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Abstract A crack initiates frequently at a vertex in three-dimensional joints under an external load and a
thermal load. In the present paper, the stress distributions near a very small crack occurring at the vertex of
the interface in a three-dimensional joint are analyzed under a tensile load using a boundary element method,
and the stress intensity factor of mode II is investigated along the crack front. The joint model is composed of
silicon and resin, which is modeled on a material combination in electronic devices. Three kinds of crack shape,
triangular, quarter circular, and concave shapes, are supposed as a crack shape. First, the stress distributions
near the vertex in the model without a crack are obtained and are used for normalizing the singular stress at the
front of the crack. Dimensionless stress intensity factor for an interface crack is defined and determined from
the distribution of the normalized stress. Next, the stress distribution near the intersection point of the crack
front and the side surface is precisely investigated. An eigenanalysis at the intersection point is conducted, and
eigenvalues yielding the stress singularity are obtained. Then, it is found that there are two values yielding the
stress singularity. The stress distributions near the intersection point are expressed using the angular functions
for each value yielding the singularity. Finally, it is shown that the stress intensity factor for mode II along the
crack front varies following the summation of functions composed of the distance from the intersection point
with the power indices of (0.5 − λ1) and (0.5 − λ2), where λ1 and λ2 are the orders of stress singularity at the
intersection point.

1 Introduction

It is well known that singular stress fields occur at the edge of the interface in dissimilar material joints due to
the mismatch of material properties. When an external force or a temperature change is applied to the joints,
cracks initiate near the interface due to the singular stress fields. Then, the failure of joints frequently occurs.

In case of one real singularity, the singular stress fields in two-dimensional joints can be expressed in a
polar coordinate system, where an origin is located at the edge, as

σi j (r, ϑ) = �

K 1g1i j (ϑ) r−λ + �

K 2g2i j (ϑ) (1)

where r is a distance from the edge of the interface, ϑ is an angle from an axis along the interface, λ is the order

of the stress singularity,
�

K 1 is the intensity of the singularity, and gmi j (ϑ) (m = 1, 2) is an angular function.
Bogy [1,2] derived an eigenequation for determining the order of stress singularity using Dundurs’ pa-

rameters [3]. After that, a lot of research on singular stress fields in two-dimensional joints has been done
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until now, and several methods for analysis were developed, such as a conservative integral, a finite element
method using an enriched element, and a singular element [4–13]. Recently, Hwu et al. [15] proposed a new
unified expression for the analytical solutions of singular stresses at almost all possible interface corners. They
presented a method for analyzing a newly defined stress intensity factor using the path-independent H -integral.
The definition includes the ordinary stress intensity factors of the crack. On the contrary, there are not so much
studies on three-dimensional stress singularity in three-dimensional joints [16–27]. Mittelstedt and Becker
[19] developed a numerical method referred to as the boundary finite element method and used for the inves-
tigation of the orders and modes of three-dimensional stress singularities which occur at notches and cracks
in isotropic half-spaces as well as at free edges and free corners of layered plates. Koguchi et al. [28,29] have
studied the order of stress singularity and singular stress fields in three-dimensional joints, and demonstrated
that the singular stress lines also largely influence the characteristics of singular stress fields near the vertex of
the interface. On the other hand, studies on the stress intensity factors in three-dimensional cracks have been
continuously conducted [14,30–33]. Nagai et al. [30] proposed a method for determining the stress intensity
factors in a three-dimensional interface crack between dissimilar anisotropic materials using the H -integral.
Zhu et al. [31] developed an extended hypersingular integro-differential equation method for modeling the
3D interface crack problem in fully coupled electromagnetothermoelastic anisotropic multiphase composites
under extended electromagnetothermoelastic-coupled loads by theoretical analysis and numerical simulations.
Recently, Veluri and Jensen [33] analyzed the steady-state propagation of interface cracks in thin surface layers
close to three-dimensional corners. Kuo and Hwu [14] proposed a definition of the multi-order stress intensity
factors and showed the distributions of the stress intensity factors along the crack tip in three-dimensional joint
models using a domain-independent H -integral. In the previous analyses for surface cracks, the values of the
stress intensity factor were obtained at any discrete points along the crack front and were investigated from a
point on the crack tip to a point on the side free surface. The distributions against the distance from the free
surface frequently vary near the surface; furthermore, it is unclear whether the stress intensity factor varies
following any law or not. In this case, some numerical errors may exist in the values near the free surface since
the singular stress fields with a different index from -0.5 exist at the intersection point with the free surface and
the crack front. In our study, the stress intensity factor for the interface crack is evaluated from the singular
stress fields around the intersection point, i.e., the direction in the analysis is the one from a point on the side
surface to a point on the crack tip. It is supposed that an accurate value for the stress intensity factor near the
free surface can be evaluated by the analysis of singular stress near the intersection point of the free surface
and crack front.

