, explicitly, in terms of the classical invariants. Hence,
in general, the separable forms proposed here cannot be written explicitly in terms of classical invariants, and
in view of this, spectral formulations are used here to deal with the proposed spectral separable forms.

In Sect. 2, we prove that the Valanis–Landel separable form is not a hypothesis but part of a general spectral
form. The spectral stress components are given in Sect. 3. Section 4 is concernedwith single preferred direction
problems. In this section, new separable forms for transversely isotropic soft tissue and rubber-likematerials are
proposed, and existing separable results on magneto-isotropic materials are discussed. Also, in Sect. 4, a new
Ogden-type series constitutive equation is proposed. Section 5 deals with two preferred direction problems,
where existing results for orthotropic passive myocardium are given and a new separable constitutive equation
for a transversely isotropic magneto-elastic body is proposed. The efficacy of separable constitutive equation
for inelastic Mullins materials is reported in Sect. 6. Some remarks are given in Sect. 7, and the conclusion is
given in Sect. 8.

2 The Valanis–Landel function

In this communication, all subscripts i , j and k take the values 1, 2 and 3, unless stated otherwise, and we
denote the strain energy for isotropic and anisotropic solids as We. Let We = W (λ1, λ2, λ3) be the strain
energy function of an isotropic elastic solid, where λi is an eigenvalue (principal stretch) of the right stretch
tensor U . Isotropy requires the symmetry property

W (λ1, λ2, λ3) = W (λ2, λ1, λ3) = W (λ3, λ1, λ2). (1)

This symmetry requirement is difficult tomanage in searching for an explicit expression ofWe, and to overcome
this difficulty, Valanis and Landel [40] postulate the separable form

W (λ1, λ2, λ3) = rv(λ1) + rv(λ2) + rv(λ3). (2)

Initially, there is no experimental reason to postulate (2); only convenience and experience may suggest (2).
Indeed, Valanis and Landel [40] stated that:

This postulated form is not fortuitous but is a natural generalization of more particular forms that
already exist in the literature.

In addition to the above, Sacommandi [29] stated that:

Therefore for Ogden the Valanis–Landel hypothesis follows from the postulate of shape invariance, but
there is no physical or theoretical reason for this postulate, this only a metaphoric interpretation of a
special class of experimental data.

Several workers [26,30] used the form (2) to obtain specific strain energy functions, and they have shown
that, for moderate strains, these functions have good agreement with experimental data of several different
types of rubber-like materials [30].

In this section, we, however, prove that the form (2) is part of a general form of W (λ1, λ2, λ3) and not just
a hypothesis as suggested in the literature. In order to prove a general functional form for an incompressible
isotropic material, we consider the polynomial expansion

We =
∑

α,β,γ

Cα,β,γ (λα
1λ

β
2λ

γ
3 − 1), (3)

where the terms Cα,β,γ are constants and, α, β, and γ are non-negative integers. We do not intend to use the
above polynomial form as a constitutive model or as an “N th”-order approximation; we only use it to obtain
a general functional form for We.

For an incompressible material, λ1λ2λ3 = 1, and we can write (3) in the form

We =
∑

γ+r,γ+s,γ

Cγ+r,γ+s,γ (λr
1λ

s
2 − 1) +

∑

β+r,β,β+s

Cβ+r,β,β+s(λ
r
1λ

s
3 − 1)

+
∑

α,α+r,α+s

Cα,α+r,α+s(λ
r
2λ

s
3 − 1), (4)
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where r and s are non-negative integers. The above expression can be rewritten as

We =
∑

r,s

C (1)
r,s (λr

1λ
s
2 − 1) +

∑

r,s

C (2)
r,s (λr

1λ
s
3 − 1) +

∑

r,s

C (3)
r,s (λr

2λ
s
3 − 1). (5)

To obtain the symmetry given in Eq. (1), certain conditions have to be imposed on the coefficients C (i)
r,s . Before

we do this, we write the expansion given in Eq. (5) in the form

We =
∑

r=0

C (1)
r,0 (λr

1 − 1) +
∑

s=1

C (1)
0,s (λ

s
2 − 1) +

∑

r=0

C (2)
r,0 (λr

1 − 1) +
∑

s=1

C (2)
0,s (λ

s
3 − 1)

+
∑

r=0

C (3)
r,0 (λr

2 − 1) +
∑

s=1

C (3)
0,s (λ

s
3 − 1)

+
∑

r,s �=0

C (1)
r,s (λr

1λ
s
2 − 1) +

∑

r,s �=0

C (2)
r,s (λr

1λ
s
3 − 1) +

∑

r,s �=0

C (3)
r,s (λr

2λ
s
3 − 1). (6)

To satisfy the symmetry given in (1), C (i)
r,s must take certain forms (as shown below), and since λ0i − 1 = 0,

we can rewrite the above equation in the form

We =
∑

r=0

Dr (λ
r
1 − 1) +

∑

r=0

Er (λ
r
1 − 1) +

∑

r=0

Dr (λ
r
2 − 1) +

∑

r=0

Er (λ
r
2 − 1)

∑

r=0

Dr (λ
r
3 − 1) +

∑

r=0

Er (λ
r
3 − 1)

+
∑

r,s �=0

cr,s(λ
r
1λ

s
2 − 1) +

∑

r,s �=0

cr,s(λ
r
1λ

s
3 − 1) +

∑

r,s �=0

cr,s(λ
r
2λ

s
3 − 1), (7)

where cr,s = cs,r . From the above equation and in view of Weierstrass approximation theorem, we can write
the strain energy function in the separable form

We = rv(λ1) + rv(λ2) + rv(λ3) + g(λ1, λ2) + g(λ1, λ3) + g(λ2, λ3), (8)

where

rv(x) =
∑

r=0

(Dr + Er )(xr − 1),

g(x, y) =
∑

r,s �=0

cr,s(xr ys − 1) = g(y, x) �= fs(x) + fs(y), (9)

where fs is an arbitrary function. It is clear from (8) that the Valanis and Landel [40] hypothesis is part of a
general form of We.

