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Abstract This article describes a new and fast meshfree method based on a generalized moving least squares
(GMLS) approximation and the local weak forms for vibration analysis in solids. In contrast to the meshless
local Petrov–Galerkin method, GMLS directly approximates the local weak forms from meshless nodal val-
ues, which shifts the local integrations over the low-degree polynomial basis functions rather than over the
complicated MLS shape functions. Besides, if the method is set up properly, all local integrals have the same
value if all local subdomains have the same shape. These features reduce the computational costs, remarkably.
The new technique is called direct meshless local Petrov–Galerkin (DMLPG) method. In DMLPG, the stiff
and mass matrices are constructed by integration against polynomials. This overcomes the main drawback of
meshfree methods in comparison with the finite element methods (FEM). The Newmark scheme is adapted as
a time integration method, and numerical results are presented for various dynamic problems. The results are
compared with the exact solutions, if available, and the FEM solutions.

1 Introduction

Although meshless methods promise to overcome some disadvantages of the traditional finite element meth-
ods (FEM), they still have some limitations that sometimes prevent their acceptance among researchers and
engineers. High computational cost seems to be themost significant disadvantage of meshfreemethods in com-
parison with FEM. This becomes more serious in weak-based methods where numerical integrations against
meshfree shape functions should be performed. Moreover, as pointed out in [1,4] by numerical examples and
then in [2,33] by theoretical justifications, numerical integration plays an important role in the convergence
of numerical solutions of meshless methods. To obtain the full rates of convergence in meshless methods,
the energy and mass in the weak formulation need to be evaluated accurately. The numerical integration in
the usual finite element method is not a serious problem, because the integrands are simple polynomials and
the stiffness and mass matrices may be exactly integrated by using a quadrature formula with few integration
points. However, the integration is much difficult in meshfree methods due to complexity of the integrand.
In some meshfree methods, we face with non-close form shape functions which often have complex features
and different forms in each small subregions. Besides, the derivatives of shape functions have an oscillation
or an indentation, a peak and a discontinuity in a local sense. These features pose a serious challenge in the
use of numerical integration to compute the elements of the stiffness and mass matrices. The moving least
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square (MLS) shape functions can be highlighted as an example, and therefore, all meshfree methods based
on the MLS approximation suffer from this drawback. Thus, special care should be taken for performing
numerical quadratures in meshfree methods. These challenges have been addressed in various engineering
papers [1,3,5,8,16,26]. Several approaches to implementing numerical integration have been proposed in the
literature. A brief review of these approaches is presented in Sect. 3 of [2].

Someweak-basedmeshfreemethods are called “truly”meshless, because triangulation is not again required
for numerical integration. In fact they are meshfree in both trial and test sides. The meshless local Petrov–
Galerkin (MLPG) method can be addressed as an example of such methods. MLPG is based on local weak
forms, and it uses no global background mesh to evaluate integrals, and everything breaks down to some
regular, well-shaped and independent subdomains. But due to the above discussions, MLPG still suffers from
the cost of numerical integration.

This disadvantagemight be overcome by a simple and useful modificationwhich has been proposed in [22].
This modification uses the concept of generalized moving least squares (GMLS) approximation [24] and shifts
the numerical integrations over low-degree polynomial basis functions. Since we have a direct approximation
of local weak functionals, the new technique is called direct MLPG (DMLPG). Ignoring the costs of mesh
generation and mesh refinement, we can roughly say DMLPG reduces the computational cost of MLPG to the
level of that in classical FEM, because both FEM and DMLPG lead to sparse final linear systems, and in both
methods, numerical integrations are performed over low-degree polynomial basis functions. As we mentioned
before, the latter is not the case in MLPG itself.

Theoretically, DMLPG is different from MLPG because it rules out the trial space completely. In fact, in
DMLPG the derivative or integral operators are directly approximated without a detour via the shape functions.

The DMLPG has been applied to the heat conduction analysis in [23] and elastostatic problems in [20,31],
and it has been numerically investigated for 2D and 3D potential problems in [17,18]. An application to
fractional advection–diffusion problems can be found in [27].