From the previous studies, singular stress fields at the vertex of the interface in three-dimensional joints
can be described as σi j (r, θ, φ) = K1 f1i j (θ, φ) r−λ + K2 f2i j (θ, φ) in a spherical coordinate system, where
r is the distance from the origin of the singular stress field, θ and φ are angular variables, K1 is the intensity
of the singularity, and f1i j are angular functions for stresses σi j . In the case of 0 < λ < 1, it can be said
that the stress field has a singularity. The angular functions have singularities with respect to the angle φ of
a singular stress line, λline, and interface crack tip, −0.5 ± iε. The stress intensity factors corresponding to
complex angular functions for −0.5± iε are defined, and the angular functions are normalized by the values at
the interface of the angular function. Then, the stress intensity factors of the interface crack are defined using
the angular function in a three-dimensional interface crack. In particular, the stress intensity factor for mode II
will be investigated along the crack front. Additionally, a relationship between the stress intensity factor and
the distance from a singular point, which is the intersection point of the crack front and the free surface, is
derived, and the validity of the relationship will be demonstrated.

2 Method for analysis

Generally, a finite element method is used for analyzing the stress distribution in solid structures. When the
finite element method is used, a large number of mesh data and memory are required for accurately analyzing
the distributions of singular stresses near the vertex and crack tip in the three-dimensional joints. So, in the
present study, a boundary element method is used to calculate the displacement at an arbitrary point in the
three-dimensional joint,

ui (q) =
∫

Ω

[Ui j (q, Q)t j (Q) − Ti j u j (Q)]ds(Q), (2)

where q is an internal point, Q is a point on the boundary, and Ui j and Ti j are the fundamental solutions for
displacement and traction, respectively. In the present analysis, Rongved’s solution for two-phase materials
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satisfying the boundary condition of the interface is used for the fundamental solution. So, mesh division on
the interface in the joint is not needed, and a precise stress analysis can be done. Stresses at the internal point,
q , are calculated using the strain obtained from the following equation:

ui, j (q, Q) =
∫

Ω

[Uik, j (q, Q)tk(Q) − Tik, j (q, Q)uk(Q)]ds(Q). (3)

Stresses are obtained by substituting the strain into a constitutive equation of the material.
An eigenanalysis is conducted to determine the order of the stress singularity. The eigenequation is derived

using the formulation of a finite element method on the basis of the principle of virtual work (see Pageau et
al. [17]). In deriving the equation, the displacement field for a spherical coordinate system with an origin at
the stress singular point is employed. Then, the following eigenequation with respect to p is derived:

(
p2 [A] + p [B] + [C]

) {u} = 0 (4)

where [A], [B], [C] are matrices, and {u} is the displacement vector at nodes. The order of the stress singularity,
λ, is obtained from λ = 1 − p.