In a similar way, the form (8) can also be obtained via the series

We =
∑

r,s

Ar,s(I1 − 3)r (I2 − 3)s (10)

by substituting I1 = λ21 + λ22 + λ23, I2 = λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3 and using the incompressibility condition

λ1λ2λ3 = 1.
In a biaxial deformation [30], we have

σ1 − σ2 = λ1rv(λ1) − λ2rv(λ2) + λ1

(
∂g

∂λ1
(λ1, λ2) + ∂g

∂λ1
(λ1, λ3)

)

− λ2

(
∂g

∂λ2
(λ1, λ2) + ∂g

∂λ2
(λ2, λ3)

)
, σ3 = 0, (11)

where σi is a spectral components of the Cauchy stress. It is found in Jones and Treloar [20] experiment
data that σ1 − σ2 stress versus λ1 curves have the same shape for different values of λ2. The same shape
curves shifted vertically for different values of λ2. Hence, in view of (11) and the fact that σ1 − σ2 = 0 for
λ1 = λ2 = 1, we must have g = 0. This concludes that the general form (8) takes the Valanis and Landel
form for rubber-like materials which display this shape invariance behaviour. We note that Ogden [27] uses
a different approach to obtain the Valanis–Landel form for the shape invariant class of rubber-like materials
[30].
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3 Spectral stress components

The modelling of an anisotropic strain energy function, written in terms of spectral invariants such as the prin-
cipal stretches, requires spectral formulations which have recently been developed [31,32,34]. An anisotropic
elastic strain energy function We can be written in the form

We = Ŵ (C) = W̃ (λ1, λ2, λ3, e1, e2, e3) (12)

with the symmetry property

W̃ (λ1, λ2, λ3, e1, e2, e3) = W̃ (λ2, λ1, λ3, e2, e1, e3) = W̃ (λ3, λ2, λ1, e3, e2, e1), (13)

where e1−3 are the eigenvectors of the right stretch tensor U and C = U2 is the right Cauchy Green tensor.
In view of the non-unique values of ei and e j when λi = λ j , a unique value W̃ should be independent of ei

and e j when λi = λ j and a unique value W̃ should be independent of e1, e2 and e3 when λ1 = λ2 = λ3. We
call this independent property together with the symmetrical property (13), the P-property. All the free energy
functions proposed in this paper are required to satisfy the P-property.

Spectral formulations require the components of
∂We

∂C
relative the basis {e1−3}. Following the work of

Shariff [31], we have

(
∂We

∂C

)

i i
= 1

2λi

∂W̃

∂λi
, i not summed, (14)

(
∂We

∂C

)

i j
=

∂W̃

∂ei
· e j − ∂W̃

∂e j
· ei

2(λ2i − λ2j )
, i �= j. (15)

It is assumed that W̃ has sufficient regularity to ensure that, as the value of λi approaches λ j , (15) has a
limit. The Cauchy stress σ is given by

σ = 2F
∂We

∂C
FT − p I, (16)

where p is the Lagrange multiplier associated with the incompressible constraint λ1λ2λ3 = 1 and F is the
deformation gradient tensor. The Eulerian spectral Cauchy stress components τ̂i j take the form

τ̂i i = λi
∂W̃

∂λi
− p, i not summed, (17)

τ̂i j = λiλ j

λ2i − λ2j

(
∂W̃

∂ei
· e j − ∂W̃

∂e j
· ei

)
, i �= j. (18)

4 Anisotropy due to the preferred direction a

4.1 Transversely isotropic elastic solid

The classical invariants

I1 = tr(C) = λ21 + λ22 + λ23, I2 = I 21 − tr(C2)

2
= λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3, (19)

I4 = a · Ca = λ21ζ1 + λ22ζ2 + λ23ζ3, I5 = a · C2a = λ41ζ1 + λ42ζ2 + λ43ζ3, (20)

are commonly used arguments for the strain energy function We of an incompressible transversely isotropic
elastic solid. It is clear that I4 and I5 satisfy the P-property as described below:
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For λ1 = λ2 = λ (say), we have

I4 = (ζ1 + ζ2)λ
2 + ζ3λ

2
3 = (1 − ζ3)λ

2 + ζ3λ
2
3, I5 = (ζ1 + ζ2)λ

4 + ζ3λ
4
3 = (1 − ζ3)λ

4 + ζ3λ
4
3; (21)

hence, both I4 and I5 are independent of e1 and e2. Similarly, when λ1 = λ2 = λ3 = λ, we have

I4 = 3λ2, I5 = 3λ4, (22)

both are independent of e1, e2 and e3. For a transversely isotropic solid, the set of spectral invariants
T = {λ1, λ1, λ3, ζ1, ζ2, ζ3} , where ζi = (a · ei )

2, ζ3 = 1 − ζ2 − ζ3 was proposed by Shariff [32] to
characterize the strain energy function of transversely isotropic solids. The elements of T have immediate
physical interpretation; the physical meaning of λi is obvious, and it is clear that ζi is the square of the cosine
of the angle between the principal direction ei and the preferred direction a. We now propose an anisotropic
separable functional form


 =
3∑

i=1

ζiφ(λi ) (23)

as a candidate for the construction of We. It is clear that 
 satisfies the P-property, and we consider (23) as
an extension of Valanis–Landel form to transversely isotropic elasticity due to its separable nature. We note
that the invariants I4 and I5 are of the form (23) and we can create infinitely many types of invariants using
(23); however, we shall not dwell on this issue in this paper. In this section, we use the form (23) to propose
the separable strain energy function

We = WT (λ1−3, ζ1−3) =
3∑

i=1

[μT (λi )r1(λi ) + 2(μL(I4) − μT (λi ))ζi r2(λi )] + β

2
(I4)

(
3∑

i=1

ζi r3(λi )

)2

,

(24)

where μT (λi ), μL(I4) and β(I4) are ground-state constants. These discrete ground-state constant functions
are more general in the sense that μT may not have the same constant value for both λi ≥ 1 and λi < 1, and
μL and β constant values may not be the same for both I4 ≥ 1 and I4 < 1. To be consistent with the classical
linear theory of incompressible transversely isotropic elasticity, appropriate for infinitesimal deformations, we
must have the relations

r1(1) = r ′
1(1) = r2(1) = r ′

2(1) = r3(1) = 0, r ′′
1 (1) = 2, r ′′

2 (1) = 2, r ′
3(1) = 1. (25)

It is clear that We in (24) satisfies the P-property. We note that in formulating We in the spectral form (24), not
only we have the flexibility in defining the ground-state constants, we also have the flexibility in constructing
the functions r1, r2 and r3, since their arguments are principal stretches with a clear physical meaning. For
example, there is no reason why the functional forms of r1(λi ), r2(λi ) and r3(λi ) should be the same for both
λi ≥ 1 and λi < 1. This useful concept of different functional forms for different ranges of λi is generally
alien in classical invariant formulation, where the concept can only be applied to a function (part of the
classical invariant strain energy function) which depends on I4 only; it has no physical meaning when applied
to functions that depend on I1 or I2 or I5 (or any combination of them).

