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Abstract The physical variational principle (PVP) is a physical principle which is implied in the thermody-
namic laws. For a conservative system, the PVP is implied in the first thermodynamic law and gives the motion
equation. But for a dissipative system, PVP is implied in the extended Gibbs equation, which is the result of
the first and second thermodynamic laws. The precision of the PVP in a dissipative system is in the same order
of the Gibbs equation. The dissipative work and its converted internal irreversible heat are simultaneously
included in the PVP to get the governing equation and the boundary condition of the dissipated variables.
The “generalized motion equations” including governing equations of the mechanical momentum and ther-
moelastic, thermal viscoelastic, thermal elastoplastic, linear thermoelastic diffusive and linear electromagnetic
thermoelastic materials etc. can be derived by the PVP of dissipative media in this paper. The conservative
system is the special case of the dissipative system. Other than the mathematical variational principle, which
is obtained by a known governing equation, the PVP is used to deduce the governing equation. The PVPs
including the hyperbolic temperature wave equation with a finite phase speed are also discussed shortly.

1 Introduction

As a branch of mathematics, the variational method is much studied and has strict mathematical theory and is
extensively used in physics and engineering [1,2]. The mathematical variational principle is got by a known
governing equation and is applied as a mathematical method. However, the physical variational principle
(PVP), which is a result of thermodynamics, is studied rarely. In the theory of elasticity, the potential energy
principle points out that in all allowable displacements the true displacement makes the total potential energy
minimum, where the total potential energy is equal to the strain energy minus the external work, but it is not
always connected with the first thermodynamic law. In fact, the potential energy principle is a special case of
the PVP.

In the thermodynamic process of a closed system, the first law is

dU = dW + dQ (1)

whereU is the internal energy of the system,W is the work done by the external force, Q is the heat absorbed
from the external heat source. The author pointed out that [3–11] from the first thermodynamic law we can
assume a PVP for the conservative system:

δU = δW + δQ, or δΠ = δU − δW − δQ = 0 (2)

where δ is a variation symbol. Equation (2) shows that in all stable processes for all allowable displacements,Π
takes extremum, and its rationality will be proved by that the correct governing equations can be derived from
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this principle for various materials and processes. The postulation of Eq. (2) is rational and can be considered
that it is implied by the first thermodynamic law. The virtual work rate principle in elasticity can be considered
as a special case of Eq. (2). If we reverse the derivation procedure from the various correct governing equations,
we can get the unified PVP.However, it is not needed becausewe consider that the PVP is a universal principle in
continuummechanics. The energy principle discusses the real process varied with time, but the PVP compares
the different paths in a same time. It is obvious that Eq. (2) is held for the true displacements due to the first
thermodynamic law. Therefore Eq. (2) cannot be held for all other allowable displacements except at a branch
point on the moving path, but the branch point should be discussed by stability or other theories. When the
external force is not related to the deformation of a material, the explicit expression of the constitutive equation
is not needed in PVP expressed by Eq. (2), so it is universal for all materials. However when the external force
is related to the deformation of a material, the explicit expression of the energy or the constitutive equation
is needed for PVP, such as in electrostrictive and magnetostrictive media where the electromagnetic force is
related to the structure and deformation of a material. For the electrostrictive material without dissipation, the
PVP is shown in literatures [3–11]. In this case, the PVP is for a given kind of material and not universal for
all materials. In this paper, we do not discuss the case where the external force is related to the deformation,
but for the dissipative media it will be discussed elsewhere.

Equation (2) is successfully applied to conservative systems. From Eq. (2), the momentum equation can
be derived for all the conservative systems. Some variational principles for the dissipative system had been
discussed in previous papers [12–14], but these variational principles were deduced from known governing
equations. In this paper, we show that the physical foundation of the PVP for the dissipative media, such as
media with heat conduction, electric current, diffusion and chemical reaction, is the extended Gibbs equation
and gives a general theory of the PVP in dissipativemedia. From the PVP in dissipativemedia, all the governing
equations and the boundary conditions of the reversible and irreversible variables, such as the displacement,
temperature, electric potential, chemical potential, can be obtained. These governing equations may be called
the “general motion equations”. It is noted that the constitutive equations of the reversible variables and
evolution equations between irreversible variables cannot directly be got from the PVP, and these relations
should be obtained by experiments and thermodynamics.

