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Abstract A new boundary integral formulation for the numerical solution of bending problems of anisotropic
plates is proposed in this work. The formulation is based on a Stroh-like formalism for the classical plate theory.
In contrast to the conventional formulation, which utilizes Betti’s reciprocal work theorem with appropriate
Green’s functions, the proposed formulation makes use of Cauchy’s integral theorem. An advantage of the
new formulation is that it provides dual sets of boundary integral equations. With the dual sets, the integral
equations to be solved can always be cast into the form of well-posed Fredholm integral equations of the second
type for general boundary conditions. Another advantage is that all moment components on the boundary can
be obtained without additional numerical differentiations. Numerical examples are given to demonstrate the
effectiveness and efficiency of the proposed boundary integral formulation.

1 Introduction

The boundary elementmethod enjoys a distinct advantage over domain typemethods, such as the finite element
method, as only the boundary needs to be discretized. Its application to solid mechanics problems started when
Rizzo [1] presented an integral equation approach to boundary value problems of two-dimensional linear
isotropic elasticity. An extension to anisotropic elasticity was made by Rizzo and Shippy [2]. If plane stress
condition is considered, the two-dimensional problems are essentially related to the stretching of plates. The
primary unknowns are the in-plane displacements and tractions.

The development of the boundary integral equation method for plate bending problems started relatively
late as compared to that for plate stretching problems. A direct approach was employed by Bezine [3] and
Stern [4] to obtain a general formulation of isotropic plate bending problems in terms of a pair of singular
integral equations involving out-of-plane displacement, normal slope, bending moment, and shear on the plate
boundary. The counterpart for an anisotropic plate was derived by Shi andBezine [5]. All of the aforementioned
works adopted a conventional boundary element formulation,which is based onBetti’s reciprocalwork theorem
in conjunction with the appropriate fundamental solutions. The form of the integral equations for bending is
quite different from that for stretching not only in the kernels but also in the presence of additional terms for
plates with sharp corners. Furthermore, post-processing is required to compute boundary moments [6].

A different boundary integral equation formulation for two-dimensional elasticity problems was proposed
by Wu et al. [7] based on distributions of body forces and dislocations. The new formulation consists of dual
sets of boundary integral equations involving the tangential gradient of the displacements and tractions on the
boundary. With the dual sets, the integral equations to be solved can always be cast into the form of well-
posed Fredholm integral equations of the second type regardless of the types of boundary conditions. Another
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advantage is that the tangential displacement gradients and tractions together with Hooke’s law can be used to
compute the tangential stresses directly at the boundary.

The Stroh formalism is widely recognized as an elegant and powerful method for two-dimensional
anisotropic elastostatics. A distinctive feature of the Stroh formalism is that the general solution is provided
in terms of the eigenvalues and eigenvectors of a standard eigenvalue problem. The general solution contains
two arbitrary complex functions for the plane stress or plate stretching problem. The functions can often be
found by taking advantage of the orthogonality relations between the eigenvectors in conjunction with theories
of analytic functions. Cheng and Reddy [8] established a Stroh-type formalism for the Kirchhoff anisotropic
plates. A Stroh-like formalism for Kirchhoff bending theory of anisotropic plates was derived by Hwu [9]
independently.

In [10], it was shown that the integral equations obtained by Wu et al. [7] are a direct consequence of
analyticity of complex functions in Stroh’s formalism for anisotropic elasticity. The objective of this work is,
therefore, to set up boundary integral equations similar to those developed by Wu et al. [7] for the analysis of
bending deformations in an anisotropic plate using the Stroh-like formalism proposed by Cheng and Reddy
[8] and Hwu [9].

In the following discussions, a comma followed by a subscript α denotes the partial derivative with respect
to xα . A repeated index implies summation over the range from 1 to 2 unless otherwise specified.