The MLPG method and its variations have been applied for elastodynamic problems by several authors.
For example see [7,9,10,25,28–30]. On the other hand, such problems have been well studied by variations
of finite element and boundary element methods. See for example [12,13] and the references therein. The aim
of this paper is just to introduce the new DMLPG method which overcomes one of the major disadvantages
of the previous meshfree techniques. The numerical test problems of this paper might be solved by available
FEM or BEM routines; however, we hope that the result of this paper makes an essential contribution in its
own direction and helps the meshless community to solve more complicated elasticity problems.

2 Test discretization via local weak forms for elastodynamic equation

LetΩ ⊂ R
2 be a bounded domainwith boundaryΓ .We consider the following two-dimensional elastodynamic

problem:
σi j, j + bi = cu̇i + ρüi , in Ω, (1)

where [σ11, σ22, σ12]T =: σ is the stress tensor, which corresponds to the displacement field [u1, u2]T =: u,
and [b1, b2]T =: b is the body force, c is the damping coefficient, ρ is the mass density, u̇ = ∂u/∂t is the
velocity, and ü = ∂2u/∂t2 is the acceleration in which t denotes the time variable. In the above formulation,
σ = DLu, where the derivative matrix L is defined as

L =
⎡
⎢⎣

∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎥⎦

and for a problem of isotropic material, the stress–strain matrix D is defined by

D = E

1 − ν2

⎡
⎣
1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦ ,

where

E =
{
E for plane stress
E

1−ν2
for plane strain

ν =
{

ν for plane stress
ν

1−ν
for plane strain

,
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in which E and ν are Young’s modulus and Poisson’s ratio, respectively. The corresponding boundary and
initial conditions for (1) are given by

u = u, on Γu,

ti = σi j n j = t i , on Γt ,

u(x, 0) = u0(x), x ∈ Ω,

u̇(x, 0) = u̇0(x), x ∈ Ω,

where u, [t1, t2]T =: t , u0 and u̇0 are the prescribed displacement, traction, initial displacement and initial
velocity, respectively, and [n1, n2] =: n is the unit outward normal to the boundary Γ .

Suppose that X = {x1, x2, . . . , xN } ⊂ Ω is a set of scattered meshless points. The same set X will be used
for both trial and test point sets in our numerical simulation.

Instead of a global weak form over entire Ω , we use local weak forms over small subdomains Ωk around
the test points xk ∈ int(Ω) ∪ Γt . Taking integration with respect to the spatial variable from both sides of
Eq. (1) against some proper test functions vi , i = 1, 2 (usually v1 = v2 =: v), and then applying the Gauss
divergence theorem, the local weak forms

∫
∂Ωk\Γt

vN DLu dΓ −
∫

Ωk

εvDLu dΩ+ ∂2

∂t2

∫
Ωk

ρvu dΩ + ∂

∂t

∫
Ωk

c vu dΩ

=
∫

Ωk

vb dΩ +
∫

∂Ωk∩Γt

v t dΓ
(2)

are derived for k = 1, 2, . . . , N ′ (N ′ is the number of points inside Ω and on Neumann part of the boundary),
where

N =
[
n1 0 n2
0 n2 n1

]
, εv =

[
v,1 0 v,2

0 v,2 v,1

]
.

Note that in (2) the natural boundary conditions σi j n j = t i have been imposed on ∂Ωk ∩ Γt . The essential
boundary condition ui = ui can be imposed using a proper collocation method.

Since we are going to perform a Petrov–Galerkin method, test function v can be chosen from an arbitrary
space independent of the trial space.

