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Abstract In this paper, a mesh-free strong-form solution is used to investigate the static response of beams
made of functionally graded materials. Thanks to a compact notation, the a priori expansion order of the
three-dimensional displacement field upon the cross-section can be assumed as a free parameter resulting in a
hierarchical kinematic modelling. Several higher-order theories as well as Timoshenko’s classical model can
be formulated straightforwardly. The governing differential equations and boundary conditions are obtained
as a fundamental nucleus, and an algebraic system is derived via collocation with multiquadric radial basis
functions. Results are validated towards three-dimensional FEMmodels and also against an analytical Navier-
type solution. The numerical investigations demonstrate that the presented approach yields accurate results.

1 Introduction

The continuous and gradual change of mechanical and thermal properties along desired spatial directions
makes functionally graded materials (FGMs) very attractive. The combination of different components with
specific physical properties allows a tailored material design that broadens the structural design space leading
to a multifunctional response with a minimal weight increase. Furthermore, beams play an important role in
research since many primary and secondary structures such as aircraft wings, helicopter rotor blades or robot
arms can be idealised by these structural elements. The static response of beam structures made of FGMs
represents, therefore, an interesting and important research topic.

A brief overview of recent works about FGMs and the static analysis of FGMbeams follows. An interesting
historical overview on FGMs can be found in Koizumi [1]. A general account of FGMs (design, fabrication and
applications) was presented by Suresh and Mortensen [2], Miyamoto et al. [3], Watanabe et al. [4] and Birman
and Byrd [5]. As far as FGM beams modelling is concerned, Sankar [6] derived an exact elasticity solution for
FGMbeamswith exponential Young’smodulus and constant Poisson’s ratio. An Euler–Bernoulli theory (EBT)
was also derived where the shear stress component was obtained via integration of the indefinite equilibrium
equations. Chakraborty et al. [7] developed a finite element based on Timoshenko’s beam theory (TBT) for the
static, free vibration and wave propagation analysis of FGM beams. The shape functions were derived from
the general exact solution of the static governing equations. Mechanical and thermal material properties were
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assumed to vary along the thickness direction according to an exponential and a polynomial gradation law,
respectively. Li [8] investigated the static and dynamic behaviour of FGM beams via a unified approach for
classical EBT and TBT theories. Kapuria et al. [9] used a third-order zigzag theory for studying the static and
free vibration response of layered FGM beams. The material gradation law was obtained via a modified rule
of mixtures. Numerical investigations were validated by experimental results. Bîrsan et al. [10] used the direct
approach proposed by Zhilin [11] for the analysis of composite and FGM beams where the stiffness elasticity
tensors were obtained via comparison with three-dimensional elasticity static and free vibration solutions. The
important contribution ofMurin and co-workers [12–14] by the efficient and accurate modelling of FGM beam
and shell elements should be, finally, mentioned.

As far as governing equation solution techniques are concerned, meshless methods were proposed over
the past years to overcome several meshing-related problems. Liu and Gu [15] and Liu [16] presented a
very comprehensive and thorough review on meshless methods. Computer implementation aspects were also
addressed. Several meshless methods were discussed by showing their advantages and disadvantages and
investigating different linear elasticity problems. The collocation method was also discussed. This latter is
used in the present paper where multiquadric radial basis functions (RBFs) are adopted. Multiquadric RBFs
were first proposed by Hardy [17] in topography for the analytical approximation of irregular surfaces using
scattered data. Kansa [18,19] extended the approximation via RBFs first to estimate partial derivatives and,
then, to the solution of partial differential equations (PDEs). Wu [20,21] provided a mathematical proof of
the convergence of collocation with RBFs for both data interpolation and solution of PDEs: in the latter case,
the order of convergence is O(hd+1), being h the density of the collocation points and d a problem spatial
dimension. Several structural problems have been solved by means of collocation with RBFs, see, for instance,
Liu and Gu [22] and Liu and Wang [23]. To the best of the authors’ knowledge, Ferreira [24,25] was amongst
the first to study composite plate and beam structures by it. This solution method was successfully extended to
FGM plates and shells in Roque et al. [26] and Neves et al. [27–31]. The advantages of collocation with RBFs
reside in being easy to implement, providing higher-order smoothness of the solution and easiness in adding
new collocation points to the solution space. Furthermore, since it is based on a strong-form solution, RBFs
are evaluated only at nodes and not at the integration points, and they are differentiated but not integrated (this
last task can be a problem in non-polynomial weak-form meshless methods). Finally, boundary conditions can
easily be imposed. The loss of symmetry and sparsity (especially for globally supported RBFs) of the stiffness
matrix should be mentioned as far as disadvantages are concerned. Some experience is required for the method
to be used due to the presence of a shape parameter that has to be accurately chosen, and more details on this
regard can be found in Davydov and Oanh [32].

A static analysis of three-dimensional FGMbeams is addressed in this paper. The kinematic field is axiomat-
ically assumed over the cross-section via a unified formulation (UF). This formulation was previously derived
for plates and shells (see Carrera [33], Carrera and Giunta [34–36]) and then extended to the analysis of beam
structures via finite element or Navier-type solutions, see Carrera and Giunta [37], Carrera et al. [38,39] and
Giunta et al. [40–45]. The formulation is independent of the material gradation law in the sense that the varia-
tion of the material stiffness coefficients versus the cross-section coordinates is expressed by a bi-dimensional
Lagrange approximation in terms of Newton’s series expansion and Chebyshev points, see Philips [46]. The
governing differential equations and the corresponding boundary conditions are derived from the principle
of virtual displacement in terms of a fundamental nucleus that does not depend upon the displacement field
approximation order. This latter can be assumed as a formulation free parameter. Displacement-based theories
that account for non-classical effects, such as transverse shear and cross-section in- and out-of-plane warping,
can be easily formulated. A strong-form meshless method based upon collocation with multiquadric RBFs is
used to solve the derived governing equations and boundary conditions. Slender and deep beams are inves-
tigated. Cross-sections are made of an FGM mono-layer or present a sandwich configuration. A power law
function is assumed for the material gradation. Simply supported boundary conditions are investigated. The
proposedmodels are validated by comparisonwith three-dimensional FEMsolutions. Closed-formNavier-type
solutions based on the same kinematics here proposed are also presented. It should be noted that these latter
solutions are exact within the theory approximation framework. Numerical results show that very accurate
results can be obtained with a reduced computational effort when compared with traditional three-dimensional
FEM solutions based upon solid elements.
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2 Preliminaries