The spectral components (14) and (15) take the forms
(

∂We

∂C

)

i i
= 1

2λi

∂WT

∂λi
, (i not summed), (26)

(
∂We

∂C

)

i j
=

∂WT

∂ζi
− ∂WT

∂ζ j

(λ2i − λ2j )
ei · Ae j , i �= j, (27)

where A = a ⊗ a(dyadic product). It is explicit in (26) and (27) that the second Piola–Kirchhoff stress

T (2) = 2
∂We

∂C
− pC−1 (28)
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is coaxial with U when the preferred direction a is parallel to one of the principal directions. This explicitness
may not be obtained if the strain energy function is expressed in terms of the classical invariants (19) and (20)
(or possibly most types of invariants found in the literature). The Eulerian principal components of the Cauchy
stress are

τ̂i i = λi
∂WT

∂λi
− p, (i not summed), (29)

τ̂i j = 2
λiλ j

λ2i − λ2j

(
∂WT

∂ζi
− ∂WT

∂ζ j

)
ei · Ae j , i �= j. (30)

4.1.1 Infinitesimal strain energy function

Strain energy function for infinitesimal deformations can be a useful tool in facilitating the construction of a
nonlinear strain energy function. For example, it facilitates the process of selecting the appropriate invariants
for the nonlinear strain energy function (see the Appendix) and allows us to easily put constraints on the
ground-state constants. Due to the separable nature of (24), it can be easily linearized using (25) to obtain the
strain energy for an infinitesimal deformation (which is separable in nature), i.e.

We =
3∑

i=1

μT e2i + 2(μL − μT )

3∑

i=1

ζi e
2
i + β

2

3∑

i, j=1

ζiζ j ei e j , (31)

where ei is the principal strain value of the infinitesimal strain tensor E and tr(E) = e1 + e2 + e3 = 0. The
ground-state constants in (31) may depend on ei and I4 as described in Sect. 4.1.

To ensure physically reasonable responses, restrictions are imposed on the infinitesimal strain energy
function which in turn restrict the values of the material constants. If we let a ≡ [1, 0, 0]T , we have, after
taking into account the incompressible constraint e11 + e22 + e33 = 0,

We = 1

2
[(β + 4μL)e211 + 4μT e11e22 + 4μT e222 + 4μT e232 + 4μLe231 + 4μLe212], (32)

where ei j is the Cartesian component of E. Since e11, e22, e12, e31 and e32 are independent, necessary and
sufficient conditions for (32) to be positive definite are:

μT > 0, μL > 0, β + 4μL − μT > 0. (33)

For simplicity, in Sects. 4.1.2, 4.1.3 and 4.3, we assume that the ground state constants are independent of
strain. However, in the near future, we will use discrete strain-dependent ground state constants to compare
our theory with experiments.

4.1.2 Modelling of fibre-reinforced rubber-like materials

For rubber-like materials, we consider, as a first approximation, the specific forms [30]

r(x) = r1(x) = r2(x) = xln(x) − x + 1 + d0

(
−e1−x + x2 − 4x + 5

2

)
+ d1

(
ex−1 − x2 + 1

2

)
(34)

and

r3(x) = ln(x). (35)

Our theory is compared with Ciarletta et al. [6] uniaxial experiment which depicts the first Piola–Kirchoff
stress versus strain. The uniaxial stretch is in the e1 direction. The nonzero axial first Piola–Kirchoff stress
component is

P11 = (μT + 2μ1)r
′(λ1) + βr3(λ1)r

′
3(λ1) − μT

λ3r ′(λ3)
λ1

(36)
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Fig. 1 First Piola–Kirchoff stress versus stretch. Ciarletta et al. [6] uniaxial experiment. Data are obtained from Al-Kinani et al.
[1]. μT = 120, μL = 160, β = 0, d0 = −3, d1 = 2

(μ1 = μL −μT ) for the case when a = e1 and in this case λ3 = 1√
λ1
. In Fig. 1 we visually curve fit the a = e1

data since we know that λ3 = 1√
λ1
. However, we cannot curve fit for the case a = e2, since we do not know

the values of λ3. In this case we have to predict the experimental data using the stress

P11 = μT

(
r ′(λ1) − λ3r ′(λ3)

λ1

)
, (37)

where λ3 is obtained in terms of λ1 from solving the first Piola–Kirchoff component equations P22 = P33 = 0
and λ1λ3λ3 = 1. It is clear from Fig. 1 that we are able to fit and predict very well using the above specific
forms.

Restrictions on d0 and d1: The restriction on the values of the parameters d0 and d1 is governed by the
restriction on the function r . We do this by considering a special set of admissible ground-state constant
values, where μT > 0 and the rest have zero values. This set of values corresponds to the strain energy
of an isotropic material. Using Hill’s [16] inequality, it is shown in Shariff [30] that, to ensure physically
reasonable responses for incompressible isotropic materials, we require the condition h′(x) > 0, for x > 0,
where h(x) = xr ′(x); in this paper, we use this necessary condition to restrict the values of d0 and d1 for the
proposed anisotropic model. The admissible ranges for d0 and d1 are not straightforward to obtain. However,
for given values of d0 and d1 we can easily (and non rigorously) verify whether h′(x) > 0 by plotting h′(x) for
practical values of x > 0. The concepts of polyconvexity [18], convexity and stability [18] can also be used to
restrict the values of our material constants, and we hope to do this in the near future. However, we note that
stability in an infinitesimal deformation (relative to a stress-free ground-state configuration) is achieved if the
classical ground-state constants have the restricted values.

4.1.3 Modelling of soft tissue

In soft tissues, the initial large extension is generally achieved at relatively low levels of stress with subsequent
stiffening at higher levels of extension. This behaviour is due to the recruitment of collagen fibres as they
become uncrimped and reach their natural lengths [17,28]. The inverse error function er f −1(x) seems a good
candidate to describe the above-mentioned soft tissue stress-strain behaviour since it has low initial gradients
followed by high gradients at higher values of x . In view of this, for simplicity, we propose the functional
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forms

r1(x) =
∫ x

1

4

α1
√

π
er f −1(α1 ln(y)) dy, r2(x) =

∫ x

1

4

α2
√

π
er f −1(α2 ln(y)) dy (38)

r3(x) = 2

α3
√

π
er f −1(α3 ln(x)), (39)

whereα1−3 �= 0 are dimensionlessmaterial parameters. It is possible that the values ofα1−3 are not the same for
both x ≥ 1 and x < 1; however, in this communication we assume they are the same for both x ≥ 1 and x < 1.
In addition to this, we only consider a less general strain energy function by letting α1 = α2 = α3 = α0; there
is no physical or theoretical reason for this postulate, and it merely reduces the number of material constants.
Hence, in this section, we let

r(x) = r1(x) = r2(x) =
∫ x

1

4

α0
√

π
er f −1(α0 ln(y)) dy, s(x) = r3(x) = 2

α0
√

π
er f −1(α0 ln(x)). (40)

In this paper, we will use the above specific forms to compare our theory with several different types of soft
tissue experiments.