Now we define

λS
k (u) := −

∫
Ωk

εvDLu dΩ +
∫

∂Ωk\Γt

vN DLu dΓ,

λM
k (u) :=

∫
Ωk

ρvu dΩ,

λCk (u) :=
∫

Ωk

cvu dΩ,

βk :=
∫

Ωk

vb dΩ +
∫

∂Ωk∩Γt

v t dΓ,

where the superscripts S, M and C stand for stiff, mass and damping matrices, respectively. Now Eq. (2) can
be read as

λS
k (u) + ∂2

∂t2
λM
k (u) + ∂

∂t
λCk (u) = βk, k = 1, 2, . . . , N ′. (3)

The above semi-discrete equation will be addressed in Sect. 4 where we will present the formulation of
DMLPG method. In the next section, we will discuss an approximation technique which finally converts (3)
to a full-discrete linear system of equations.
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3 Generalized moving least squares

We refer the readers to [24] for a complete presentation of the generalized moving least squares (GMLS)
approximation and to [21] for error analysis in Sobolev spaces. However, here we outline a brief discussion.

Let Ω be a bounded subset of Rd , d ∈ Z+, and X = {x1, x2, . . . , xN } ⊂ Ω be a set of meshless points
scattered over Ω . The MLS method approximates the function u ∈ U (with certain smoothness) by its values
at points x j , j = 1, . . . , N . The MLS is a meshless (meshfree) approximation method because it writes the
approximant entirely in terms of scattered points. The formulation can be written as

u(x) ≈ û(x) =
N∑
j=1

a j (x)u(x j ), x ∈ Ω, (4)

where a j (x) are MLS shape functions obtained in such a way that û be the best approximation of u in
polynomial subspace Pm(Rd) = span{p1, . . . , pQ}, Q = (m+d

d

)
, with respect to a weighted, discrete and

moving 	2 norm. In fact, for every evaluation point x , a local least square problemwith a different inner product
should be solved. The role of the weight function makes such approximation possible. The weight function
governs the influence of the data points and is assumed to be a compactly supported function w : Ω ×Ω → R

which vanishes for arguments x, y ∈ Ω with ‖x − y‖2 greater than a certain threshold, say δ. For example we
can define w(x, y) := ϕ(‖x − y‖2/δ) where ϕ is a compactly supported function supported in [0, 1]. On the
other hand, if we define

P := (
pk(x j )

) ∈ R
N×Q,

W = W (x) := diag{w(x j , x)} ∈ R
N×N ,

(5)

then a simple calculation gives the shape functions

a(x) := [a1(x), . . . , aN (x)] = p(x)(PTWP)−1PTW, (6)

where p = [p1, . . . , pQ]. For every x ∈ Ω , if {x j : ‖x − x j‖ � δ} is Pm(Rd)-unisolvent, then A(x) =
PTW (x)P is positive definite [32] and the MLS approximation is well-defined.

Derivatives of u are usually approximated by derivatives of û,

Dαu(x) ≈ Dα û(x) =
N∑
j=1

Dαa j (x)u(x j ), x ∈ Ω, α = (α1, . . . , αd) ∈ N
d
0 . (7)

These derivatives are called standard or full derivatives. Since in this paper we do not consider the standard
MLS derivatives further, we refer the readers to [4,14,19] for details of formulations and error bounds for
derivative approximations.

In a more general situation, suppose that λ is a linear functional from the dual space U∗. As examples, λ
can describe the stiff, mass or damping functionals defined in (3). The value of λu is approximated by λû,

(λu)(x) ≈ (λû)(x) =
N∑
j=1

λa j (x)u(x j ), x ∈ Ω.

As we can see, λ should operate on MLS shape functions a j . The non-close form shape functions a j should
be constructed during the MLS algorithm. Thus, the computation of λû is a time-consuming task, specially
when λ has a complex structure.

The GMLS approximation was introduced in [24] to overcome the above drawback. In GMLS, λu is
directly approximated from nodal values u(x j ), j = 1, . . . , N , say

(λu)(x) ≈ (λ̂u)(x) =
N∑
j=1

a j,λ(x)u(x j ), (8)
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where a j,λ are shape functions associated with the functional λ. If λ is chosen to be the point evaluation
functional δx , where δx (u) := u(x), then the classical MLS approximation (4) is resulted. Since λ is finally
evaluated at sample point x , the same weight function w as in the classical MLS can be used independent of
the choice of λ. Using this assumption, analogous to (6), [24] proves,

aλ := [a1,λ, . . . , aN ,λ] = λ( p)(PTWP)−1PTW, (9)

where λ( p) = [λ(p1), . . . , λ(pQ)]. As we can immediately see, λ acts only on polynomial basis functions
p1, . . . , pQ . This is the central idea in this GMLS approximation which finally speeds up our numerical
algorithms.