A beam is a structure whose axial extension (l) is predominant when compared with any other dimension
orthogonal to it. The cross-section (Ω) is identified by intersecting the beam with planes that are orthogonal
to its axis. A Cartesian reference system is adopted: y-axis and z-axis are two orthogonal directions laying on
Ω . The x coordinate is coincident with the axis of the beam with 0 ≤ x ≤ l. Beam geometry and reference
system are shown in Fig. 1. The cross-section is considered to be constant along x . The displacement field is:

uT (x, y, z) = {
ux (x, y, z) uy (x, y, z) uz (x, y, z)

}
(1)

in which ux , uy and uz are the displacement components along x-, y- and z-axis, respectively. Superscript
“T” represents the transposition operator. Stress, σ , and strain, ε, vectors are grouped into vectors σ n, εn that
lay on the cross-section:

σT
n = {

σxx σxy σxz
}
, εTn = {

εxx εxy εxz
}

(2)

and σ p, ε p laying on planes orthogonal to Ω:

σT
p = {

σyy σzz σyz
}
, εTp = {

εyy εzz εyz
}
. (3)

Under the hypothesis of linear analysis, the following strain–displacement geometrical relations hold:

εTn = {
ux,x ux,y + uy,x ux,z + uz,x

}
,

εTp = {
uy,y uz,z uy,z + uz,y

}
.

(4)

Subscripts “x”, “y” and “z”, when preceded by comma, represent derivation versus the corresponding spatial
coordinate. A compact vectorial notation can be adopted for Eq. (4):

εn = Dnpu + Dnxu,
ε p = Dpu

(5)

Fig. 1 Beam geometry and reference system
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where Dnp, Dnx and Dp are the following differential matrix operators:

Dnp =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0

∂

∂y
0 0

∂

∂z
0 0

⎤

⎥
⎥
⎥
⎥
⎦

, Dnx = I
∂

∂x
, Dp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

and I is the unit matrix. Under the hypothesis of linear elastic materials, the generalised Hooke’s law holds.
According to Eqs. (2) and (3), it reads:

σ p = Cppε p + Cpnεn,

σ n = Cnpε p + Cnnεn .
(7)

In the case of isotropic FGMs, matrices Cpp, Cpn, Cnp and Cnn in Eq. (7) are:

Cpp =
⎡

⎣
C11 C12 0

C12 C11 0

0 0 C44

⎤

⎦ , Cpn = CT
np = C12

⎡

⎣
1 0 0

1 0 0

0 0 0

⎤

⎦ , Cnn =
⎡

⎣
C11 0 0

0 C44 0

0 0 C44

⎤

⎦ . (8)

The proposed models are implemented in a software tool in a very general manner that does not depend
upon the particular gradation law. A Lagrange approximation on Np Chebyshev points along y and z cross-
section coordinates based on Newton series expansion is assumed for the material stiffness coefficients in
Eq. (8):

Ci j (y, z) ≈ ωξ (y) ωη (z)Ci j
[
y0, y1, . . . , yξ ; z0, z1, . . . , zη

]
with ξ, η = 0, 1, . . . , Np (9)

being:

ωm (ζ ) =
{
1 m = 0
∏m−1

n=0 (ζ − ζn) m ∈ [
1, Np

] . (10)

Chebyshev’s points are defined on the domain [−1,+1] via the following equation:

ζm = cos

(
mπ

Np

)
with m = 0, 1, . . . , Np. (11)

These points are, then,mapped into the cross-section domain via a variables transformation.TermsCi j [. . . ; . . .]
are the divided differences computed from the functionsCi j = Ci j (y, z), see Philips [46]. These latter depend
upon the particular gradation law chosen for the numerical investigations, or they can be obtained via numerical
or analytical homogenisation analyses. In this article, a power gradation law of the volume fraction of the
constituent metallic and ceramic materials and the rule of mixtures are assumed, see Praveen and Reddy [47]
and Chakraborty et al. [7]. This results in a power law distribution over the cross-section of the Young’s
modulus E and the Poisson ratio ν:

E (y, z) = (E1 − E2)
(
αy y + βy

)ny
(αz z + βz)

nz + E2,

ν (y, z) = (ν1 − ν2)
(
αy y + βy

)ny
(αz z + βz)

nz + ν2
(12)

where αy, αz, βy and βz are defined according to the material reference system that can be different from the
global structural one, and ny and nz are the material gradation exponents. The divided differencesCi j [. . . ; . . .]
in Eq. (9) are then computed from:

C11 (y, z) = 1 − ν (y, z)

[1 + ν (y, z)] [1 − 2ν (y, z)]
E (y, z) ,

C12 (y, z) = ν (y, z)

[1 + ν (y, z)] [1 − 2ν (y, z)]
E (y, z) ,

C44 (y, z) = 1

2 [1 + ν (y, z)]
E (y, z) ,

(13)
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and Eq. (12). For the cases considered in the numerical investigations, nine Chebyshev’s points along each
cross-section axis ensure an accurate yet efficient approximation of the considered gradation law.