The restriction on α0 is governed by the restriction on the function r1, similar to that described in Sect. 4.1.2.

Weinberg and Kaazempur-Mofrad [41] biaxial experiment

In this section, we show the efficacy of the special constitutive form using the mitral valve tissue biaxial data
of Weinberg and Kaazempur-Mofrad [41]. We emphasize that care must be taken in interpreting the results
from a curve-fitting exercise. For example, the ground-state constant values will not be accurately obtained if
there are insufficient data at low strains or due to inappropriate low strain data.

The relevant stress components take the form

S f = (μT + 2μ1)
r ′(λ1)

λ1
+ β

s(λ1)s′(λ1)
λ1

− μT
λ3r ′(λ3)

λ21
, St = μT

(
r ′(λ2)

λ2
− λ3r ′(λ3)

λ22

)
, (41)

where St and S f are the components of the second Piola–Kirchhoff stress in the cross-fibre (perpendicular to
fibre) and fibre directions, respectively. In Figs. 2, 3, 6, and 7, we visually fit our theory to the equibiaxial data
of mitral valve anterior and posterior leaflets, respectively. We then use the material constant values obtained
from these fittings to predict the λ1−1

λ2−1 = 2
1 biaxial data in Figs. 4, 5, 8 and 9. We note that for the 2:1 biaxial

data λ1 = 2λ2 − 1 or λ2 = λ1+1
2 , hence λ2 > 1 when λ1 > 1 and vice-versa, which indicates that the fibres

are always in tension during this type of deformation. It is clear from these figures that our theory compares
well with Weinberg and Kaazempur-Mofrad [41] biaxial data.

Chui et al. [5] uniaxial experiment

In this part, we compare our theory with the uniaxial Chui et al. [5] experiment on porcine liver. Here, we plot
the nominal stresses T f = λ1S f and Tt = λ2St against λ1 and λ2, respectively. For the uniaxial deformation
in the fibre direction, λ3 = λ2 = 1√

λ1
, Tt = 0 and the T f takes the form

T f = (μT + 2μ1)r
′(λ1) + βs(λ1)s

′(λ1) − μT

1√
λ1

r ′
(

1√
λ1

)

λ1
. (42)

Fitting in Fig. 10 is done visually, and we use μT = 200, β = 0 and μ1 = 400. In the case when the uniaxial
deformation is in the 2-direction (perpendicular to the fibre direction), the axial stress

Tt = μT

(
r ′(λ2) − λ3r ′(λ3)

λ2

)
(43)

is plotted against λ2. In this case λ3 �= λ1, in general, and λ3 for (43) are obtained from solving the stress-free
condition

T f = (μT + 2μ1)r
′
(

1

λ2λ3

)
+ βs

(
1

λ2λ3

)
s′

(
1

λ2λ3

)
− μT λ2λ

2
3r ′(λ3) = 0 (44)
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Fig. 2 Fitting Weinberg and Kaazempur-Mofrad [41] mitral valve anterior leaflet equibiaxial experiment. λ1 = λ2. μT = 5 kPa,
μ1 = 10 kPa, β = 20 kPa, α0 = 6

Fig. 3 Fitting Weinberg and Kaazempur-Mofrad [41] mitral valve anterior leaflet equibiaxial experiment. λ1 = λ2. μT = 5 kPa,
α0 = 6

for a given value of λ2. Since the values of λ1 (or λ3) are not given in Chui et al.’s [5] experiment, we cannot
curve fit the Tt data; hence, we can only predict this data. It is clear from Fig. 11 that our theory predict the
data quite well.

Weiss et al. [42] simple shear experiment

Very few suitable simple shear data for soft tissue can be found in the literature; one of them is the simple
shear data on ligament tissue given in Weiss et al. [41]. The shear stress used to fit the experimental data is
given by [32]
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Fig. 4 Predicting Weinberg and Kaazempur-Mofrad [41] mitral valve anterior leaflet 2:1 biaxial experiment. λ2 = λ1+1
2 .

μT = 5 kPa, μ1 = 10 kPa, β = 20 kPa, α0 = 6

Fig. 5 Predicting Weinberg and Kaazempur-Mofrad [41] mitral valve anterior leaflet 2:1 biaxial experiment. λ1 = 2λ2 − 1.
μT = 5 kPa, α0 = 6

σ12 = 2
[
l1(γ s2 + cs) + l2(γ c2 − cs) + l4γ cs

]
, (45)

where

lα = 1

λα

(
μT r ′

1(λα) + 2μ1ζαr ′
2(λα) + β

[
3∑

i=1

ζi r3(λi )

]
ζαr ′

3(λα)

)
, α = 1, 2, (46)

l4 = e1 · Ae2
λ21 − λ22

(
2μ1[r2(λ1) − r2(λ2)] + β

[
3∑

i=1

ζi r3(λi )

]
[r3(λ1) − r3(λ2)]

)
, (47)
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Fig. 6 FittingWeinberg and Kaazempur-Mofrad [41] mitral valve posterior leaflet equibiaxial experiment. λ1 = λ2.μT = 6 kPa,
μ1 = 1 kPa, β = 2 kPa, α0 = 5.1

Fig. 7 FittingWeinberg and Kaazempur-Mofrad [41] mitral valve posterior leaflet equibiaxial experiment. λ1 = λ2.μT = 6 kPa,
α0 = 5.1

c = 1√
1 + λ21

, s = λ1√
1 + λ21

, (48)

λ1 = γ + √
γ 2 + 4

2
≥ 1, λ2 = 1

λ1
=

√
γ 2 + 4 − γ

2
≤ 1, λ3 = 1, (49)

and γ is the amount of shear. It is clear in Fig. 12 that our proposed crude constitutive function (visual fit) fits
the experimental data well. In Fig. 13 we plot the values of I4 for the preferred direction a taking the values
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Fig. 8 Predicting Weinberg and Kaazempur-Mofrad [41] mitral valve posterior leaflet 2:1 biaxial experiment. λ2 = λ1+1
2 .

μT = 6 kPa, μ1 = 1 kPa, β = 2 kPa, α0 = 5.1

Fig. 9 Predicting Weinberg and Kaazempur-Mofrad [41] mitral valve posterior leaflet 2:1 biaxial experiment. λ1 = 2λ2 − 1.
μT = 6 kPa, α0 = 5.1

[1, 0, 0], [ 1√
2
, 1√

2
, 0] and [0, 1, 0]. Using these values of a, we plot σ12 versus γ in Fig. 14. From Fig. 14, we

see that the shear stress behave as expected, i.e. at a fixed value of γ , the shear stress increases monotonically
as I4 (the fibre stretch) increases.