2 Classical plate theory

Consider a thin plate of uniform thickness with the mid-plane located at x3 = 0 in a Cartesian coordinate
system. The classical plate theory assumes the following form for the displacement component Ui :

Uα = x3θα(x1, x2),

U3 = w(x1, x2) (1)

where θα is the rotation and w is the deflection. The theory further suppresses the out-of-plane shear deforma-
tions so that

θα = −w,α. (2)

The corresponding equilibrium equations are

Mαβ,β = Qα,

Qα,α + q = 0 (3)

where q is the distributed lateral load per unit area in the x3 direction on the plate surface, Qα is the shear
force, and Mαβ is the moment. The plate is assumed to be made of a linear elastic material with possible
variation of elastic constants in the thickness direction. The variation is further assumed to be symmetric about
the middle surface of the plate so that there is no coupling between bending and extension. A laminate of
multiple generally orthotropic layers that are symmetrically disposed about the middle surface is one example.
The constitutive law of the plate is described by

Mαβ = Dαβγ δθγ,δ (4)

where Dαβγ δ is the bending stiffness. From Eqs. (2), (3) and (4), the equation for the deflection w is

Dαβγ δw,αβγ δ = q. (5)

3 Stroh-like formalism

In the absence of lateral load,p = 0, from Eq. (3), Qα and Mαβ can be expressed in terms of the stress function
ψα as

Q1 = −η,2, Q2 = η,1, η = ψβ,β/2, (6)

Mα1 = −ψα,2 − λα1ψβ,β/2, Mα2 = ψα,1 − λα2ψβ,β/2 (7)
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where λαβ is defined as

λ11 = λ22 = 0, λ12 = −λ21 = 1. (8)

A set of first-order partial differential equations for θ and ψ may be obtained by substituting Eqs. (6) and (7)
into Eq. (4) as [9]

[
θ,2
ψ,2

]
= N

[
θ,1
ψ,1

]
(9)

where

N =
[
N1 N2

N3 NT
1

]
, (10)

N1 =
[

0 1
− D12

D22
− 2D26

D22

]
, N2 =

[
0 0
0 1

D22

]
,

N3 = −
⎡
⎢⎣

D11 − D2
12

D22
2

(
D16 − D12D26

D22

)

2
(
D16 − D12D26

D22

)
4

(
D66 − D2

26
D22

)
⎤
⎥⎦ . (11)

The general solution of θ and ψ is given by

[
θ
ψ

]
= 2Re

(
2∑

α=1

fα (zα) ξ(r)
α

)
(12)

where zα = x1 + pax2, p and ξ(r) are, respectively, the eigenvalue and right eigenvector of N. Conversely, the
function fK (zK ) may be expressed in terms of θ and ψ as

fα(zα) =
(
ξ(
)
α

)T
[

θ
ψ

]
(13)

where ξ(
)
α is the left eigenvector of N. It may be shown that

ξ(r) =
[
a
b

]
, ξ(
) =

[
b
a

]
(14)

where a and b are 2 × 1 matrices.

4 Boundary integral equations

It is well known that a complex analytic function f , defined in a closed region R enclosed by a smooth contour
�, can be expressed in terms of its values on � by Cauchy’s integral formula as

γ f (z) = 1

2π i

∫
�

f (ζ )

ζ − z
dζ (15)

where z = x1 + i x2, ζ = ξ1 + iξ2, i = √−1, ξ = (ξ1, ξ2) ∈ �, γ = 1 if x = (x1, x2) ∈ R, γ = 1/2 if x ∈ �
and the principal value of the integralmust be taken. The direction of integration inEq. (15) is counterclockwise.
Since zα may be expressed as zK = y1 + iy2, where y1 = x1 + Re[pα]x2 and y2 = Im [pα] x2. Eq. (15) may
be generalized for fα(zα) or its derivative f ′

α(zα) as

γ f ′
α(zα) = 1

2π i

∫
�

f ′
α(ζα)

ζα − zα
dζα

= 1

2π i

∫
�

1

ζα − zα

∂ fα(ζα)

∂σ
dσ(ξ) (16)
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where ζα = ξ1 + pαξ2 and dσ =
√
dξ21 + dξ22 .