3 Hierarchical beam theories

The variation of the displacement field over the cross-section is postulated a priori. Several displacement-based
theories can be formulated on the basis of the following generic kinematic field:

u (x, y, z) = Fτ (y, z)uτ (x) with τ = 1, 2, . . . , Nu (14)

where Nu stands for the number of unknowns. It depends on the approximation order N which is a free parameter
of the formulation. The compact expression is based on Einstein’s notation: repeated indices implicitly indicate
summation. Thanks to this notation, the problem’s governing differential equations and boundary conditions
can be derived in terms of a single fundamental nucleus. The complexity related to higher than classical
approximation terms is tackled, and the theoretical formulation is valid for the generic approximation order
and approximating functions Fτ (y, z). The approximating functions Fτ are Mac Laurin’s polynomials. This
choice is inspired by the classical beam models. Nu and Fτ as functions of N can be obtained by Pascal’s
triangle as shown in Table 1. The actual governing differential equations and boundary conditions due to a fixed
approximation order are obtained straightforwardly via summation of the nucleus corresponding to each term
of the expansion. According to the previous choice of polynomial function, the generic N -order displacement
field is:

ux = ux1 + ux2y + ux3z + · · · + u
x (N2+N+2)

2

yN + · · · + ux (N+1)(N+2)
2

zN ,

uy = uy1 + uy2y + uy3z + · · · + u
y (

N2+N+2)
2

yN + · · · + uy (N+1)(N+2)
2

zN ,

uz = uz1 + uz2y + uz3z + · · · + u
z (

N2+N+2)
2

yN + · · · + uz (N+1)(N+2)
2

zN .

(15)

The kinematic field of a first-order theory is:

ux = ux1 + ux2y + ux3z,
uy = uy1 + uy2y + uy3z,
uz = uz1 + uz2y + uz3z.

(16)

TBT’s displacement field:

ux = ux1 + ux2y + ux3z,
uy = uy1,
uz = uz1

(17)

is derived from the first-order approximation model. In this case, a reduced Hooke’s law for the axial stress–
strain relation should be used:

σxx = Q11εxx . (18)

This is due to the fact that the kinematic field in Eq. (17) accounts for a rigid cross-section (εyy = εzz = 0)
in clear discordance with the Poisson effect:

εi i = −νεxx �= 0 with i = y, z. (19)

Table 1 Mac Laurin’s polynomial terms via Pascal’s triangle

N Nu Fτ

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

3 10 F7 = y3 F8 = y2z F9 = yz2 F10 = z3

. . . . . . . . .

N (N+1)(N+2)
2 F(N2+N+2)

2

= yN F(N2+N+4)
2

= yN−1z . . . FN (N+3)
2

= yzN−1 F (N+1)(N+2)
2

= zN
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This incongruence is known as Poisson’s locking (see Carrera and Brischetto [48,49]), and it is tackled
by using Eq. (18) instead of the full three-dimensional Hooke’s equations in the normal stress components.
The reduced material stiffness coefficient Q11 is classically obtained imposing the equations in σyy and σzz
in Hooke’s law equal to zero. An algebraic linear system in εyy and εzz is obtained, and by substituting its
solution into Hooke’s equations in σxx , the reduced stiffness coefficient Q11 is derived:

Q11 = C11 − 2C12
C2
12 − C11C12

C2
12 − C2

11
. (20)

In the case of isotropic materials, Q11 is equal to Young’s modulus E . In this last case, the reduced material
stiffness law can be directly (and equivalently) obtained by replacing Eq. (19) within the Hooke’s equations
in the normal stress components. The equation in the axial stress results in Eq. (18) with Q11 = E , and the
equations in the normal stresses εyy and εzz become the trivial identity. It should be noted that the shear stress–
strain equations inHooke’s law are not reduced. In thiswork, no shear correction coefficient is considered, since
it depends upon several parameters, such as the geometry of the cross-section (see, for instance, Cowper [50],
Murty [51],Murin et al. [12]), and themain emphasis is posed on the higher-ordermodels. Higher-ordermodels
yield a more detailed description of the shear mechanics, of the in- and out-of-section deformations, of the
coupling of the spatial directions due to Poisson’s effect and of the torsional mechanics than classical models
do. A more general description of the proposed model as well as a detailed investigation of the effectiveness
of each expansion term in the a priori kinematic field can be found in Carrera et al. [39] and Carrera and
Petrolo [52].

4 Governing equations

The governing differential equations and the boundary conditions are obtained in terms of the displacement
components by the principle of virtual displacements (PVD):

δLi = δL p (21)

where Li is the strain energy, L p stands for the work due to external loadings, and δ represents a virtual
variation.

4.1 Virtual variation of the strain energy

According to the grouping of the stress and strain components in Eqs. (2) and (3), the virtual variation of the
strain energy is considered as the sum of two contributes:

δLi =
∫

l

∫

Ω

(
δεTnσ n + δεTpσ p

)
dΩdx . (22)

By substitution of the geometrical relations, Eq. (5), the material constitutive equations, Eq. (7), and the
unified hierarchical approximation of the displacements, Eq. (14), and after integration by parts, Eq. (22) reads:

δLi =
∫

l

δuTτ

∫

Ω

[
− DT

nxCnpFτ

(
DpFsI

) − DT
nxCnn Fτ

(
DnpFsI

) − DT
nxCnn Fτ FsDnx

+ (
DnpFτ I

)T Cnp
(
DpFsI

) + (
DnpFτ I

)T Cnn
(
DnpFsI

) + (
DnpFτ I

)T Cnn FsDnx

+ (
DpFτ I

)T Cpp
(
DpFsI

) + (
DpFτ I

)T Cpn
(
DnpFsI

) + (
DpFτ I

)T Cpn FsDnx

]

× dΩus dx + δuTτ

∫

Ω

Fτ

[
Cnp

(
DpFsI

) + Cnn
(
DnpFsI

) + Cnn FsDnx
]
dΩus

∣
∣
∣
∣
∣
∣

x=l

x=0

(23)
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where the differential matrix operator DT
nx operates on us . In a compact vectorial form:

δLi =
∫

l

δuTτ K
τ s

us dx +
[
δuTτ �

τ s
us

]x=l

x=0
. (24)