4.2 Ogden-type series for incompressible transversely isotropic solids

The Ogden series [26] has been widely and successfully used in predicting isotropic elastic deformations.
Some of its attractive features are its generality and mathematical simplicity. However, the Ogden series has
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Fig. 10 Fitting Chui et al. [5] porcine liver uniaxial deformation in the fibre direction. μT = 200 Pa, μ1 = 400 Pa, β = 0 Pa,
α0 = 5.7

Fig. 11 Predicting Chui et al. [5] porcine liver uniaxial deformation in transverse direction.μT = 200 Pa,μ1 = 400 Pa, β = 0 Pa,
α0 = 5.7

not been utilized to characterize the strain energy function for incompressible transversely isotropic elastic
solids. This is due to the fact that a concise spectral formulation for anisotropic materials was not developed
until the recent past. In this section, we use (24) to construct a modified Ogden strain energy function, where

r1(λ) =
∑

r

ãr

b̃r

∫ λ

1

xb̃r − 1

x
dx, r2(λ) =

∑

r

c̃r

d̃r

∫ λ

1

xd̃r − 1

x
dx, (50)

r3(λ) =
∑

r

ν̃r (λ
α̃r − 1)

α̃r
. (51)
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Fig. 12 Fitting Weiss et al. [42] ligament simple shear experimental data. μT = 350N/m2, μ1 = 8000N/m2 β = 0N/m2,
α0 = 9.8

Fig. 13 Plot of I4 versus γ for different fibre angles in the anticlockwise sense relative to the X1 axis

The functions in (50) and (51) are Ogden-type series and have the properties

r ′′
1 (1) =

∑

r

ãr = 2, r ′′
2 (1) =

∑

r

c̃r = 2, r ′
3(1) =

∑

r

ν̃r = 1. (52)

The Eulerian spectral components for the Cauchy stress are:

τ̂i i = μT

∑

r

ãr

b̃r
(λ

b̃r
i − 1) + 2(μL−μT )ζi

∑

r

c̃r

d̃r
(λ

d̃r
i − 1)+ β

[
3∑

k=1

ζk

∑

r

ν̃r (λ
α̃r
k −1)

α̃r

]
ζi

∑

r

ν̃rλ
α̃r
i −p,

i not summed. (53)

τ̂i j = 2λiλ j

λ2i − λ2j

(
2(μL − μT )(r2(λi ) − r2(λ j )) + β(r3(λi ) − r3(λ j ))

[
3∑

k=1

ζkr3(λk)

])
ei · Ae j . (54)
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Fig. 14 Shear stress versus γ for different fibre angles in the anticlockwise sense relative to the X1 axis.μT = 1 Pa,μ1 = 100 Pa,
β = 0 Pa, α0 = 6

It is important to note that the above Ogden-type series cannot be constructed using the standard classical
invariants I1, I2, I4, I5. Since, representing a function via an infinite series can be considered a general function,
it is expected that the Ogden-type series function is a able to model, for moderate strains, a wide range of
different types of incompressible transversely isotropic elastic solids; however, due to the scope of this paper,
we will not discuss the efficacy of the proposed modified Ogden series strain energy function in this paper.
This will be carried out in the near future.

4.3 Modelling nonlinear magneto-elastic deformations

Magneto-sensitive (MS) elastomers correspond to a class of rubber-like material filled with magneto-active
particles, which can react to the presence of magnetic fields. Following the work of Bustamante and Shariff
[4], the free energy function ΩM for magneto-sensitive elastomers can be expressed as

ΩM = Ω(λ1, λ2, λ3, ζ1, ζ2, ζ3, H), (55)

where Ω satisfy the P-property,

a = H l

H
, H �= 0, H =| H l |, (56)

H l is the Lagrangian counterpart in the reference configuration of the magnetic field H . The total Cauchy-like
stress τ is related to ΩM via [4]

τ = 2F
∂ΩM

∂C
FT − p I . (57)

In view of (14) and (15), the principal Eulerian components of the total Cauchy-like stress are:

τi i = λi
∂Ω

∂λi
− p, i not summed, (58)

τi j = 2λiλ j

∂Ω

∂ζi
− ∂Ω

∂ζ j(
λ2i − λ2j

) ei · Ae j , i �= j. (59)
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For simplicity, Bustamante and Shariff [4] proposed the particular separable form

ΩM =
3∑

i=1

(r4(λi ) + ζi r5(λi , H)), (60)

where

r4(λi ) = μ ln(λi )
2 + ĉ0

∣∣∣∣∣
λ2i

2
− 2λi + ln(λi ) + 1.5

∣∣∣∣∣ , (61)

r5(λi , H) = ĉ1
H2

λ2i + λi
− μ0

H2

2λ2i
+ μ0H2e

(
− 1

H2

)

1

2λ2i
, (62)

μ is the ground-state shear modulus of the isotropic body, μ0 = 1.2566 × 10−3 kN/kA2 is the magnetic
permeability in vacuo, and ĉ0 and ĉ1 are material constants. In Bustamante and Shariff [4], we show that
our theory compares well with experimental data of Bellan and Bossis [2] and agrees with Kankanala and
Triantafyllidis [21] results.

5 Two preferred direction anisotropy

5.1 Orthotropic solid

In this case the preferred directions a and bare orthogonal. The classical invariants commonly used as arguments
for an orthotropic strain energy function are I1, I2, I4, I5 given in Eqs. (21) and (22) and

I6 = b · Cb = λ21ξ1 + λ22ξ2 + λ23ξ3, I7 = b · C2b = λ41ξ1 + λ42ξ2 + λ43ξ3, (63)

where ξi = (b · ei )
2. It is clear from (63) that I6 and I7 satisfy the P-property. Shariff [34] expressed the strain

energy in terms of spectral invariants, i.e.

We = WO(λ1−3, ζ1−3, ξ1−3). (64)

Shariff [35] has shown that only six of the invariants in (64) are independent. The required spectral components
are:

(
∂We

∂C

)

i i
= 1

2λi

∂WO

∂λi
, i not summed, (65)

(
∂We

∂C

)

i j
= 1

λ2i − λ2j

((
∂WO

∂ζi
− ∂WO

∂ζ j

)
ei · Ae j +

(
∂WO

∂ξi
− ∂WO

∂ξ j

)
ei · Be j

)
, (66)

where B = b⊗ b. In order to propose a separable form for We, we introduce (as in (23)) a separable function


̂ =
3∑

i=1

ξi φ̂(λi ) (67)

which satisfies the P-property. We use the separable forms (67) and (23) to construct the strain energy

We =
3∑

i=1

(
μr1(λi ) + μ̂1ζi r2(λi ) + μ2ξi r6(λi )

) + β1

2

(
3∑

i=1

ζi r3(λi )

)2

+ β2

2

(
3∑

i=1

ξi r7(λi )