In order to emphasize the physical feature, in this paper we only discuss the small deformation. The finite
deformation case can be discussed straightforwardly, but its mathematical formulas are more complex. The
PVP including the inertial entropy concept are also discussed in this paper shortly.

2 The PVP in thermoelastic media

2.1 Extended Gibbs equation

For the dissipative media, we prefer the following extended Gibbs equation to the usual one:

d
∫
V
udV = dQ(t) + dW (r), dQ(t) = dQ+dQ(i), dW (r) = dW − dh,

d
∫
V
gdV = dQ̃(t) + dW̃ (r), dQ̃(t) = dQ̃+dQ̃(i), dW̃ (r) = dW − dh̃ (3)

where dQ(t) = ∫
V T ds is the total heat rate absorbed by the medium, which includes the heat rate dQ supplied

by the environment and the dissipative heat rate dQ(i) = ∫
V T ds(i) produced in the internal irreversible process;

dQ̃(t) = − ∫
V sdT is the total complement heat rate, which includes the complement heat rate dQ̃ and the

complement dissipative heat rate dQ̃(i) = − ∫
V s(i)dT ; dW (r) is the reversible part of the external work rate,

which is equal to the external work rate dW minus the irreversible work rate dh. dQ(i) is converted from dh
and they are the same in value, but different in the energy form. A similar explanation is for dW̃ (r), dQ̃(i) and
dh̃. Similar to Eqs. (1) and (2), from Eq. (3) we can propose the PVP for dissipative media as:

δΠ = δ

∫
V
udV − δQ(t) − δW (r) = 0, δQ(t) = δQ + δQ(i), δW (r) = δW − δh,

δΠ̃ = δ

∫
V
gdV − δ Q̃(t) − δW̃ (r) = 0, δ Q̃(t) = δ Q̃ + δ Q̃(i), δW̃ (r) = δW − δh̃. (4)
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Equation (4) is the footstone of the PVP for the dissipative media. Equation (4) may also be called the
“generalized virtual work rate principle”. For a conservative system δQ(i) = δ Q̃(i) = δh = δh̃ = 0, and in
this case the extended Gibbs equation is reduced to the exact energy equation.

It is noted that though the extended Gibbs equation and the usual Gibbs equation are the same substantially,
the former is clearer. The extended Gibbs equation expresses explicitly the total heat as the sum of the external
and internal irreversible heats, and the dissipative work is explicitly subtracted from the external work. Using
the usual Gibbs equation, the meaning of each term is often confused in it. If we use the usual Gibbs equation
in the above sense correctly, it is also appropriate.

Because the internal irreversible heat is enclosed in the total heat, from the variational equation we can get
the temperature equation including the internal irreversible heat.

Usually, the governing equations in thermoelasticity are in the form of stress and temperature, so using the
free energy is more convenient. In the later sections, we mainly discuss δΠ̃ .

Equation (4) is a rational proposition, we can get a correct governing equation by using this method.
Contrarily, if we reverse the derivation procedure from the various correct governing equations we can get the
same Eq. (4). If the current governing equation is not fully correct, we can not get the PVP from this incorrect
governing equation, so the PVP can also be used to check the current governing equation. We can say that
the conservation of mass, balance of energy and PVP (or the principle of energy stationary value) are three
fundamental natural rules. One can also say that the PVP is implied in the thermodynamic laws. Because the
extended Gibbs equation is in the precision of the first order, the equation describing the dissipative process
in the generalized motion equation is in the precision of first order also, but the equation describing the
nondissipative process is fully exact.