In particular, if λ(u) = Dα(u), then derivatives of u are recovered. They are different from the standard
derivatives (7), and in meshless literatures, they are sometimes called diffuse or uncertain derivatives. But [24]
and [21] prove the optimal rate of convergence for them toward the exact derivatives, and thus, there is nothing
diffuse or uncertain about them. As suggested in [24], they can be called GMLS derivative approximations.

Finally, as a comment for numerical implementation, a shifted and scaled polynomial basis leads to a more
stable MLS/GMLS approximation. As we discussed, the MLS/GMLS solves a local 	2 best approximation
problem for every selected evaluation point x̂ ∈ Ω . The polynomial basis for this local problem can be defined
as {

(x − x̂)α

h|α|
X,Ω

}

0�|α|�m

, (10)

where hX,Ω is the mesh size (fill distance) of point set X in Ω , and α = (α1, . . . , αd) ∈ N
d
0 is a multi-index,

and |α| = α1 + · · · + αd , here d = 2. In fact we change the basis as the evaluation point is changed. We
can do this because the formulation of MLS/GMLS approximation is independent of the choice of the basis
functions. The effect of this type of basis on the stability and convergence of (G)MLS algorithm is studied in
[19,24].

4 Going from MLPG to DMLPG

Equation (3) is a semi-discrete formulation where the discretization is only done on the test side. Different
choices for test function lead to variations ofMLPG/DMLPG.Couple of themaremuch interesting in numerical
simulation. In DMLPG1 the first and in DMLPG5 the second integral in the stiff functional λS

k is eliminated
by applying a compactly supported and constant test functions in Ωk , respectively. The formulations of the
other DMLPG methods can be found in [22,23].

Up to here, MLPG and DMLPG have the same structures. In MLPG, to apply the trial discretization, first
the displacement vector u is approximated by MLS (or any trial approximation method) in the spatial domain
by

u(x, t) ≈ û(x, t) =
N∑
j=1

[
a j (x) 0
0 a j (x)

]
u(x j , t),

where a j (x) are corresponding shape functions. Then functionals λk(u) are approximated by λk (̂u). Thus, λk
should operate on a j , leading to numerical derivatives and then numerical integrations against shape functions.
This part is themost important stage of the algorithmwhere both accuracy and complexity (computational cost)
of MLPG are relied thereon. To evaluate the elements of stiffness and mass matrices accurately, a quadrature
formula with many integration points is required. Unfortunately, this leads to an expensive algorithm due to the
complexity of shape functions a j and their derivatives. To scape from this stage, fortunately there is a bypass
via GMLS approximation leading to DMLPG method.

In DMLPG, the functionals λk(u) are directly approximated by GMLS as

λk(u) ≈ λ̂k(u) =
N∑
j=1

Akju(x j , t),
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where Akj is a 2× 2 matrix depending on functional λk and trial point x j via indices k and j , respectively. Let
A is a 2N ′ × 2N matrix with block elements Akj for k = 1, . . . , N ′ and j = 1, 2, . . . , N . According to (9),
if Ak,: represents the kth block row of A, then

Ak,: = λk( p)Φ ∈ R
2×2N ,

where Φ ∈ R
2Q×2N is a block matrix obtained from φ := (PTWP)−1WPT ∈ R

Q×N by

Φi j =
[
φi j 0
0 φi j

]
∈ R

2×2.

The matrices P and W are defined in (5), and here p is defined by

p =
[
p1(x) p2(x) · · · pQ(x)
p1(x) p2(x) · · · pQ(x)

]
∈ R

2×Q .

Thus, λk( p) ∈ R
2×2Q . Rows of p are the same because we use the same trial space for both u1 and u2. To

distinguish between the notations, for λk = λS
k , λ

M
k , λCk , matrices S, M , C are used instead of A, respectively.