Equation (12) with Eqs. (13) and (16) gives [10]

γ
∂

∂s

[
θ
ψ

]
= Im

⎛
⎜⎝

2∑
α=1

ẑα
π

∫
�

ξ(r)
α

(
ξ(
)
α

)T

ζα − zα

∂

∂σ

[
θ
ψ

]
dσ(ξ)

⎞
⎟⎠ (17)

where s is the arc length along a certain contour C , and ẑα = dx1/ds + pαdx2/ds. If the contour C is taken to
coincide with the boundary contour �, Eq. (17) yields the following dual sets of boundary integral equations:

1

2
d(x) =

∫
�

(−W(x, ξ)d(ξ) + U(x, ξ)t(ξ)) dσ(ξ), (18)

1

2
t(x) =

∫
�

(
V(x, ξ)d(ξ) − W(x, ξ)T t(ξ)

)
dσ(ξ) (19)

where d = ∂θ/∂s, t = −∂ψ/∂s, and

W(x, ξ) = − 1

π
Im

[
2∑

α=1

ẑα
ζα − zα

aαbTα

]
,

U(x, ξ) = − 1

π
Im

[
2∑

α=1

ẑα
ζα − zα

aαaTα

]
,

V(x, ξ) = − 1

π
Im

[
2∑

α=1

ẑα
ζα − zα

bαbTα

]
. (20)

It is remarkable that Eqs. (18) and (19) are in exactly the same forms as those for two-dimensional elasticity
problems given in [7]. For two-dimensional elasticity problems, d and t are, respectively, the in-plane dis-
placement gradient and traction along the boundary. For plate bending problems, however, d is related to the
rotation gradients along the boundary, and t, from Eqs. (6) and (7), is given by

t = Mnnn + M∗
nss, M∗

ns = Mns − η (21)

where n and s, respectively, are the outward unit normal vector and unit tangential vector on the boundary �,

Mnn = Mαβnαnβ, Mns = Mαβnαsβ, (22)

and M∗
ns is connected to the effective shear force by

Vn = ∂M∗
ns

∂s
. (23)

In contrast, the conventional boundary integral equations employ w, θn = ∂w/∂n, Mnn and Vn . It should also
be noted that for plates with sharp corners, Mns on the boundary may be piecewise continuous with possible
jumps at the corners, but Eqs. (18) and (19) remain valid for boundary points other than the corner points.
However, the concentrated corner forces associated with the jumps in Mns appear explicitly as extra terms in
the conventional boundary integral equations.

Equations (18) and (19) may be used to construct a set of well-posed Fredholm integral equations of the
second type for general boundary conditions. Let the boundary conditions at a boundary point x be specified
as

X(x)t(x) − Y(x)d(x) = t̃(x) (24)

where t̃ contains given boundary data, X and Y are 2 × 2 diagonal matrices whose elements are either one or
zero and X + Y = I, I being the unit matrix. Define

d̃(x) = X(x)d(x) − Y(x)t(x). (25)
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Equations (17) and (18) with Eqs. (24) and (25) yield

1

2
d̃(x) =

∫
�

(
−W̃(x, ξ)d̃(ξ) + Ũ(x, ξ)t̃(ξ)

)
dσ(ξ) (26)

where

W̃(x, ξ) = − 1

π
Im

[
2∑

α=1

ẑα
ζα − zα

ãα(x)b̃Tα (ξ)

]
,

Ũ(x, ξ) = − 1

π
Im

[
2∑

α=1

ẑα
ζα − zα

ãα(x)ãTα (ξ)

]
, (27)

and

ãα(x) = X(x)aα + Y(x)bα, b̃α(x) = Y(x)aα + X(x)bα. (28)

ãα(ξ) and b̃α(ξ) are also defined by Eq. (28) but with X and Y associated with the boundary conditions at the
boundary point ξ. Equation (26) is the desired equation for d̃, which contains the “missing” boundary data.
For traction boundary conditions (X = I, Y = 0), Eq. (26) is simply Eq. (17), and for displacement boundary
conditions (X = 0, Y = I), Eq. (26) is the same as Eq. (18).