3 Model for analysis and analysis condition

In the present study, a three-dimensional joint model composed of silicon and resin is analyzed. Three kinds of
joint models with and without a crack at the interface are employed for the analysis. Figure 1 shows the models
for the analysis and the size of the joint. The upper material is silicon and the lower is resin. Silicon and resin
are used in electronic devices, and these models are prepared for comparing the stress distributions before
and after the initiation of crack. Silicon and resin are widely used in semiconductors, where their thicknesses
are very thin, the singular stress fields at the vertex of the interface are fairly influenced by the thickness.
In the present models, the influence of the thickness of silicon and resin is negligible. In the previous paper,
the quantities of energy release due to the occurrence of three differently shaped cracks were investigated
(Koguchi et al. [28]). In these joint models, a very small domain is established for making the crack, and a
zone method is employed in the boundary element method (BEM) analysis. Figure 2 shows the geometry of
the interface crack. The height of the small domain is 0.05 mm in the z-direction, and the cross section in
the x–y plane is the same size as the interface crack. Here, a triangular-shaped crack is referred to as Type
A, a quarter-circular-shaped crack as Type B, and a concave-shaped crack as Type C. The areas of the three
types of cracks are equal to 3.618 × 10−8 mm2. The lengths of the side lines for the three types of cracks and
the coordinates of the center of the circle for Type C are La = 2.69 × 10−4 mm, Lb = 2.15 × 10−4 mm,
Lc = 3.05 × 10−4 mm, d = 6.82472 × 10−4 mm, and c = 9.999389648 × 10−4 mm, respectively. Figure 3
demonstrates the mesh division around the crack for BEM analysis in Type A. The size of the mesh decreases
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Fig. 2 Crack shapes for analysis

Fig. 3 Mesh division for BEM analysis in Type A

Table 1 Mesh division for BEM analysis

Crack type Type A Type B Type C

Element number 7152 7896 9682
Node number 21,460 22,732 29,149
The minimum element length (mm) 2.63 × 10−6 2.97 × 10−6 1.20 × 10−6

Table 2 Material properties used in the analysis

Silicon Resin

Young’s modulus (GPa) 166.01 2.74
Poisson’s ratio 0.26 0.38

with approaching the crack front, and the minimum size of the element, the total element number, and the total
node number for each crack type are shown in Table 1.

A tensile stress of 1 MPa in the z-direction is applied at the upper surface, and the displacement in the
z-direction is fixed at the lower surface in the joint model. The upper and lower materials are 10 mm in height
and 20 mm in width, respectively. A quarter model of the joint is analyzed considering the symmetry of the
boundary condition and the geometry. The material properties used in the analysis are shown in Table 2.
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Table 3 Eigenvalues at the interface of silicon–resin

Stress singular point, φop = 90◦ Stress singular line, φop = 180◦

Re(λvertex) I m(λvertex) Re(λline) I m(λline)
0.395 0.000 0.318 0.000

Table 4 Eigenvalues at a point on the crack tip

Re(λ1) Re(λ2) I m(λ2) Re(λ3) I m(λ3)

0.50 0.50 0.0592 0.50 −0.0592

Table 5 Eigenvalues at the intersection point of crack front line and the free surface

Type A, β = 45◦ Type B, β = 90◦ Type C, β = 27.5◦

λ1 λ2 λ1 λ2 λ1 λ2
0.458 0.317 0.673 0.508 0.385 0.144

4 Results of analysis

4.1 Eigenanalysis

The order of the stress singularity at the vertex in the three-dimensional joint for the no-crack model is first
calculated. The values at the vertex, λvertex, and on the stress singularity line, λline, are shown in Table 3. The
value for the vertex is larger than that for the line. Next, the values of the stress singularity at the crack tip
are shown in Table 4. Complex stress singularity occurs in the interface crack. Furthermore, the values of the
orders of stress singularity at intersection points of the crack front and the side surface are shown in Table 5.
Two values yielding the stress singularity exist in every crack type. The values for Type C are the smallest
ones in three kinds of crack type.