One can immediately see that the functionals λk act only on polynomial basis functions p1, p2, . . . , pQ ,
not on a trial space spanned by shape functions. Besides, if the shifted polynomial basis functions (10) are
employed and if the same test function v is used for all local subdomains, then λk( p) = λ j ( p) provided that
Ωk = x +Ω j = {x + y : y ∈ Ω j }, x ∈ R

d . As an example, for all interior test points only one integral should
be computed if all interior local subdomains have the same shape. Consequently, the cost of DMLPG is in
order of the cost of an MLS collocation method. These fundamental features highly accelerate the algorithm
and make DMLPG absolutely faster than the original MLPG.

It remains to discuss the way of enforcing the essential boundary condition u = u on Γu . It is done for any
point xk ∈ Γk by choosing λk(u) = δxk (u) (the point evaluation functional) in GMLS approximation. This is
identical to the classical MLS approximation and leads to a collocation method by the equations

N∑
j=1

Bkju(x j , t) = u(xk, t), xk ∈ Γu, (11)

where

Bkj =
[
a j (xk) 0

0 a j (xk)

]
, xk ∈ Γu, 1 � j � N .

If we define

U (t) := [u(x1, t), u(x2, t), . . . , u(xN , t)]T ∈ R
2N ,

then (11) can be written in matrix form as BU (t) = U (t), where B is a 2(N − N ′) × 2N matrix.
If (without loss of generality) we assume that the last N − N ′ points are located on Γu , then the final

time-dependent linear system of equations can be written as

MÜ (t) + CU̇ (t) + SU (t) = F(t),

BU (t) = U (t),
(12)

where F(t) = [β1(t), β2(t), . . . , βN ′(t)]T. Equation (12) is a 2N × 2N system of wave equations which can
be abbreviated as

M̃Ü (t) + C̃U̇ (t) + S̃U (t) = F̃(t), (13)

where

M̃ =
[
M
0

]
, C̃ =

[
C
0

]
, S̃ =

[
S
B

]
, F̃ =

[
F
U

]
,
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in which 0 is zero matrix of size B. Equation (13) should be accompanied with the initial conditions

U (0) = U0, U̇ (0) = U̇0. (14)

In the next section we describe a time integration procedure for solving the equilibrium Eq. (13) together with
the initial conditions (14).

5 The time integration scheme

Various finite difference schemes can be developed for solving the second-order dynamic Eqs. (13), (14).
Examples are the explicit central finite difference method and Newmark time integration methods [6,11].
The former is conditionally stable, and the size of the time step should be adjusted to the spatial mesh size.
Moreover, in some longtime examples, the numerical solutions obtained by the central difference scheme start
damping even when the damping parameter is zero. The reason is that the numerical wave amplitude number of
this scheme is less than unity, while the exact amplitude number is 1. Thus, here we apply the Newmarkmethod
which is easy to implement and sufficiently versatile to address a broad class of time-dependent problems.

Suppose that the time interval [0, t f ] is uniformly partitioned to T subintervals where Δt = t f /T and
tn = nΔt for n = 0, 1, . . . , T . Let Un = U (tn), Vn = U̇ (tn) and An = Ü (tn) are displacement, velocity
and acceleration vectors in time instance tn , respectively. By exploiting Taylor expansion theorem, they can
be expressed with respect to their first time derivatives as follows:

Un+1 = Un + ΔtVn + Δt

2
An+2β, where An+2β = (1 − 2β)An + 2βAn+1,

Vn+1 = Vn + Δt An+α, where An+α = (1 − α)An + αAn+1,

whereα andβ are user-defined constants. Nowwe can adapt the followingNewmark time integration algorithm
where quantities U p

n+1 and V p
n+1 are the predictor terms depending on the previous time step n [11].