)2

(68)

with the properties

r6(1) = r ′
6(1) = r7(1) = 0, r ′′

6 (1) = 2, r ′
7(1) = 1, (69)

where μ, μ̂1, μ2, β1, and β2 are the classical ground-state elastic constants. In this Section, unlike Sect. 4.1
(for transversely isotropic solids), for simplicity, we only consider μ̂1,β1 and μ2, β2 to be discrete functions
of I4 and I6, respectively; μ is assumed to be independent of λi .
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5.1.1 Modelling passive myocardium

Passive myocardium tissue can be considered as an orthotropic material [17]. Locally within the architecture of
the myocardium, three mutually orthogonal directions can be identified, forming planes with distinct material
responses. In this section, we consider the left ventricular myocardium which is non-homogeneous, thick-
walled, nonlinearly elastic and incompressible material. To reduce the number of material constants, Shariff
[36] proposed the simple forms

r1(x) = s2p(x), r2(x) = sp(x)2, r6(x) = sp(x)2, r3 = sp(x), r7 = sp(x), (70)

where

sp(x) = 2

ᾱ0
√

π
er f −1(ᾱ0 ln(x)) + ᾱ1(e

1−x + x − 2), (71)

to model the mechanical behaviour of passive myocardium tissue. Using a similar analysis as in Sect. 4.1.1,
the ground-state constants must satisfy the conditions [36],

c(m)
3 > 0, c(m)

4 > 0, c(m)
5 > 0, c(m)

1 + 2μ > 0, (c(m)
1 + 2μ)(c(m)

2 + 2μ) > (β3 + 2μ)2, (72)

where c(m)
1 = β1 +2μ+4μ̂1, c(m)

2 = β2 +2μ+4μ2, c(m)
3 = μ+μ2, c(m)

4 = μ+ μ̂1, c(m)
5 = μ+ μ̂1 +μ2. In

Shariff [34], the necessary condition 2xsp(x)s′
p(x) > 0 is used to impose constraints on the material constants

ᾱ0 and ᾱ1. It was shown in [36] that the constitutive equation using the functional form (71) compares well
with the simple shear experimental data of Dokos et al. [10] and the biaxial data of Yin et al. [43].

5.2 Modelling nonlinear transversely magneto-elastic deformations

During the curing process, when the magneto-active particles are added to the rubber-like matrix material,
it is possible to apply an external magnetic field, which produces a relative alignment of the magneto-active
particles and remains locked inside forming chains when the body solidifies. This class of magneto-active
elastomers is called transversely isotropic MS elastomer [3], and it has been shown that the magnetostriction
effect in such materials is much stronger in comparison with the case of isotropic MS elastomers, therefore
making themmore interesting from the point of view of the possible applications of such materials. In the case
of transversely MS elastomers, when an external magnetic field is applied, the material behaves as a solid with
two families of fibres, where one preferred direction b is given by the magneto-active particle chains, whereas
the additional preferred direction a is induced by the magnetic forces. In general a is not orthogonal to b, and
the classical invariants required to describe the free energy function ΩM for a transversely MS elastomer are
I1, I2, I4, I5, I6, I7 and

I8 = (a · b)a · Cb =
3∑

i=1

λ2i χi , I9 = (a · b)2, I10 = (a · b)a · C2b =
3∑

i=1

λ4i χi , (73)

where χi = (a · b)(a · ei )(b · ei ). Note that

I9 = χ1 + χ2 + χ3. (74)

It is clear from (73) and (74) that I8, I9 and I10 satisfy the P-property. In this section we express the free
energy ΩM in terms of the spectral invariants [39], i.e.

ΩM = ΩT (λ1−3, ζ1−3, ξ1−3, χ1−3, I9, H). (75)

Shariff and Bustamante [38] shows that only seven of 13 invariants λ1−3, ζ1−3, ξ1−3, χ1−3, I9 are independent.

The required spectral components for the derivative
∂ΩM

∂C
are:

(
∂ΩM

∂C

)

i i
= 1

2λi

∂ΩT

∂λi
(i not summed) (76)
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Fig. 15 Bellan and Bossis [2] uniaxial experiment. μ = 110, a1 = −0.7, a2 = 480

and the shear components
(

∂ΩM

∂C

)

i j
= 1

(λ2i − λ2j )

{(
∂ΩT

∂ζi
− ∂ΩT

∂ζ j

)
ei · Ae j +

(
∂ΩT

∂ξi
− ∂ΩT

∂ξ j

)
ei · Be j

+
(

∂ΩT

∂χi
− ∂ΩT

∂χ j

)
(ei · ABe j + e j · ABei )

}
, i �= j. (77)

For this MS material we propose a simple separable form

ΩM =
3∑

i=1

r8(λi ) + ζi r9(λi , H) + ξi r10(λi ) + χi r11(λi , H). (78)

It is clear from the above that ΩM satisfies the P-property. To be more specific in our example, we choose the
forms

r8(λ) = μ ln(λ)2, r9(λ, H) = a1
μ0H2

2λ2
− μ0H2

2λ2
,

r10(λ) = a2

∫ λ

1

ln(x)

x5
dx, r11(λ, H) = 0, (79)

where μ is the ground-state shear modulus for the corresponding isotropic body, a1 and a2 are constants.
With the above specific forms, our theory compares well with the uniaxial tension experimental data of Bellan
and Bossis [2], where the stress–strain behaviour is depicted in Fig. 15 for different values of H . Figure 15
indicates that to maintain a zero strain under an external magnetic field, a tensile stress is required to overcome
the attractive interparticle forces. The tensile stress in the z-direction is given by

τzz = λsT (λ) − λ− 1
2 sT

(
λ− 1

2

)
− a1

μo H2

λ2
+ μo H2

λ2
+ a2

ln(λ)

λ4
, (80)

where

sT (x) = 2μ ln(x). (81)



Anisotropic separable free energy functions 3231

Fig. 16 Magnetization M versus magnetic field H0 for the cylindrical body. For extension (λ > 1) the particle distance increases
thus lowering the specimen’s magnetization compared to λ = 1. The opposite is true for compression (λ < 1) due to shorter
distances among the magnetic particles. μ = 110, a1 = −0.7, a2 = 480

It is evident from (80) that the influence of H0 on the tensile stress τzz diminishes as λ increases. This is due to
that the average interparticle distance increases and the interparticle forces are weaker for the same imposed
H0; hence, the influence of H0 on the tensile stress τzz diminishes [21].