4.2 Stress analysis

4.2.1 Stress distributions in the model without a crack

First, the stress distribution near the vertex of the interface in the three-dimensional joint for the no-crack model
is precisely investigated. Stress components in a Cartesian coordinate system are calculated using Eq. (3), and
they are transformed from the Cartesian coordinate system to a spherical coordinate system so that an origin
is located at the vertex of the interface. The distributions of stresses, σθθ , σrθ , σφθ , against the distance from
the vertex are shown in Fig. 4a. The superscript of the vertex indicates the stress component at the vertex. It is
found that the distributions for different stress components have the same slope of 0.395, which agrees with
the result of the eigenanalysis shown in Table 3. Figure 4b shows the distributions of stresses, σθθ , σrθ , σφθ ,
versus the angle φ, which is the angle from the side surface. The stresses in the singular stress field can be
expressed as follows:

σ vertex
i j (r, θ, φ) = K1i j f1i j (θ, φ) r−λvertex + K2i j f2i j (θ, φ) (5)

where θ is the angle from the z-axis, K1i j is the intensity of the singularity, and f1i j and f2i j are the angular
functions determined from the eigenanalysis. Here, we focus on the stress distributions in the interface. So,
the angular functions, fki j (θ, φ), at θ = π

/
2 are referred to as f φ

ki j (φ). When the values of the order of stress
singularity for the singular stress line on both side surfaces are identical, the angular functions in the interface
can be expressed as follows [25]:
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Fig. 5 Local polar coordinate system established along the crack front, and the distance d from the origin to the intersection of
the crack front with the side surface

f φ
1θθ (φ) = L1θθ

{
(sin φ)−λline + (cos φ)−λline

} + L2θθ , (6)

f φ
1rθ (φ) = L1rθ

{
(sin φ)−λline cos φ + (cos φ)−λline sin φ

} + L2rθ

{
(sin φ)1−λline + (cos φ)1−λline

}
+ L3rθ (sin φ + cos φ) , (7)

f φ
1φθ (φ) = L1φθ

{
(sin φ)−λline cos φ − (cos φ)−λline sin φ

} + L2φθ

{
(sin φ)1−λline − (cos φ)1−λline

}
+ L3φθ (sin φ + cos φ) + L4φθ (cos φ − sin φ) . (8)

The coefficients in Eqs. (5), (6), (7), and (8) for stress, σi j , are determined from the plots shown in Fig. 4a,
b using the least square method. Then, the determined values are shown in Table 5.

4.2.2 Stress distributions in the model with a small crack

The stress distributions along the interface crack front line are precisely investigated. Here, a polar coordinate
system such as shown in Fig. 5 is introduced to examine a relationship between the singular stress fields at the
vertex and at the crack tip. S shown in Fig. 5 is an intersection point of the crack front and the side surface, and
d is the distance from S to an arbitrary point on the crack front. Figure 5 shows the polar coordinate system,
(R, Θ), taken at the crack front. The origin of the polar coordinate is located at d from the point S.

In the present study, the stress component for the mode II is mainly investigated. The distributions of stress,
σRΘ , against R for three types of crack shape are shown in Fig. 6. Solid lines indicate the plots of the stress
distribution for the no-crack model, and solid circles denote the plots for the crack model. It is found that the
stress for crack models is larger than that for the no-crack model in R < 10−4 mm, and the slope of lines and
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Fig. 6 Comparison of stress distributions for Type A, Type B, and Type C

symbols in the log–log graph agree with each other over R > 10−4 mm, where the size of range is about two
times the crack length on the side surface. The value of the slope is 0.395, which is the order of singularity at
the vertex. Here, the stress σRΘ is normalized by using the stress in the no-crack model. Figure 7 demonstrates
the distribution of the normalized stress against the distance, R, from the crack front. It is found that the stress
approaches to a constant value of 1 over R > 10−3 mm. When the stress distribution is normalized by the
singular stress at the vertex, it can be supposed that a crack is located under a uniform stress. It is found that
the stress near the point S is larger than that far from the point.