Algorithm 1 The Newmark time integration algorithm
1: Inputs: α, β, U0, V0, M̃ , C̃ , S̃, F̃n (n = 0, . . . , T ), Δt
2: K ← M̃ + αΔtC̃ + β(Δt)2 S̃
3: b0 ← F̃0 − C̃V0 − S̃U0
4: A0 ← Linsolve(K , b0)
5: for n = 0 to T − 1 do

6: U p
n+1 ← Un + ΔtVn + (Δt)2

2 (1 − 2β)An

7: V p
n+1 ← Vn + Δt (1 − α)An

8: bn+1 ← F̃n+1 − C̃V p
n+1 − S̃U p

n+1
9: An+1 ← Linsolve(K , bn+1)

10: Un+1 ← U p
n+1 + (Δt)2βAn+1

11: Vn+1 ← V p
n+1 + αΔt An+1

12: end for
13: Outputs: Un , n = 1, 2, . . . , T

Of course we should perform an LU decomposition for matrix K in the beginning of calculations and use
forward and backward substitutions in our “Linsolve” subroutine for all iterations.

The properties of Newmark scheme depend on parameters α and β. It can be either explicit or implicit and
conditionally or unconditionally stable. The most common choices are listed in Table 1. For more details, see
[6].

Table 1 Some types of Newmark scheme

Method α β Stability

Central difference 1/2 0 Explicit and conditionally stable
Fox-Goodwin 1/2 1/2 Implicit and conditionally stable
Linear acceleration 1/2 1/6 Implicit and conditionally stable
Average acceleration 1/2 1/4 Implicit and unconditionally stable
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Note that for α = 1/2, the Newmark method is second-order accurate and this is the reason why this value
is often assigned to α. In this paper, we use the implicit and unconditionally stable average acceleration scheme
where α = 1/2 and β = 1/4.

6 Numerical results

The following compactly supported Gaussian weight function is used:

w(x, y) = ϕ(r) = exp(−(εr)2) − exp(−ε2)

1 − exp(−ε2)
, 0 � r = ‖x − y‖2

δ
� 1,

where the shape parameter ε is taken to be 6 in this paper. Here δ is the radius of circular support of weight
function w at point x in question. This radius should be large enough to ensure the regularity of the moment
matrix PTWP in MLS/GMLS approximation. Thus δ is chosen to be proportional to h (mesh size) and m,
say δ = cmh. In this study we use δ = 1.2 mh. The polynomial degree m = 2 and both circular and square
subdomains are used for Ωk . As we pointed before, in DMLPG5 the simple test function v = 1 is used on Ωk .
In DMLPG1 for circular subdomians, the above Gaussian weight function with δ being replaced by the radius
r0 of the local domain Ωk is used as a test function, while for square subdomains the test function

v = v(x; xk) =
⎧⎨
⎩

∏2
i=1

(
1 − 4

s20
(xi − xik)

2
)

, x ∈ S(xk, s0) = Ωk,

0, otherwise

is applied where x = (x1, x2) and xk = (x1k , x
2
k ). Here s0 is the side length of the square. It is clear that in

both cases v vanishes on ∂Ωk . As pointed in [22], a 2-point Gauss quadrature in each axis is enough to get the
exact numerical integrations in DMLPG, provided that squares are used as local subdomains and the above
polynomial test function is applied. In the other cases, we use a 10-point Gaussian formula. By the way, as
pointed out in Sect. 4, numerical integration is not a crucial task in DMLPG because only few integrals against
low-degree polynomials must be evaluated.

In the time domain, Δt = 0.005 is assigned for all examples. A plane stress problem is considered in all
numerical simulations.

DMLPG routines are written using Matlab© and run on a Pentium 4 PC with 8 GB of Memory and a
7-core 2.40 GHz CPU.