5 Numerical formulation

Equation (26) is a Cauchy-type singular integral equation. The singular integral equation may be solved
numerically by discretizing the boundary into N line elements where it is assumed that d∗ = d̃∗

k and t∗ = t̃∗k
on the kth element, k = 1 ∼ N , where d̃∗

k and t̃
∗
k are the constant values of d∗and t∗evaluated at the center of

the kth element. The system of algebraic equations resulting from Eq. (26) for d̃∗
k is

N∑
k=1

G jk d̃∗
k =

N∑
k=1

H jk t̃∗k , j = 1 ∼ N (29)

where for j �= k,

G jk = 1

π
Im

[
2∑

α=1

ẑ( j)α

ẑ(k)α

log

(
z(k+1)
α − z( j+1/2)

α

z(k)α − z( j+1/2)
α

)
ã( j)
α

(
b̃(k)

α

)T
]

,

H jk = − 1

π
Im

[
2∑

α=1

ẑ( j)α

ẑ(k)α

log

(
z(k+1)
α − z( j+1/2)

α

z(k)α − z( j+1/2)
α

)
ã( j)
α

(
ã(k)
α

)T
]

, (30)

Gkk = I/2 and Hkk = 0. In Eq. (30),

ẑ( j)α = cos θ( j) + pα sin θ( j), θ ( j) = tan−1

(
x ( j+1)
2 − x ( j)

2

x ( j+1)
1 − x ( j)

1

)
,

z(k)α = x (k)
1 + pαx

(k)
2 , z( j+1/2)

α = 1

2

(
z( j+1)
α + z( j)α

)
,

ã( j)
α = X

(
x( j)

)
aα + Y

(
x( j)

)
bα, b̃( j)

α = Y
(
x( j)

)
aα + X

(
x( j)

)
bα (31)

where
(
x (k)
1 , x (k)

2

)
and

(
x (k+1)
1 , x (k+1)

2

)
are the end points of the kth element. Note that in the treatment outlined

above the singular integrals are analytically integrated, and hence no numerical integrations of singular integrals
are needed.
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Once d and t are all determined, any moment or curvature components in the interior of the plate can be
computed using Eq. (17) with γ = 1. Moreover, any moment or curvature components on the boundary may
be obtained with d and t in conjunction with the normal derivatives of θ and ψ on the boundary computed by

∂

∂n

[
θ
ψ

]
= Re

[
2∑

α=1

n1 + n2 pα

−n2 + n1 pα

ξ(r)
α

(
ξ(
)
α

)T
][

d
−t

]
(32)

where

∂ψ

∂n
= (Mns + η)n + Mss. (33)

For example, the twisting moment Mns is calculated as

Mns = 1

2

(
nT

∂ψ

∂n
+ sT t

)
. (34)

Equation (26) is for plates subjected to edge loads and hence cannot be directly applied to laterally loaded
plates. For plates loaded laterally by q(x1, x2), however, one may express the deflection w as [11]

w = w0 + w∗ (35)

wherew0 is a particular solution satisfying Eq. (5). With Eq. (35), one only needs to solve forw∗, which is free
from the lateral load. The decomposition of deflection described by Eq. (35) works well for distributed loads.
For more general loading such as concentrated forces, Eq. (26) must be extended to account for the loading
explicitly. The extension is in progress and will be reported in a separate communication.

6 Examples

To illustrate the effectiveness of the proposed formulation, Equation (26) was applied numerically to solve the
problem of a square plate of side length 2a, as shown in Fig. 1, which is simply supported on all edges and is
subjected to a uniform load q . The particular solution w0 in Eq. (35) was taken as

w0 = q

24D11

(
x41 − 6a2x21 + 5a4

)
, (36)

which represents the deflection of a uniformly loaded strip parallel to the x1 axis. It satisfies Eq. (5) and the
boundary conditions at x1 = ±a. The boundary conditions for w∗ as described by Eq. (24) are

t̃∗ = ∓ q

2D11

(
x21 − a2

) [
1
D12

]
, X =

[
0 0
0 1

]
, at x2 = ±a,

t̃∗ = 0, X =
[
1 0
0 0

]
, at x1 = ±a. (37)

Equation (29) was constructed and solved by dividing the boundary of the plate equally into N = 80 line
elements with the corners included as end points.