2.2 The entropy in a thermoelastic system

All the irreversible work converts to dissipative heat, so the heat has the central role in irreversible thermody-
namics. Due to this reason, the discussion of PVP in the dissipative media will begin from the thermoelastic
system. In the classical irreversible thermodynamics [15–17] for a thermoelastic system, the entropy density
s is divided into the reversible part s(r) and the irreversible part s(i), i.e.,

T ṡ = ṙ − qi,i , ṡ = ṡ(r) + ṡ(i),

T ṡ(r) = ṙ − T η̇i,i = ṙ − qi,i + η̇i T,i , η̇ = q/T, η =
∫ t

0
(q/T ) dτ ,

Tσ = T ṡ(i) = T ṡ − T ṡ(r) = −T,i η̇i = − (
T,i/T

)
(T η̇i ) ≥ 0 (5)

where r is the internal heat source strength, T is the temperature, q is the heat flow vector per interface area
supplied by the environment, η is the entropy displacement vector, η̇ is the entropy flow vector. In Eq. (5), a
dot over a variable means the differentiation with respect to time of that variable, i.e., ()· = d()/dt , such as
Ḋ = dD/dt ; a comma followed by index i in a subscript indicates partial differentiation with respect to xi ,
such as ui, j = ∂ui/∂x j , and the summation rule applies for repeated indices.

Using the theory of the thermodynamics of irreversible processes (TIP), from Tσ in Eq. (5) [15–17] we
can get the linear evolution equation, which is just Fourier’s law:

T η̇i = qi = −λ′
il

(
T,l/T

) = −λil T,l ,

λ′
i j = λ′

j i , λ′
i j = Tλi j ; η j = −

∫ t

0
λ′
i j T

−2T,idτ (6.1)

where λ = λ′/T is the usual heat conductive coefficient. We can also consider that Tσ in Eq. (5) gives a pair
of irreversible variables, but the evolution equation between them can be in a more general form:

T η̇i = qi = F(T,l/T ). (6.2)

The explicit expression of F(T,l/T ) in Eq. (6.2) should be obtained by experiments and rational theories. How
to select a state variable is a very important problem [18]. If a state variable is selected well, the governing
equation may be simple and it is easy to solve. Though the state variables are selected by the experience and
some theories, such as the entropy production rate, a fundamental principle cannot be violable, i.e., the product
of the general force and displacement should have the energy dimension.

In the following sections, we mainly discuss the linear approximate evolution equation.
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2.3 PVP by using free energy

Under assumptions that the mechanical displacement u and the temperature ϑ = T − T0, where T0 is the
reference temperature of the environment, satisfy their own boundary conditions, ui = u∗

i , ϑ = ϑ∗ on au and
aT , respectively. Based on Eq. (4), the PVP in the form of the free energy for the thermoelasticity under the
small deformation can be expressed as:

δΠ̃ =
∫
V

δgdV − δ Q̃(t) − δW̃ (r) = 0,

δ Q̃(t) = −
∫
V

δϑ

∫ t

0
(ṙ/T )dτdV −

∫
V

δϑ

∫ t

0
ṡ(i)dτdV +

∫
aq

δϑ

∫ t

0
η̇∗dτda,

δW̃ (r) =
∫
V

( fk − ρük)δukdV +
∫
aσ

p∗
k δukda −

∫
V

δh̃dV ,

δg = σi jδεi j − sδϑ; δh̃ = −T,iδηi + δ
(
ηi T,i

) = η jδϑ, j (7)

where σi j is the stress tensor, εi j = (
ui, j + u j,i

)
/2 is the strain tensor; fk, p∗

k and η̇∗ = η̇∗
i ni are the given

mechanical body force, surface traction and surface entropy flow rate, respectively. In Eq. (7), the variation δϑ
is at current time t and does not depend on the past time τ . It is noted that in the free energy the independent
variables are ε and ϑ , so we use the complement heat rate sδϑ and the irreversible complement work rate
ηiδϑ,i .

In Eq. (7), we have ∫
V

δgdV =
∫
a
σi j n jδuida −

∫
V

σi j, jδuidV −
∫
V
sδϑdV ,

∫
V

δh̃dV =
∫
V

η jδϑ, jdV =
∫
V

δϑ, j

∫ t

0
η̇ jdτdV .