6.1 A rectangular plane under a uniaxial tension

Consider a rectangular plane fixed rigidly at its base and subjected to an impact load at the free end, as in Fig. 1.
Parameters are length L = 8 m, height D = 2 m, Young’s modulus E = 8 × 104 Pa, Poisson’s ratio ν = 0,
mass density ρ = 2450 kg/m3, damping parameter c = 0, and face force P = 200 Pa. The exact solutions are
given by

u1(x, t) = 8PL

π2E

∞∑
n=1

(−1)n−1

(2n − 1)2
sin

(2n − 1)πx

2L
(1 − cosωnt),

σ (x, t) = E
∂u1
∂x

= 4P

π

∞∑
n=1

(−1)n−1

2n − 1
cos

(2n − 1)πx

2L
(1 − cosωnt),

Fig. 1 Rectangular plane subjected to uniform load
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Fig. 2 Time variations of displacement u1 at point A (up) and point B (down)

Fig. 3 Time variation of normal stress (axial force) at point B

where ωn = (2n−1)π
2L

√
E
ρ
. DMLPG1 with square subdomains and 33× 9 regular points are used for numerical

simulation. In Fig. 2, we compare DMLPG and exact solutions of horizontal displacement at points A and B,
and in Fig. 3, the same is done for normal stress at point B. MLPG produces approximately the same results.
But in Fig. 4, the computational costs of both methods for constructing the final stiff and mass matrices are
compared. As we can see, DMLPG is absolutely faster thanMLPG. The reason was well discussed in previous
sections.
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Fig. 4 Comparing the computational costs of MLPG and DMLPG

Fig. 5 Frame structure loaded by wind-like loading, and meshless points
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Fig. 6 Comparing FEM and DMLPG solutions; time variations of displacement u1 at point A (top) and traction t1 at point B
(bottom)
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Fig. 7 A cantilever beam subjected to a parabolic traction
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Fig. 8 Comparing FEM and DMLPG solutions; time variations of displacement u2 at point A for periodic load, c = 0

6.2 Frame structure

As second example, we analyze a frame structure as shown in Fig. 5. Material parameters are the same as those
given in [28]: E = 104 Pa, ρ = 1 kg/m3, ν = 0.2 and a = 1. The base of the frame is fixed, and the structure
is loaded by wind-like loading where P = 10g(t) and

g(t) =
{
10t, 0 � t � 0.1,
0, t > 0.1.

Afinite element solution, obtained bymeshing the frame to 500 quadrilateral plane stress elements inABAQUS,
is used as a reference solution. DMLPG5 with circular subdomains and 369 meshless points (see Fig. 5) are
used for numerical simulation. Time variations of displacement u1 at point A and traction t1 at point B are
depicted and compared with the FEM solutions in Fig. 6. A good agreement with the reference solution can
be observed.

6.3 Vibration analysis of a cantilever beam

Consider a cantilever beam loaded by a tangential and parabolic traction on the free end, as shown in Fig. 7.
Basic parameters are L = 48 m, D = 12 m, E = 3×107 Pa, ν = 0.3, ρ = 1 kg/m3 and the external excitation
force P = 1000g(t).
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Fig. 9 Time variations of displacement u2 at point A for periodic load, c = 0.4, DMLPG (up) and FEM (down) solutions
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Fig. 10 Comparing FEM and DMLPG solutions; time variations of displacement u2 at point A for transient load, c = 0

As before, the finite element results are used for reference solutions. The FEM solutions are obtained
by ABAQUS software with 400 quadrilateral plane stress elements. DMLPG1 with circular subdomains is
applied, and results are compared with the reference solutions.

First, we consider a simple periodic load

g(t) = sin(ωt),

where ω is the frequency of dynamic load, and ω = 27 rad/s is used in this paper [10,15].
In Fig. 8 displacement u2 at point A is drawn and compared with FEM in the time intervals [0, 0.2] and

[0, 2] for c = 0. In Fig. 9 the time evolutions of displacement u2 at point A by both DMLPG and FEM are
shown in the time interval [0, 20] for c = 0.4.

Second, we consider the transient response of the beam subjected to a suddenly loaded and suddenly
vanishing force P = 1000g(t), where
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Fig. 11 Time variations of displacement u2 at point A for transient load, c = 0.4, DMLPG (up) and FEM (down) solutions

g(t) =
{
1, 0 � t � 0.5,
0, t > 0.5.

Transient responses are given and compared with FEM solutions in Figs. 10 and 11 with and without damping,
respectively.

In both cases, one can see the good agreement between DMLPG and FEM solutions.
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