4.2.3 Stress intensity factor for mode II

In this section, the expression for the stress intensity factor for mode II in a three-dimensional interface crack
is derived from the singular stress field at the crack tip. The dimensionless stress σRΘ

/
σ vertex

rθ is expressed as

σ̂RΘ(R̂, Θ) and is defined as

σ̂RΘ(R̂, Θ) =
(

K̂1RΘ(Θ)R̂iε + ˆ̄K1RΘ (Θ) R̂−iε
)

R̂−0.5 + K̂2RΘ (Θ) (9)
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Fig. 7 Comparison of normalized stress distributions for Type A, Type B, and Type C

where R̂ = R
/
,  is set as 1 × 10−6 mm (a reference length), and ε is 0.0592. K̂1RΘ is a dimensionless

complex stress intensity factor for mode II and is defined as follows:

K̂1RΘ = K̂ I I f̃1RΘ = K̂ I I

{
f̃ Re
1RΘ (Θ) + i f̃ I m

1RΘ (Θ)
}

,

ˆ̄K1RΘ = K̂ I I
˜̄f1RΘ = K̂ I I

{
f̃ Re
1RΘ (Θ) − i f̃ I m

1RΘ (Θ)
}

(10)

where K̂ I I is a real dimensionless stress intensity factor for mode II, and f̃1RΘ is the normalized angular
function for the complex order of singularity of −0.5 + iε. f̃ Re

1RΘ and f̃ I m
1RΘ are the real and imaginary parts

of the angular functions. The complex angular function, f̃1RΘ (Θ), is derived by normalizing f1RΘ using the
value at the interface of

∣∣ f Re
1RΘ + i f I m

1RΘ

∣∣. The values for the angular function at the interface are shown in
Table 7,

f̃1RΘ (Θ) = f Re
1RΘ + i f I m

1RΘ∣∣ f Re
1RΘ + i f I m

1RΘ

∣∣ = f̃ Re
1RΘ + i f̃ I m

1RΘ. (11)

Substitution of Eq. (10) into Eq. (9) yields

σ̂RΘ

(
R̂, 0

)
= 2K̂ I I

{
f̃ Re
1RΘ (0) cos

(
ε ln R̂

)
− f̃ I m

1RΘ sin
(
ε ln R̂

)}
R̂−0.5 + K̂2RΘ (0) . (12)
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Table 6 Values of coefficients in Eqs. (5), (6), (7), and (8)

K1θθ , MPa mmλvertex K2θθ , MPa mm L1θθ L1θθ – –
1.26 0.0594 0.64 −0.43 – –
K1rθ , MPa mmλvertex K2rθ , MPa L1rθ L2rθ L3rθ –
0.535 −0.00154 −0.0298 0.254 0.458 –
K1φθ , MPa mmλvertex K2φθ , MPa mm L1φθ L2φθ L3φθ L4φθ

0.194 0.0263 1.012 0.826 0.0672 1.919

Table 7 Values of the angular function on the interface and crack front

∣∣ f Re
1RΘ (0) + i f I m

1RΘ (0)
∣∣ f̃ Re

1RΘ (0) f̃ I m
1RΘ (0)

3.28 × 10−4 0.733 0.680
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Furthermore, the dimensionless stress intensity factor, K̂ I I , is changed into the stress intensity factor with the
dimension as

K I I = 2
√

2π K̂ I I σ
vertex
rθ 0.5 (13)

where K I I is the real stress intensity factor for mode II. Then, Eq. (12) is rewritten as

σRΘ

(
R̂, 0

)
= K̂ I I√

2π

{
f̃ Re
1RΘ (0) cos

(
ε ln R̂

)
− f̃ I m

1RΘ sin
(
ε ln R̂

)}
R̂−0.5 + K2RΘ (0) (14)

where K2RΘ (0) is a constant value which is related to the stress far from the crack front.
The dimensionless stress intensity factor, K̂ I I , is obtained approximating the stress distribution shown in

Fig. 7 by using Eq. (14). The determined K̂ I I is plotted against the distance d as shown in Fig. 8. It is found
that the values increase as d decreases.