Finishing the variational calculation, we get

δΠ̃ =
∫
aσ

(σi j n j − p∗
i )δuida −

∫
V

(σi j, j + fi − ρüi )δuidV

+
∫
aq

(∫ t

0
η̇idτn j − η∗

)
δϑda −

∫
V

[
s +

∫ t

0

(
−T−1ṙ + η̇i,i − ṡ(i)

)
dτ

]
δϑdV = 0. (8)

By using the relation T η̇ j, j − T ṡ(i) = T η̇ j, j + η̇i T,i = (T η̇i ),i = qi,i and the arbitrariness of δui and δϑ ,
from Eq. (8) we get

σi j, j + fi = ρüi ; T ṡ = ṙ − qi,i , in V ;
σklnl = p∗

k , on aσ ; η̇i ni = η̇∗, or qn = q∗
n , on aq . (9)

The governing equations of thermoelasticity will consist of Eq. (9) and the following displacement and
temperature boundary conditions which are the prior condition of the PVP:

u = u∗, on au; ϑ = ϑ∗(or T = T ∗), on aT . (10)

For a dynamical problem, the initial conditions should also be added. From the above discussion, it is seen
that the governing equations for the thermoelastic media derived by the PVP are natural and simple. It is
also noted that in the thermoelastic problem the elastic process is nondissipative, so the momentum equation
in Eq. (9) is fully exact, but the heat equation is in the precision of first order because the heat process is a
dissipative process. In the literature [14], Benjeddou and Andrianarison gave a similar variational principle for
the thermoelastic media:{∫

V

[
σi jδεi j + (ρüi − fi ) δui

]
dV −

∫
aσ

Tiδuida

}

+
{∫

V

[
qiδϑ,i − (ϑ0ṡ − ṙ) δϑ

]
dV −

∫
aq
q∗
i niδϑda

}
= 0.
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This formula is similar to Eq. (8), but as in all present literatures, their variational formula is derived from the
known governing equations by a purely mathematical method. In our theory, the governing equation Eq. (9) is
derived by PVP, Eq. (7). In other words, the mathematical variational formulas are deduced from the known
governing equations, but the PVP is used to deduce the governing equations.

If we assume the explicit expression of g in the form

g(εkl , ϑ) = u − ϑs = (1/2)Ci jklεi jεkl − αi jεi jϑ − (1/2T0)Cϑ2

Ci jkl = C jikl = Ci jlk = Ckli j , αi j = α j i (11)

where C,α and C are the elastic coefficient, stress–temperature coefficient and the specific heat at constant
deformation, respectively, the constitutive and evolution equations corresponding to Eq. (11) are, respectively:

σi j = ∂g/∂εi j = Ci jklεkl − αi jϑ, s = −∂g/∂ϑ = αi jεi j + Cϑ/T0,

ηi = ∂ h̃/∂ϑ,i , T η̇i = qi = −λi jϑ, j . (12)

The explicit motion and temperature equations are:

(
Ci jklεkl − αi jϑ

)
, j + fi = ρüi ,

T
(
αi jεi j + Cϑ/T0

)· = ṙ + (
λi jϑ, j

)
,i in V . (13)

2.4 PVP by using internal energy

Under the assumption that the mechanical displacement u and the entropy density s satisfy their own boundary
conditions, ui = u∗

i , s = s∗ on au and as , respectively. Based on Eq. (4), the PVP in the form of the internal
energy for the thermoelasticity under the small deformation can be expressed as:

δΠ =
∫
V

δudV − δQ(t) − δW (r) = 0,

δQ(t) =
∫
V
T δ(ṙ/T )dV +

∫
V
T δs(i)dV −

∫
aq

T δη∗da,

δW (r) =
∫
V

( fk − ρük)δukdV +
∫
aσ

p∗
k δukda −

∫
V

δhdV ,

δu = σi jδεi j + T δs; δh = −T,iδηi . (14)

In Eq. (14), we have

∫
V

δudV =
∫
a
σi j n jδuida −

∫
V

σi j, jδuidV +
∫
V
T δsdV ;

∫
V

δhdV = −
∫
V
T,iδηidV .