The components of the differential linear stiffness matrix K
τ s

are:

K
τ s
xx = J 66τ,ys,y + J 55τ,zs,z − J 11τ s

∂2

∂x2
K

τ s
xy =

(
J 66τ,ys − J 12τ s,y

) ∂

∂x
K

τ s
xz = (

J 55τ,zs − J 13τ s,z

) ∂

∂x
,

K
τ s
yy = J 22τ,ys,y + J 44τ,zs,z − J 66τ s

∂2

∂x2
K

τ s
yx =

(
J 12τ,ys − J 66τ s,y

) ∂

∂x
K

τ s
yz = J 23τ,ys,z + J 44τ,zs,y,

K
τ s
zz = J 44τ,ys,y + J 33τ,zs,z − J 55τ s

∂2

∂x2
K

τ s
zx = (

J 13τ,zs − J 55τ s,z

) ∂

∂x
K

τ s
zy = J 23τ,zs,y + J 44τ,ys,z,

(25)

The generic term J ghτ(,φ)s(,ξ) is a cross-section moment:

J ghτ(,φ)s(,ξ) =
∫

Ω

CghFτ(,φ)Fs(,ξ) dΩ, (26)

and it is obtained via Gauss’ integration. As far as the boundary conditions are concerned, the components of
�

τ s
are:

�
τ s
xx = J 11τ s

∂

∂x
�

τ s
xy = J 12τ s,y �

τ s
xz = J 13τ s,z,

�
τ s
yy = J 66τ s

∂

∂x
�

τ s
yx = J 66τ s,y �

τ s
yz = 0,

�
τ s
zz = J 55τ s

∂

∂x
�

τ s
zx = J 55τ s,z �

τ s
zy = 0.

(27)

4.2 Virtual work of the external loadings

The external work is supposed to be due to following surface load components:
{
pyx , pyy, pyz ∀ (x, y, z) ∈ {

x ∈ [0, l] ; y = ŷ; z ∈ [
z̃1, z̃2

]}

pzx , pzy, pzz ∀ (x, y, z) ∈ {
x ∈ [0, l] ; y ∈ [

ỹ1, ỹ2
] ; z = ẑ

} . (28)

The first subscript accounts for the normal of the surface the loading is applied on, whereas the second one

stands for the loading direction. The generic loading is applied on the cross-section interval
[ ˜(�)1, ˜(�)2

]
at

location ˆ(�). The total external virtual work is:

δL p = δL pzz + δL pzx + δL pzy + δL pyy + δL pyx + δL pyz . (29)

Its explicit terms are:

(
δL pyx , δL pzx

) =
∫

l

δuxτ
(
pyx E

ŷ
τ , pzx E

ẑ
τ

)
dx,

(
δL pyy , δL pzy

) =
∫

l

δuyτ

(
pyy E

ŷ
τ , pzy E

ẑ
τ

)
dx,

(
δL pyz , δL pzz

) =
∫

l

δuzτ
(
pyz E

ŷ
τ , pzz E

ẑ
τ

)
dx

(30)
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where:

Eẑ
τ =

ỹ2∫

ỹ1

Fτ (y, z̃) dy, E ŷ
τ =

z̃2∫

z̃1

Fτ (ỹ, z) dz. (31)

4.3 Governing equations’ and boundary conditions’ fundamental nuclei

The explicit form of the fundamental nucleus of the governing equations is:

δuxτ : −J 11τ s uxs,xx +
(
J 55τ,zs,z + J 66τ,ys,y

)
uxs +

(
J 66τ,ys − J 12τ s,y

)
uys,x +

(
J 55τ,zs − J 13τ s,z

)
uzs,x

= pzx E ẑ
τ + pyx E

ŷ
τ ,

δuyτ :
(
J 12τ,ys − J 66τ s,y

)
uxs,x − J 66τ s uys,xx +

(
J 22τ,ys,y + J 44τ,zs,z

)
uys +

(
J 23τ,ys,z + J 44τ,zs,y

)
uzs

= pyy E
ŷ
τ + pzy E ẑ

τ ,

δuzτ :
(
J 13τ,zs − J 55τ s,z

)
uxs,x +

(
J 23τ,zs,y + J 44τ,ys,z

)
uys − J 55τ s uzs,xx +

(
J 33τ,zs,z + J 44τ,ys,y

)
uzs

pzz E ẑ
τ + pyz E

ŷ
τ .

(32)

The fundamental nuclei ofDirichlet’s orNeumann’s boundary conditions at x/ l = 0 and 1 are, respectively:

either uxτ = ũxτ or J 11τ s uxs,x + J 12τ s,yuys + J 13τ s,zuzs = 0,

either uyτ = ũ yτ or J 66τ s,yuxs + J 66τ s uys,x = 0,

either uzτ = ũzτ or J 55τ s,zuxs + J 55τ s uzs,x = 0.

(33)

For a fixed approximation order, the nucleus has to be expanded versus the indices τ and s in order to
obtain the governing equations and the boundary conditions of the desired model.

5 Collocation with radial basis functions

A set D ⊂ [0, l] of Nn distinct nodes xi along the beam axis is considered:

D = DI ∪ DE = {xi : i = 2, 3, . . . , Nn − 1} ∪ {
x1/ l = 0, xNn/ l = 1

}
(34)

where DI and DE are two subsets containing the internal and the external nodes, respectively.
The axial variation of the displacement field and its derivatives are approximated via a linear combination

of multiquadric RBFs φi (‖x − xi , c‖):
uτ (x) = Uτ iφi (‖x − xi , c‖) ,

uτ,x (x) = Uτ iφi,x (‖x − xi , c‖)
uτ,xx (x) = Uτ iφi,xx (‖x − xi , c‖)

with i = 1, 2, . . . , Nn, (35)

where Uτ i are the unknown linear combination coefficients, and:

φi (‖x − xi , c‖) =
√

(x − xi )2 + c2 (36)

being c a shape parameter, see Roque and Ferreira [53], that has to be opportunely chosen as discussed in
Sect. 6.