Let H and B̃ denote themagnetic field and themagnetic induction, respectively, in the current configuration.
In the absence of electric interactions and time effects, the magnetic field and the magnetic induction have to
satisfy the simplified form of the Maxwell equations

div B̃ = 0, curlH = 0. (82)

It is possible to define the following Lagrangian counterparts in the reference configuration of the magnetic
field and the magnetic induction H l and Bl [3]

H l = FTH, Bl = J F−1 B̃. (83)

In vacuum the magnetic field and the magnetic induction are related by the equation

B̃ = μ0H, (84)

where μ0 is the magnetic permeability in vacuo. For a condensed matter, an additional field is required, which
is the magnetization field M and it is related to B̃ and H through

B̃ = μ0[H + M]. (85)

Bl is related to H l via [3]

Bl = −∂ΩT

∂H l
. (86)

In Fig. 16, we depict the behaviour of the magnetization M with respect to H l for several uniaxial strain
values, and it shows that for extension (λ > 1) the particle distance increases thus lowering the specimen’s
magnetization compared to λ = 1. The opposite is true for compression (λ < 1) due to shorter distances
among the magnetic particles [21]. In view of the above illustrations, we note that a construction of a more
sophisticated specific constitutive equation is trivial, and we will do this in the future when the appropriate
experimental data are available.



3232 M. H. B. M. Shariff

6 Inelastic Mullins stress-softening materials

When subjected to cyclic loadings, many rubber-like and biological materials exhibit an anisotropic stress-
softening phenomenon widely known as the Mullins effect [25]. There is a wide literature on the Mullins
effect; readers are referred to the literature [7,11,31,33] for detail description on the anisotropic behaviour of
the Mullins effect. Softening-induced anisotropy is demonstrated by performing successive non-proportional
loadings (i.e. successive loadingswith changing the directions of stretching or the type of loading), and recently,
several non-proportional experiments [7–9,13,20,22] were conducted.

In this section, we briefly demonstrate that a separable form of free energy is able to model anisotropic
stress softening. Detailed description of this model can be found in Shariff [37]; hence, we just give an outline
of this model here.

Shariff [37] proposed the direction-dependent free energy

W f =
3∑

i=1

[
η(ϒi , α̂i )r f (ϒi ) + φ(ϒi , α̂i )

]
(87)

which satisfies the P-property, where

ϒ1 = tr(U A) = λ1ζ1 + λ2ζ2 + λ3ζ3, ϒ2 = tr(UB) = λ1ξ1 + λ2ξ2 + λ3ξ3,

ϒ3 = λ1(1 − ζ1 − ξ1) + λ2(1 − ζ2 − ξ2) + λ3(1 − ζ3 − ξ3) (88)

and

φ(ϒi , α̂i ) = −
∫ ϒi

1
r f (y)

dη

dy
(y, α̂i ) dy. (89)

The softening function η is introduced in (87) to soften the stress and has the property 0 < η ≤ 1 and
η(y, y) = 1. The free energy (87) is direction dependent since the damage parameter α̂i is direction dependent,
i.e.

α̂i =
{

s(max)
i when λi > 1,

s(min)
i when λi < 1,

(90)

where

s(min)
i ≤ λi ≤ s(max)

i , (91)

s(max)
i = max

0≤z≤t

√
ei · C(z)ei , and s(min)

i = min
0≤z≤t

√
ei · C(z)ei ; (92)

the material is subjected to a deformation history up to the current time t , and z denotes a running time variable.
We note that in (90), we do not consider λi = 1 because our model is constructed in such a way that α̂i does
not contribute to stress softening when λi = 1. In the case when λi = λ j (i �= j), the directions ei and e j are
not unique. In view of this, we let

α̂i = α̂ j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
s(min)

k

when λi = λ j > 1,

1√
s(max)

k

when λi = λ j < 1,
(93)

where i �= j �= k. In the case when all the principal stretches are equal, the principal directions are all
non-unique. However, for an incompressible material this can only happen when λ1 = λ2 = λ3 = 1, and as
mentioned before α̂i does not contribute to stress softening in this case; hence their values are not given.

In the direction-dependent model, a = e1 and b = e2(always), and hence, we obtain the separable form

W f =
3∑

i=1

(
η(λi , α̂i )r f (λi ) + φ(λi , α̂i )

)
, (94)
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where φ(λi , α̂i ) = − ∫ λi
1 r f (y)

dη

dy
(y, α̂i ) dy . In view of (65) and (66), the second Piola–Kirchhoff stress

is always coaxial with the tensor U ; this simulates the stress behaviour in experiments, especially, in non-
proportional simple tension loadings of Machado et al. [22].

Shariff [37] only considers η to have the particular form

η(y, d) = η̂(g(y), g(d)) = eb1(g(y)−g(d))g(y)b2 − b3e−b4g(y)(g(d) − g(y)), (95)

where g is a damage function. The condition

∂η̂

∂g(α̂i )
(g(λi ), g(α̂i )) < 0 (96)

is imposed so that W f decreases monotonically as g(ai ) increases.
On the primary loading, η = 1, the free energy function simply becomes the separable form, i.e.

W f =
3∑

i=1

[r f (λi ) + +φ(λi , α̂i )]. (97)

Based on the work of Shariff [30] on nonlinear isotropic elasticity, the specific form for r , i.e.

r f (λi ) =
∫ λi

1

f (y)

y
dy (98)

is proposed, where f (1) = 0, f (y) > 0 for y > 1 and f (y) < 0 for y < 1. It is clear that r(1) = 0 , r ′(1) = 0,
0 = r(1) ≤ r(y) and r(y) increases (strictly) monotonically away from y = 1. Following the work of Shariff
[30],

f (y) =
4∑

i=1

d(m)
i φi (y), (99)

is proposed, where

φ1(y) = 2

3
ln(y), φ2(y) = e(1−y) + y − 2, φ3(y) = e(y−1) − y,

φ4(y) = (y − 1)3

yk̄
, (100)

d(m)
1−4 and k̄ are material constants.
Shariff [37] has shown that the above separable form is able to predict and compares well with experimental

data available in the literature for different types of rubber-like materials and different types of experiments.