Next, the singular stress fields around the intersection point S are precisely investigated. There are two
values for the order yielding the stress singularity as shown in Table 5. Then, the distribution of stress, σrθ ,
near the point S is expressed as

σ s
rθ

(
r̂s,

π

2
, φs

)
= K s

1rθ 
−λ1 f̂ s φ

1rθ (φs) r̂−λ1
s + K s

2rθ 
−λ2 f̂ s φ

2rθ (φs) r̂−λ2
s + K s

3rθ f̂ s φ
3rθ (φs) (15)

where r̂s = r
/
, K s

krθ and f s
krθ , (k = 1, 2) are the intensity of singularities and the angular functions for the

order of the stress singularity, λk , respectively. φs is an angle taken from the crack front as shown in Fig. 5. Here,
the angular functions for each values of the order of singularity are shown in Fig. 9. The angular functions, f s

krθ ,
are normalized by the minimum values of f s

kθθ . The intensities of singularity, K s
krθ , are determined from the

stress distribution shown in Fig. 10 using a conservative integral developed by the authors [34]. In evaluating
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Fig. 9 Distributions of frθ against angle φs for Type A, Type B, and Type C

numerically the conservative integral, the angular functions for the whole domain in the analysis are used.
Then, the determined coefficients for each term in Eq. (15) are shown in Table 7.

Next, the singular behavior of the angular functions near the crack front, φs ≈ 0, is examined. The angular
functions, f̃ s φ

krθ , can be expressed versus the angle φs as follows [25]:

f̃ s φ
krθ (φs) = L∗ s

1krθ cos φs(sin φs)
−0.5+iε + L̄∗ s

1krθ cos φs(sin φs)
−0.5−iε

+L∗ s
2krθ (sin φs)

0.5+iε + L̄∗ s
2krθ (sin φs)

0.5−iε + L3krθ sin φs
(16)

where L∗ s
jkrθ and L̄∗ s

jkrθ , ( j = 1, 2) are complex intensities of singularity for the angular functions, and are
defined as

L∗ s
jkrθ = L∗

k I I j

{
f̃ Re
1RΘ (Θ) + i f̃ I m

1RΘ (Θ)
}

L̄∗ s
jkrθ = L∗

k I I j

{
f̃ Re
1RΘ (Θ) − i f̃ I m

1RΘ (Θ)
}

,
(17)

where L∗
k I I j is a real intensity factor of the angular function, and f̃ Re

1RΘ and f̃ I m
1RΘ , ( j = 1, 2 and k = 1, 2) are

already defined in Eq. (11), as the real and imaginary parts of the angular function at the crack tip, respectively.
Substituting Eqs. (16) and (17) into Eq. (15) and expanding the equation yield

f̃ s φ
krθ (φs) = 2L∗

k I I 1

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) − f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
−0.5 cos φs

+ 2L∗
k I I 2

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) + f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
0.5

+ L3krθ sin φs . (18)
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Fig. 10 Distributions of σrθ against the distance from the point S for Type A, Type B, and Type C

Here, introducing the same relationship of Ls
k I I j = 2

√
2π L∗

k I I j as the crack front into the angular function
yields the following equation:

f̃ s φ
krθ (φs) = Ls

k I I 1√
2π

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) − f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
−0.5 cos φs

+ Ls
k I I 2√
2π

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) + f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
0.5

+ L3krθ sin φs . (19)

Now, the coefficients, Ls
k I I j , are determined from the approximation of the angular functions shown in Fig. 9

at the interface by Eq. (19). The obtained coefficients, Ls
k I I 1, are shown in Table 8

Next, Eq. (19) is substituted into Eq. (15); then, the following equation is derived:

σ s
rθ

(
r̂s,

π

2
, φs

)

= K s
1rθ 

−λ1

⎡
⎢⎢⎣

Ls
1I I 1√
2π

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) − f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
−0.5 cos φs

+ Ls
1I I 2√
2π

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) + f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
0.5

+Ls
1I I 3 sin φs

⎤
⎥⎥⎦ r̂−λ1

s

+ K s
2rθ 

−λ2

⎡
⎢⎢⎣

Ls
2I I 1√
2π

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) − f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
−0.5 cos φs