5.1 Stiffness matrix algebraic fundamental nucleus

The algebraic fundamental nucleus of the governing equation is obtained by replacing Eq. (35) into Eq. (32)
and computing them for an internal node x j ∈ DI:
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[(
J 55τ,zs,z + J 66τ,ys,y

)
φi j − J 11τ s φi j,xx

]
Uxsi +

(
J 66τ,ys − J 12τ s,y

)
φi j,xUysi +

(
J 55τ,zs − J 13τ s,z

)
φi j,xUzsi

= pzx E ẑ
τ + pyx E

ŷ
τ ,

(
J 12τ,ys − J 66τ s,y

)
φi j,xUxsi +

[(
J 22τ,ys,y + J 44τ,zs,z

)
φi j − J 66τ s φi j,xx

]
Uysi +

(
J 23τ,ys,z + J 44τ,zs,y

)
φi jUzsi

= pyy E
ŷ
τ + pzy E ẑ

τ ,
(
J 13τ,zs − J 55τ s,z

)
φi j,xUxsi +

(
J 23τ,zs,y + J 44τ,ys,z

)
φi jUysi +

[(
J 33τ,zs,z + J 44τ,ys,y

)
φi j − J 55τ s φi j,xx

]
Uzsi

= pzz E ẑ
τ + pyz E

ŷ
τ

(37)

where, for the sake of brevity, the following notation has been introduced:

φi j(,x)(,xx) = φi(,x)(,xx)
(‖x j − xi , c‖

)
. (38)

Equation (37) can be rewritten into the following compact matrix form:

Kτ si jUsi = Pτ j . (39)

For a fixed approximation order N , the nucleus in Eq. (39) has to be expanded versus the indices τ and s
(kinematic approximation) and i and j (number of collocation points).

5.2 Boundary conditions algebraic fundamental nucleus

The boundary conditions are obtained replacing Eq. (35) with Eq. (33):

either Uxτ iφi j = ũxτ or J 11τ s φi j,xUxsi + J 12τ s,yφi jUysi + J 13τ s,zφi jUzsi = 0,

either Uyτ iφi j = ũ yτ or J 66τ s,yφi jUxsi + J 66τ s φi j,xUysi = 0,

either Uzτ iφi j = ũzτ or J 55τ s,zφi jUxsi + J 55τ s φi j,xUzsi = 0

(40)

where φi j,x is computed at either x1 or xNn . The compact matrix form of the boundary conditions algebraic
fundamental nucleus is:

�τ si jUsi = Bτ j , (41)

Also, this nucleus has to be expanded versus the indices τ, s, i and j .
A clamped edge is obtained imposing a Dirichlet-type boundary condition for the three displacement

components:

Uxτ iφi j = 0, Uyτ iφi j = 0, Uzτ iφi j = 0. (42)

A free edge is obtained by satisfying the following Neumann’s boundary conditions:

J 11τ s φi j,xUxsi + J 12τ s,yφi jUysi + J 13τ s,zφi jUzsi = 0,

J 66τ s,yφi jUxsi + J 66τ s φi j,xUysi = 0, (43)

J 55τ s,zφi jUxsi + J 55τ s φi j,xUzsi = 0.

A simply supported edge is obtained by considering Dirichlet’s boundary conditions for the cross-section
displacement components and a Neumann’s boundary condition for the axial displacement:

Uyτ iφi j = 0,

Uzτ iφi j = 0, (44)

J 11τ s φi j,xUxsi + J 12τ s,yφi jUysi + J 13τ s,zφi jUzsi = 0.
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5.3 Resulting algebraic system

An algebraic linear system in Usi is obtained by computing the nucleus in Eq. (39) for each node in DI and
the boundary conditions nucleus in Eq. (41) for each node in DE and assembling them:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Kτ s21 Kτ s22 · · · Kτ s2(Nn−2) Kτ s2(Nn−1) Kτ s2Nn

Kτ s31 Kτ s32 · · · Kτ s3(Nn−2) Kτ s3(Nn−1) Kτ s3Nn

...
...

. . .
...

...
...

Kτ s(Nn−1)1 Kτ s(Nn−1)2 · · · Kτ s(Nn−1)(Nn−2) Kτ s(Nn−1)(Nn−1) Kτ s(Nn−1)Nn

�τ s11 �τ s12 · · · �τ s1(Nn−2) �τ s1(Nn−1) �τ s1Nn

�τ sNn1 �τ sNn2 · · · �τ sNn(Nn−2) �τ sNn(Nn−1) �τ sNnNn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Us1

Us2
...

UsNn−2

UsNn−1

UsNn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pτ2

Pτ3
...

PτNn−1

Bτ1

BτNn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(45)

Hon and Shaback [54] showed that a general proof of non-singularity of a linear system obtained via
collocation with RBFs is impossible. Nevertheless, on the basis of the numerical evidence and experience,
they concluded that singular cases are rare and they have to be appositely constructed. Increasing the order
of the problem, the coefficients matrix, which is a dense matrix, can become ill-conditioned. Kansa and
Hon [55] proposed several techniques, such as domain decomposition, variable shape parameter and truncated
multiquadric basis functions, to improve the conditioning of the coefficients matrix. In the present work, it has
been found that, increasing the expansion order N , the problem can be severely ill-conditioned. Nevertheless,
equilibration of the coefficients matrix via row and column scaling was sufficient to obtain a well-conditioned
problem for each considered case.