7 Remarks

We note that the separable constitutive equations for anisotropic problems, proposed in this paper, are just
heuristic proposals. They are based on the forms developed, in the past, for anisotropic solids (see for example,
Shariff [36] and Bustamante and Shariff [4]). An important property of a separable form is that it satisfies
the P-property, which is required in spectral constitutive equations. An attractive property is that it is simple
in form in the sense that it contains only a single-variable arbitrary function that depends on a principle
stretch, which is a mechanically useful invariant when compared to the classical invariants I1, I2, I5 and
etc. Some unattractive features of some classical invariants and attractive features of spectral invariants have
been discussed, for example, in Shariff [32]. The simple separable forms contain spectral invariants (which
have immediate physical interpretation) that can be more attractive when looking for expressions for the free
energy function by fitting experimental data, and also in order to design a rational programme of experiments
for anisotropic materials. The mechanical behaviour of an anisotropic solid is much easier to analyse via
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the separable form [34,34]. It is shown in Shariff [32,36] that general spectral free energy functions for
incompressible transversely isotropic and orthotropic solids are of the form

We =
3∑

i=1

rT (λi , ζi ) + ĝ(λ1, λ2, ζ1, ζ2) + ĝ(λ1, λ3, ζ1, ζ3) + ĝ(λ2, λ3, ζ2, ζ3) (101)

and

We =
3∑

i=1

rO(λi , ζi , ξi ) + ḡ(λ1, λ2, ζ1, ζ2, ξ1, ξ2) + ḡ(λ1, λ3, ζ1, ζ3, ξ1, ξ3) + ḡ(λ2, λ3, ζ2, ζ3, ξ2, ξ3),

(102)

respectively. The functions ĝ and ḡ have the symmetries ĝ(λi , λ j , ζi , ζ j ) = ĝ(λ j , λi , ζ j , ζi ) and
ḡ(λi , λ j , ζi , ζ j , ξi , ξ j ) = ḡ(λ j , λi , ζ j , ζi , ξ j , ξi ), i �= j , respectively. The spectral forms (101) and (102)
must satisfy the P-property, and this property is difficult to implement. However, the separable forms, pro-
posed in this paper, ensure that the P-property is satisfied. The relations between the separable and the general
(101) and (102) forms are given below:

For a transversely isotropic solid, in view of Eqs. (101) and (24), we have

rT (λi , ζi ) = μT r1(λi ) + 2(μL − μT )ζi r2(λi ) + β

2
ζ 2

i r23 (λi ), ĝ(λi , λ j , ζi , ζ j ) = βζiζ j r3(λi )r3(λ j ).

(103)

In the case of an orthotropic solid, we have, in view of Eqs. (102) and (68),

rO(λi , ζi , ξi ) = μr1(λi ) + μ̂1ζi r2(λi ) + μ2ξi r6(λi ) + β1

2
ζ 2

i r23 (λi ) + β2

2
ξ2i r27 (λi ),

ḡ(λi , λ j , ζi , ζ jξi , ξ j ) = β1ζiζ j r3(λi )r3(λ j ) + β2ξiξ j r7(λi )r7(λ j ). (104)

8 Conclusion

In this communication, we have shown, mathematically, that the Valanis–Landel hypothesis is part of a general
strain energy function of an isotropic elastic solid. An anisotropic extension of the separable Valanis–Landel
form is proposed to facilitate the construction of separable anisotropic constitutive equations, and we show
that particular separable forms are capable of modelling anisotropic elastic, MS and non-elastic Mullins solids.
Construction and analysis of more sophisticated specific constitutive equations, such as the Ogden-type series,
via the proposed separable forms will be carried out in the near future. We hope that the proposed separable
forms will set a platform for future modelling of anisotropic problems using spectral invariants. The spectral
invariants used in this work can be more attractive than the standard classical invariants presented in the
literature because a clearer physical meaning can be attached to each one of them, and because when solving
boundary value problems, the different expressions for the stresses in terms of the deformation and themagnetic
induction are simpler than when considering the standard classical invariant theory. The spectral invariants
also imparts experimental advantage over classical invariants presented in the literature, e.g. a simple triaxial
test can vary a single invariant while keeping the remaining invariants fixed [32].

Appendix

In this appendix, we show very simply for a transversely isotropic solid, via spectral analysis, the effect of
not selecting the full set of invariants on the ground-state constants. We demonstrate this effect via some
models given in the literature. Before we do this, we consider the second derivative of WP(λ1, λ1, ζ1, ζ3) =
W̃ (λ1, λ1, ζ1, ζ2 = 1 − ζ1 − ζ3) with respect to λ1 at reference configuration, i.e.

∂2WP

∂λ21
(1, 1, ζ1, ζ3) = 4μT + 4μ1(ζ1 + ζ3) + β(ζ1 − ζ3)

2. (A1)

The terms δi , i = 1, 2, . . . given below are material constants.
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Ciarletta et al. [6] model

We can write Ciarletta et al. [6] model, for rubber-like materials, in terms of spectral invariants, i.e.

WC (λ1, λ1, ζ1, ζ3) = δ1 I1(G) + δ2 I2(G) + δ3 I4(G), (A2)

where

I1(G) = tr(G) =
3∑

i=1

qi , I2(G) =
3∑

i=1

q2
i , I4(G) =

3∑

i=1

ζi qi , qi =

(
λi − 1

λi

)2

4
. (A3)

The corresponding ground-state second derivative for this model is

∂2WC

∂λ21
(1, 1, ζ1, ζ3) = 4δ1 + 2δ3(ζ1 + ζ3). (A4)

Since ζ1 and ζ3 are arbitrary in the reference state, comparing (A1) and (A4), we have

μT = δ1, μ1 = δ3

2
, β = 0. (A5)

Humphrey et al. [15] model

In view of (19) and (20), Humphrey et al. [15] strain energy function can be written as

WH (λ1, λ1, ζ1, ζ3)=δ1(
√

I4−1)2+δ2((
√

I4−1)3+δ3(I1−3)+δ4(I1−3)(
√

I4−1)+δ5(I1−3)2. (A6)

The second derivative for this model is

∂2WH

∂λ21
(1, 1, ζ1, ζ3) = 8δ3 + 2δ1(ζ1 − ζ3)

2. (A7)

Hence, we have

μT = δ3

2
, μ1 = 0, β = 2δ1. (A8)

May-Newmann and Yin [24]

WM (λ1, λ1, ζ1, ζ3) = δ1

2

(
eδ2(I1−3)2+δ3(

√
I4−1))4 − 1

)
, (A9)

∂2WH

∂λ21
(1, 1, ζ1, ζ3) = 0, (A10)

μT = 0, μ1 = 0, β = 0. (A11)

Humphrey and Yin [14]

WHY (λ1, λ1, ζ1, ζ3) = δ1(e
δ2(I1−3)2 − 1) + δ3(e

√
I4(

√
I4−1)2 − 1), (A12)

∂2WHY

∂λ21
(1, 1, ζ1, ζ3) = 8δ1δ2 + 2δ3(ζ1 − ζ3)

2, (A13)

μT = 2δ1δ2, μ1 = 0, β = 2δ3. (A14)

Ciarletta et al. [6] model assumed β = 0 on the onset. The rest of the models have assumed, on the onset, the
relation μL = μT . In the case of the May-Newmann and Yin [24] model, the conditions μL = μT = 0 and
β = 0 are also assumed on the onset. These assumptions, the author believes, are not rigorously derived since
there is no strong experimental evidence to support these assumptions (see, for example, Feng et al. [12]).
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