+ Ls
2I I 2√
2π

{
f̃ Re
1RΘ (0) cos (ε ln (sin φs)) + f̃ I m

1RΘ (0) sin (ε ln (sin φs))
}

(sin φs)
0.5

+Ls
2I I 3 sin φs

⎤
⎥⎥⎦ r̂−λ2

s

+ K s
3rθ f̃ s φ

3rθ . (20)
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Table 8 Values of coefficients in Eq. (15)

Type A Type B Type C

λk 0.458 0.317 0.673 0.508 0.385 0.144
K s

krθ , MPa mmλk 0.417 0.632 0.0219 0.205 0.920 0.771

Table 9 Values of coefficients, Ls
k I I 1

Type A Type B Type C

λk 0.458 0.317 0.673 0.508 0.385 0.144
Ls

k I I j −2.09 1.13 −0.441 1.96 0.852 −6.60

Now, considering the stress distribution near the crack front and simplifying as sin φs ≈ φs , cos φs � 1,
r̂s � d̂s and R̂ = d̂ tan φs � d̂ sin φs � d̂φs yield

σ s
rθ

(
r̂s,

π

2
, φs

)

= K s
1rθ 

0.5−λ1 Ls
1I I 1√

2π

⎧⎨
⎩

[
f̃ Re
1RΘ (0) cos

(
ε ln d̂

)
+ f̃ I m

1RΘ (0) sin
(
ε ln d̂

)]
cos(ε ln R̂)

+
[

f̃ Re
1RΘ (0) sin

(
ε ln d̂

)
− f̃ I m

1RΘ (0) cos
(
ε ln d̂

)]
sin(ε ln R̂)

⎫⎬
⎭ R−0.5d̂0.5−λ1

+ K s
1rθ 

−0.5−λ1 Ls
1I I 2√

2π

⎧⎨
⎩

[
f̃ Re
1RΘ (0) cos

(
ε ln d̂

)
− f̃ I m

1RΘ (0) sin
(
ε ln d̂

)]
cos(ε ln R̂)

+
[

f̃ Re
1RΘ (0) sin

(
ε ln d̂

)
+ f̃ I m

1RΘ (0) cos
(
ε ln d̂

)]
sin(ε ln R̂)

⎫⎬
⎭ R0.5d̂−0.5−λ1

+ K s
1rθ 

−1−λ1 Ls
1I I 3 Rd̂−1−λ1

+ K s
2rθ 

0.5−λ2 Ls
2I I 1√

2π

⎧⎨
⎩

[
f̃ Re
1RΘ (0) cos

(
ε ln d̂

)
+ f̃ I m

1RΘ (0) sin
(
ε ln d̂

)]
cos(ε ln R̂)

+
[

f̃ Re
1RΘ (0) sin

(
ε ln d̂

)
− f̃ I m

1RΘ (0) cos
(
ε ln d̂

)]
sin(ε ln R̂)

⎫⎬
⎭ R−0.5d̂0.5−λ2

+ K s
2rθ 

−0.5−λ2 Ls
2I I 2√

2π

⎧⎨
⎩

[
f̃ Re
1RΘ (0) cos

(
ε ln d̂

)
− f̃ I m

1RΘ (0) sin
(
ε ln d̂

)]
cos(ε ln R̂)

+
[

f̃ Re
1RΘ (0) sin

(
ε ln d̂

)
+ f̃ I m

1RΘ (0) cos
(
ε ln d̂

)]
sin(ε ln R̂)

⎫⎬
⎭ R0.5d̂−0.5−λ2

+ K s
2rθ 

−1−λ2 Ls
2I I 3 Rd̂−1−λ2

+ K s
3rθ f̃ s φ

3rθ . (21)

Comparing the coefficients of cos(ε ln R̂) and sin(ε ln R̂) in Eqs. (12) and (21) yields the following equations:

K I I f̃ Re
1RΘ (0) = (

K s
1rθ Ls

1I I 1d0.5−λ1 + K s
2rθ Ls

2I I 1d0.5−λ2
) {

f̃ Re
1RΘ (0) cos

(
ε ln d̂

)
+ f̃ I m

1RΘ (0) sin
(
ε ln d̂

)}

K I I f̃ I m
1RΘ (0) = (

K s
1rθ Ls

1I I 1d0.5−λ1 + K s
2rθ Ls

2I I 1d0.5−λ2
) {

f̃ Re
1RΘ (0) sin

(
ε ln d̂

)
− f̃ I m

1RΘ (0) cos
(
ε ln d̂

)}
.