6 Numerical results and discussion

FGM beams made of alumina and steel are considered. The mechanical properties of alumina are as follows:
E1 = 3.9 × 105MPa, ν1 = 0.25. In the case of steel, the following mechanical properties are used: E2 =
2.1 × 105MPa, ν2 = 0.31. E and ν vary along the y-axis according to the power gradation law in Eq. (12)
with ny = 0.5, 1 and 2. The beam support is [0, l] × [0, a] × [0, b]. Square cross-section with a = b = 1
m is considered. The length-to-side ratio l/a is equal to 100 and 10. Slender and deep beams are, therefore,
investigated. The following sinusoidal surface loading is considered:

pyy(x) = Pyy sin
(π

l
x
)

∀ (x, y, z) ∈ {x ∈ [0, l] ; y = a; z ∈ [0, b]} (46)

with Pyy = 1 Pa. Convergence analysis is performed considering both a uniform and a Chebyshev node
distribution. This latter yields, for the considered cases, a faster convergence, and it will be adopted in the
remaining of the numerical investigations. Results are put into the following dimensionless form:

(
uy, uz

) = 1

a

(
uy, uz

)
,

(
σ xx , σ xy, σ yy

) = 1

Pyy

(
σxx , σxy, σyy

)
.

(47)

Simply supported beams are considered. Results are, then, thoroughly validated towards a closed-form
Navier-type analytical solution using the same kinematics, see Giunta et al. [40]. Within the proposed beam
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Fig. 2 Mono-layer beam cross-section
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Fig. 3 Effect of the shape parameter c on the normalised difference between the RBF solution and the corresponding Navier-type
solution for N = 2, Nn = 21 and a l/a = 100 and b ten, Chebyshev collocation points distribution

theory approximation, this latter represents an exact solution of the governing differential problem presented in
Eqs. (32) and (33). Unless otherwise specified, the transverse displacement uy is computed at (l/2, a/2, b/2)
and uz at (l/2, a, 0). Stress components σ xx and σ xy are evaluated at (l/2, a, b/2) and (0, a/2, b/2), respec-
tively. Three-dimensional FEM solutions obtained via the commercial code ANSYS are also considered. The
three-dimensional quadratic element “Solid186” is used, see ANSYS theory manual [56]. Each element is
considered as homogeneous by referring to the material properties at its centre point. The accuracy of the
three-dimensional FEM solution depends upon both the FEM numerical approximation and the approximation
of the gradation law. A coarse and a fine mesh are considered in order to investigate the convergence of the
reference solution. Thanks to the problem symmetry, only the [0, l/2] × [0, a] × [0, b/2] quarter model is
considered in the three-dimensional FEM problem. Although the three-dimensional FEM solution and the
meshless one are different in nature, some considerations about computational effort can be addressed. The
three-dimensional FEM models degrees of freedom (DOF) range between about 7 × 105 and 1.1 × 106. The
number of DOF (NDOF) for the present meshless method is a function of the expansion order N and the number
of nodes Nn:
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Fig. 4 Effect of the nodes number Nn on euy , eσxx and eσxy for l/a = 100, N = 2 and c = cP via a uniform and b Chebyshev
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Table 2 Dimensionless transverse displacement, mono-layer beam, l/a = 100

uy × 105

ny = 0.5 ny = 1 ny = 2

FEM 3Da 3.873 4.234 4.530
FEM 3Db 3.869 4.232 4.531
Navier N = 9 3.881 4.234 4.530
N = 9 3.880 4.234 4.530
N = 7 3.881 4.234 4.530
N = 6 3.881 4.234 4.530
N = 5 3.881 4.234 4.530
N = 4 3.881 4.234 4.530
N = 3 3.880 4.234 4.529
N = 2 3.878 4.231 4.526
TBT 3.881 4.234 4.530

a Elements’ number 60 × 40 × 20
b Elements’ number 30 × 20 × 10

Table 3 Dimensionless displacements uy and uz , mono-layer beam, l/a = 10

ny = 0.5 ny = 1 ny = 2

uy × 109 uz × 1011 uy × 109 uz × 1011 uy × 109 uz × 1011

FEM 3Da 3.954 2.289 4.325 2.451 4.637 2.625
FEM 3Db 3.948 2.286 4.322 2.452 4.635 2.628
Navier N = 9 3.962 2.291 4.326 2.451 4.637 2.624
N = 9 3.963 2.291 4.326 2.451 4.637 2.624
N = 7 3.962 2.290 4.326 2.451 4.637 2.625
N = 6 3.962 2.296 4.326 2.455 4.637 2.629
N = 5 3.962 2.290 4.326 2.455 4.637 2.636
N = 4 3.962 2.296 4.326 2.460 4.637 2.640
N = 3 3.962 2.283 4.326 2.455 4.636 2.650
N = 2 3.948 2.373 4.309 2.567 4.616 2.767
TBT 3.958 0.000 4.320 0.000 4.626 0.000

a Elements’ number 35 × 40 × 20
b Elements’ number 15 × 20 × 10

Table 4 Dimensionless normal and shear stresses, mono-layer beam, l/a = 100

ny = 0.5 ny = 1 ny = 2

σ xx × 10−3 σ xy × 10−1 σ xx × 10−3 σ xy × 10−1 σ xx × 10−3 σ xy × 10−1

FEM 3Da 6.879 4.497 7.268 4.457 7.627 4.398
FEM 3Db 6.855 4.501 7.227 4.461 7.547 4.402
Navier N = 9 6.908 4.497 7.308 4.455 7.712 4.395
N = 9 6.904 4.636 7.306 4.442 7.709 4.355
N = 7 6.907 4.504 7.306 4.457 7.706 4.398
N = 6 6.902 4.504 7.304 4.451 7.705 4.394
N = 5 6.906 4.503 7.305 4.452 7.712 4.393
N = 4 6.908 4.530 7.321 4.488 7.729 4.400
N = 3 6.930 4.524 7.323 4.475 7.700 4.380
N = 2 6.834 3.288 7.203 3.245 7.576 3.076
TBT 6.920 3.256 7.330 3.175 7.745 2.986

a Elements’ number 60 × 40 × 20
b Elements’ number 30 × 20 × 10

NDOF = 3
(N + 1) (N + 2)