The materials considered were an isotropic material with E = 1GPa and v = 0.3 and an orthotropic
material with E1 = 181GPa, E2 = 10.3GPa,G = 7.17GPa, ν1 = 0.28. Equation (29) cannot be applied
directly to isotropic materials for which the eigenvalue p = i is repeated. Instead, the isotropic material was
regarded as a slightly orthotropic material with E1 = 1GPa and E2 = 0.999GPa so that the corresponding
eigenvalues become p = 0.9846i, 1.0162i . The eigenvalues of the orthotropic material are p = ±1.1238 +
1.7114i . The variations of κ11 = −w,11, which is the curvature of the deflected middle surface in the x1
direction, and the bending moment M22 at x2 = 0 were calculated using Eq. (17) with γ = 1. The variations
of κ22 = −w,22, which is the curvature of the deflected middle surface in the x2 direction, and the bending
momentM11 at x2 = 0were calculated using Eq. (32). The results computed by the boundary integral equations
(bie) are shown in Figs. 2 and 3 for the isotropic material and Figs. 4 and 5 for the orthotropic material. Because
of symmetry, the results are presented for x1 > 0 only. For comparison, the corresponding exact solutions for
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Fig. 1 A square plate of side length 2a

Fig. 2 Curvatures at x2 = 0 for the isotropic material

the isotropic material and the orthotropic material are also given. The exact solutions for the isotropic material
were obtained from the following series solution of the deflection [11]:

w = 64qa2

π5D11

∞∑
m=1,3,5...

1

m5

[(
1 − αm tanh αm + 2

2 cosh αm
cosh

αmx2
a

)

+ 1

2 cosh αm

αmx2
a

cosh
αmx2
a

]
sin αm

(
1 + x1

a

)
(38)

where αm = mπ/2. Those for the orthotropic material were derived from [12],

w = 64qa2

π5D11

∞∑
m=1,3,5...

1

m5
Re

[
1 + s22

s21 − s22

1

cosh αms1
cosh

(
αms1

x2
a

)
−

− s21
s21 − s22

1

cosh αms2
cosh

(
αms2

x2
a

)]
sin αm

(
1 + x1

a

)
, (39)

where sα = −i pα .
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Fig. 3 Moments at x2 = 0 for the isotropic material

Fig. 4 Curvatures at x2 = 0 for the orthotropic material

In general, the numerical results shown in Figs. 2, 3, 4, 5 are in close agreement with the analytic results.
In particular, computed values of curvatures and moments at the center, x1 = 0 and x2 = 0, of the plate
and the relative errors are shown in Table 1. For the isotropic material, the numerical results of κ11 and M11
appear larger than the analytic ones, but those of κ22 and M22 are smaller. For the orthotropic material, either
curvatures or bending moments are smaller than the exact solutions. The largest error of 3.88% occurs in the
case of κ11 for the isotropic material. However, the error of κ11 for the orthotropic material is −0.40% and is
the smallest. The approaches of the numerical results to the exact solutions do not seem to follow any definite
trends.
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Fig. 5 Moments at x2 = 0 for the orthotropic material

Table 1 Computed values at the center x1 = 0, x2 = 0 and the relative errors

Isotropic Orthotropic

D11κ11/qa2 0.1530 (3.88%) 0.4818 (−0.40%)
D11κ22/qa2 0.1440 (−2.28%) 0.3094 (−2.02%)
M11/qa2 0.1963 (2.46%) 0.4868 (−0.42%)
M22/qa2 0.1447 (−0.84%) 0.0253 (−1.53%)

7 Conclusions

A new boundary integral formulation for anisotropic plate bending problems has been developed. The new
formulation yields dual sets of boundary integral equations so that the integral equations to be solved can always
be cast into the form of well-posed Fredholm integral equations of the second type for general boundary
conditions. The boundary integral equations are in exactly the same forms as those for two-dimensional
elasticity problems, but contain rotation gradients and moments as unknowns. The equations are applicable
to plates with or without sharp corners. Moreover, all moment components on the boundary can be obtained
without additional numerical differentiations.
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