(22)
Summing the square of Eq. (22) yields

K 2
I I

{(
f̃ Re
1RΘ (0)

)2 +
(

f̃ I m
1RΘ (0)

)2
}

=
(

K s
1rθ Ls

1I I 1d0.5−λ1 + K s
2rθ Ls

2I I 1d0.5−λ2
)2

⎡
⎢⎣

{
f̃ Re
1RΘ (0) cos

(
ε ln d̂

)
+ f̃ I m

1RΘ (0) sin
(
ε ln d̂

)}2

+
{

f̃ Re
1RΘ (0) sin

(
ε ln d̂

)
− f̃ I m

1RΘ (0) cos
(
ε ln d̂

)}2

⎤
⎥⎦

(23)

where
(

f̃ Re
1RΘ (0)

)2 +
(

f̃ I m
1RΘ (0)

)2 = 1. Then, Eq. (23) is simplified as

K I I = K s
1rθ Ls

1I I 1d0.5−λ1 + K s
2rθ Ls

2I I 1d0.5−λ2 . (24)
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Fig. 11 Distributions of σrθ versus angle φs for Type A, Type B, and Type C
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This equation means that the stress intensity factor for the mode II can be expressed as a function of the distance
from the point S, and the coefficients for each term were already determined from the approximation of stress
distribution and the angular functions for the singular stress distribution at the intersection point S. The right
side in Eq. (24) is referred as KlineII, and the value of K I I obtained from data shown in Fig. 8 using Eq. (13)
and KlineII is replotted in both log graphs. The plotted lines indicate the curves of KlineII. You can see that K I I
which is determined from the stress distribution in the normal direction to the crack front fairly agrees with
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the curves of KlineII. It can be said that the stress intensity factors near the free surface vary with the distance
from the singular stress point at the intersection of the crack front and the free surface.

The value of K I I is less than that of K I , and the governing factor of crack growth in the joint is mainly
the mode I [29]. However, it is supposed that the shear stress singularity is related to the crack growth near the
intersection point due to the increase in the value of K I I at the point. Then, the crack shape of Type B tends
to grow like that of Type A and Type C. In these joints, the singular stress fields with a distinct character from
those at the crack front, −0.5 ± iε, exist at the intersection point on the free surface. In the previous numerical
analysis of the stress intensity factor near the free surface [15,30], the value was determined at a point on the
crack front. Namely, almost all works for three-dimensional surface cracks were to investigate the distribution
of stress intensity factors from an inner point on the crack tip to the intersection point of the free surface and
the crack front. On the contrary, the distribution of the stress intensity factor is evaluated from the intersection
point to the point on the crack tip in this paper. This approach is based on the analysis of singular stress fields
in the three-dimensional joints and is applicable to reveal a law of surface crack growth. The results in the
paper are limited to interface cracks; however, this approach will be easily extended to any surface cracks.

The deduced results are utilized for evaluating the interface strength not considering the influence of
thickness of silicon and resin. In real electronic devices, they are very thin; then, the intensity of singularity
at the vertex of the interface reduces [24]. So, the present results yield a reference value for evaluating the
interface strength.

5 Conclusions

In the present paper, the stress distribution for three kinds of a very small crack occurring at the vertex of the
interface in the three-dimensional joint was analyzed under a tensile load using the boundary element method,
and the stress intensity factors for mode II along the crack front line were investigated. The stress intensity
factor of mode II varies following a function of the distance from the intersection of the crack front and the
free surface to a point on the crack front. The function is expressed by the sum of the exponential function
with a power index of the difference in the stress singularities at the cross point at the free surface and at the
crack tip (0.5). This expression is very useful for evaluating the growth of a surface crack along an interface.
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21360051 in Japan.
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