2
Nn . (48)

In the case of a twelfth-order 21-node meshless solution (the highest considered one), it is equal to about
5.8× 103. It should be noted that an analogous (as many nodes as the collocation points) solution by means of
the finite element method in the framework of the proposed hierarchical beam modelling has the same number
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Table 5 Dimensionless normal and shear stresses, mono-layer beam, l/a = 10

ny = 0.5 ny = 1 ny = 2

σ xx × 10−1 σ xy σ xx × 10−1 σ xy σ xx × 10−1 σ xy

FEM 3Da 6.908 4.493 7.301 4.453 7.664 4.394
FEM 3Db 6.884 4.497 7.260 4.458 7.584 4.398
Navier N = 9 6.937 4.493 7.341 4.451 7.748 4.391
N = 9 6.925 4.617 7.341 4.451 7.748 4.391
N = 7 6.938 4.500 7.341 4.454 7.745 4.394
N = 6 6.934 4.500 7.340 4.447 7.744 4.390
N = 5 6.937 4.499 7.339 4.448 7.750 4.389
N = 4 6.941 4.527 7.358 4.485 7.770 4.397
N = 3 6.972 4.520 7.369 4.471 7.752 4.376
N = 2 6.845 3.283 7.219 3.241 7.594 3.072
TBT 6.922 3.256 7.333 3.175 7.748 2.986

a Elements’ number 35 × 40 × 20
b Elements’ number 15 × 20 × 10
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of DOF. This latter solution has the advantage of yielding sparse matrices, whereas the one used in this paper
results in smooth stresses. Nevertheless, the sparsity of the resulting stiffness matrix can be improved bymeans
of locally supported radial basis functions such as Wendland’s ones.

6.1 Mono-layer beams

Amono-layer alumina–steel FGMbeam is considered. Thematerial is fullymetallic at y = 0 and fully ceramic
at y = a as shown in Fig. 2.
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Fig. 8 Sandwich beam cross-section

Table 6 Dimensionless displacements uy and uz , sandwich beam and l/a = 10

ny = 0.5 ny = 1 ny = 2

uy × 109 uz × 1011 uy × 109 uz × 1011 uy × 109 uz × 1011

FEM 3Da 4.151 2.332 4.378 2.410 4.552 2.481
FEM 3Db 4.144 2.329 4.373 2.408 4.549 2.480
Navier N = 9 4.157 2.335 4.379 2.410 4.552 2.479
N = 9 4.157 2.336 4.379 2.411 4.552 2.480
N = 8 4.157 2.334 4.379 2.410 4.552 2.479
N = 7 4.156 2.334 4.379 2.409 4.552 2.478
N = 6 4.156 2.337 4.379 2.410 4.552 2.480
N = 5 4.156 2.330 4.379 2.411 4.552 2.485
N = 4 4.156 2.337 4.378 2.414 4.552 2.488
N = 3 4.156 2.317 4.378 2.408 4.551 2.496
N = 2 4.141 2.438 4.361 2.534 4.530 2.620
TBT 4.153 0.000 4.372 0.000 4.539 0.000
a Elements’ number 35 × 40 × 20
a Elements’ number 15 × 20 × 10

Table 7 Dimensionless normal and shear stresses, sandwich beam and l/a = 10

ny = 0.5 ny = 1 ny = 2

σ xx × 10−1 σ xy σ xx × 10−1 σ xy σ xx × 10−1 σ xy

FEM 3Da 7.085 4.512 7.291 4.447 7.476 4.385
FEM 3Db 7.082 4.516 7.291 4.451 7.478 4.388
Navier N = 9 7.088 4.515 7.289 4.445 7.471 4.380
N = 9 7.093 4.515 7.294 4.445 7.476 4.380
N = 8 7.099 4.536 7.295 4.447 7.477 4.386
N = 7 7.091 4.531 7.295 4.447 7.476 4.386
N = 6 7.102 4.502 7.298 4.437 7.478 4.385
N = 5 7.092 4.503 7.296 4.440 7.493 4.384
N = 4 7.109 4.527 7.329 4.488 7.525 4.373
N = 3 7.151 4.524 7.340 4.466 7.509 4.337
N = 2 6.992 3.370 7.176 3.269 7.343 3.030
TBT 7.079 3.317 7.279 3.172 7.462 2.913
a Elements’ number 35 × 40 × 20
b Elements’ number 15 × 20 × 10

6.1.1 Influence of the shape parameter

The influence of the shape parameter c is investigated first. It plays an important role in the accuracy of
the collocation with RBFs for approximating functions (see Press et al. [57]) or solving partial differential
equations (see Roque and Ferreira [53]). Accuracy can differ by several orders of magnitude according to a
good or a poor choice of c. In general, the shape parameter should be larger than the average distance between
two consecutive nodes and smaller than the problem leading dimension. In the literature, several values of c
were proposed depending upon the number of nodes or the distance between the nodes or both. For instance,
Fasshauer [58] suggested:
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Fig. 9 Dimensionless axial stress σ xx over the cross-section at x = l/2 in a sandwich beam via a FEM 3Da , b N = 9 and c
TBT, ny = 1

cF = 2√
Nn

(49)

for data fitting and the solution of nonlinear partial differential equations over a constant unit square domain.
In this work, the cross-section dimensions are fixed, and the length-to-side parameter is varied by changing
the beam length l. This calls for the length of the beam to explicitly appear in the shape parameter:
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Fig. 10 Dimensionless shear stress σ xy over the cross-section at x = 0 in a sandwich beam via a FEM 3Da , b N = 9 and c TBT,
ny = 1

cP = 2√
Nn

l. (50)

A shape parameter as low as cF/2 and as high as 2cP is considered. The number of nodes Nn is equal
to 21. The material gradation exponent ny is equal to one. Both slender and deep beams are considered. A
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Fig. 11 Dimensionless shear stress σ xz over the cross-section at x = 0 in a sandwich beam via a FEM 3Da and b N = 9, ny = 1

second-order beam theory is considered. Higher-order models yield similar results, and they are not presented
for the sake of brevity.

Figure 3 shows the normalised difference between the RBF solution and the corresponding Navier-type
one in the case of the transverse displacement uy , the normal stress σxx and the shear one σxy :

euy =
∣
∣
∣
uyRBF−uyNavier

uyNavier

∣
∣
∣ , eσxx =

∣
∣
∣
σxxRBF−σxxNavier

σxxNavier

∣
∣
∣ , eσxy =

∣
∣
∣
σxyRBF−σxyNavier

σxyNavier

∣
∣
∣ . (51)

For small values of the shape parameter, the errors are high. For the considered cases, a shape parameter
that does not explicitly account for the beam length yields inaccurate results for both slender and deep beams,
whereas results computed for c = cP are accurate. This is believed to be due to the fact that a parameter
representative of the leading dimension of the structure should be explicitly considered. A more regular
convergence is observed in the case of deep beams than for slender ones. In the remaining of the paper, a shape
parameter equal to cP is used.

6.1.2 Influence of the number of nodes

The convergence of the normalised difference between the RBF solution and the corresponding Navier-type
in Eq. (51) versus the number of nodes is shown in Figs. 4 and 5. The transverse displacement uy , the normal
stress σxx and the shear one σxy are considered. Both uniform and Chebyshev node distributions are used. The
number of nodes ranges from 5 up to 31. Chebyshev’s node distribution presents a faster convergence when
compared with the uniform one. As shown in Fasshauer [58], the rate of convergence is not constant. In the
case of short beams, results converge faster than for long beams. For Nn = 21, the percentage normalised
difference is about 0.6, at worst.
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Fig. 12 Dimensionless shear stress σ yz over the cross-section at x = l/2 in a sandwich beamvia aFEM3Da andb N = 9, ny = 1

6.1.3 Influence of the expansion order

The dimensionless displacements are reported in Tables 2 and 3 for several expansion orders in the case of
l/a = 100 and 10, respectively. For slender beams, TBT yields accurate results. In the case of thick beams,
a second-order theory overestimates uz by about 4% with respect to the reference solution. A ninth-order
solution matches the refined reference FEM three-dimensional solution. The dimensionless normal and shear
stresses σ xx and σ xy are presented in Tables 4 and 5. The shear stress σ xy is not accurately predicted via a
second-order theory or TBT as also shown by its variation along the y-axis at x = 0 and z = b/2 presented in
Fig. 6. A thick beam and ny = 0.5 are considered. Results obtained by a third-order theory are accurate but in
the neighbourhood of cross-section top and bottom where the stress-free boundary condition is not satisfied. A
fifth-order theory matches the FEM reference solution. Figure 7 shows the variation of the transverse normal
stress σ yy along the y-axis at x = l/2 and z = b/2 for ny = 1. Results obtained by a ninth-order theory match
the reference FEM three-dimensional solution, whereas in the case of a fifth-order theory, top and bottom
stress boundary conditions are not satisfied. A second-order theory does not yield accurate results.

6.2 Sandwich beams

A sandwich FGM beam, as shown in Fig. 8, is considered. The bottom face is made of steel, whereas the
top face is made of alumina. They have equal thickness h f = a/10. The core, whose thickness is hc, is
made of an alumina–steel FGM, fully metallic at y = h f and fully ceramic at y = a − h f . Dimensionless
displacements and stresses are reported in Tables 6 and 7, respectively. For the sake of brevity, only thick
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Fig. 13 Dimensionless normal stress σ yy over the cross-section at x = l/2 in a sandwich beam via a FEM 3Da , b N = 9 and c
N = 12, ny = 1

beams are investigated. Results are similar to those of the mono-layer beam. TBT yields good results for the
transverse displacement uy and the normal stress σ xx . This is also confirmed by Fig. 9 where the variation of
σ xx over the cross-section at x = l/2 is qualitatively presented as a colour map. The solutions obtained via
the FEM 3Da model, a ninth-order model and TBT are compared. As far as the shear stress component σ xy
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Fig. 14 Dimensionless normal stress σ zz over the cross-section at x = l/2 in a sandwich beam via a FEM 3Da , b N = 9 and c
N = 12, ny = 1

is concerned, higher-order models are required to obtain an accurate solution as also shown in Fig. 10. The
colour maps of the shear stresses σ xz and σ yz are presented in Figs. 11 and 12, respectively. A ninth-order
theory matches the reference three-dimensional FEM solution. Figures 13 and 14 show the normal stresses
σ yy and σ zz . A twelfth-order theory is also considered. The considered theories compare fairly well with the
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reference solution. For instance, the maximum value of σ yy is 1.110 for N = 9, 1.076 for N = 12 and 1.027
in the case of FEM 3Da . The main differences are observed in correspondence with the FGM layer interfaces.
Besides the assumption of an higher approximation order, a possible enhancement of the proposed models
could consist in the use of a mixed approach where both displacements and stresses are considered as primary
unknowns.

7 Conclusions

Aunified formulation of one-dimensional beammodels has been proposed for the static analysis of functionally
graded beams. Higher-order models that account for non-classical effects such as shear deformations and in-
and out-of-plane warping can be formulated straightforwardly. Timoshenko’s classical model is regarded as a
particular case. As a first endeavour, a meshless method based on multiquadric radial basis functions has been
adopted. Mono-layer and sandwich beams have been investigated. Results have been validated by comparison
with analytical Navier-type solutions and three-dimensional FEM solutions obtained via the commercial code
ANSYS. The numerical investigations point out that the choice of the radial basis function shape parameter
has an important influence on the accuracy of the solution. A shape parameter that explicitly scales with the
length of the beam has been used. The presented results show that three-dimensional displacement and stress
components can be computed accurately as long as an appropriate approximation order is used.
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