Finishing the variational calculation, we get

δΠ =
∫
aσ

(
σi j n j − p∗

k

)
δuida −

∫
V

(
σi j, j + fi − ρüi

)
δuidV

+
∫
V
T δ

[
s − (ṙ/T ) − s(i) + ηi,i

]
dV −

∫
aq

T δ
(
niηi − η∗) da = 0. (15)

By using the arbitrariness of δui , we get the motion equation from Eq. (15). Due to T �= 0, from Eq. (15)
s − (ṙ/T ) − s(i) + ηi,i in V and niηi − η∗ in aq must be zero, which is the entropy equation and its boundary
condition, but this method is not consistent with the usual variational method. It may be of interest to investigate
this problem.
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3 The PVP in thermal viscoelastic media

In a linear thermal viscoelastic material, the irreversible heat consists of two parts: One is produced by the
heat conduction, and the other is produced by the viscous effect.

In a linear thermal viscoelastic material, the entropy equation (5) is changed to [17]

T ṡ = ṙ + σ
(i)
i j ε̇ j i − qi,i ; ṡ = ṡ(r) + ṡ(i); T ṡ(r) = ṙ − T η̇i,i ,

Tσ = T ṡ(i) = T
(
ṡ − ṡ(r)

)
= T ṡ − ṙ + T η̇i,i = σ

(i)
i j ε̇ j i − T,i η̇i ≥ 0,

δh̃ = σ
(i)
i j δε j i + η jδϑ, j = σ

(i)
i j δε j i +

(∫ t

0
η̇ jdτ

)
δϑ, j (16)

where σ
(i)
i j is the irreversible part of the stress σi j . It is usually considered that the average stress σ

(i)
mm/3 is

reversible, only the deviator part σ ′(i)
i j = σ

(i)
i j − σ

(i)
mmδi j/3 of σ

(i)
i j is irreversible, so in this case the viscous

dissipative work rate σ
(i)
i j ε̇ j i in Eq. (16) will be given instead by σ ′(i)

i j ε̇′
i j , ε̇

′
i j = ε̇i j − ε̇mmδi j/3, which will be

converted to irreversible heat. From Eq. (16), we get the linear evolution equation by the theory of TIP as

σ
(i)
kl = βi jkl ε̇i j − κiklϑ,i , T η̇i = −λi jϑ, j − κikl ε̇kl (17)

where β, κ and γ are the coefficient tensors. In an isotropic material, the Curie principle shows that there is
no coupling between tensors with different rank, so in Eq. (17) κ = 0.

The PVP is still expressed by Eq. (7), but ṡ(i) and h̃ are changed to Eqs. (16), i.e.,

δΠ̃ =
∫
V

δgdV − δ Q̃(t) − δW̃ (r) = 0,

δ Q̃(t) = −
∫
V

δϑ

∫ t

0
(ṙ/T )dτdV −

∫
V

δϑ

∫ t

0
ṡ(i)dτdV +

∫
aq

δϑ

∫ t

0
η̇∗dτda,

δW̃ (r) =
∫
V

( fk − ρük)δukdV +
∫
aσ

p∗
k δukda −

∫
V

δh̃dV ,

δg = σ
(r)
i j δεi j − sδϑ; δh̃ = σ

(i)
i j δε j i + η jδϑ, j ,

σi j = σ
(r)
i j + σ

(i)
i j , σ

(r)
i j = ∂g/∂εi j (18)

where σ
(r)
i j is the reversible part of the stress σi j . Finishing the variational calculation, we get

δΠ̃ =
∫
aσ

(σi j n j − p∗
i )δuida −

∫
V

(σi j, j + fi − ρüi )δuidV

−
∫
aq

[∫ t

0
η̇i n jdτ − η∗

]
δϑda −

∫
V

{
s +

∫ t

0

[
−T−1ṙ + η̇ j, j − ṡ(i)

]
dτ

}
δϑdV = 0. (19)

From Eq. (19), we get

σi j, j + fi = ρüi ; T ṡ = ṙ − qi,i + σ
(i)
i j ε̇ j i in the medium,

σklnl = p∗
k , on aσ ; η̇i = −T−1λi jϑ,i , η̇i ni = η̇∗, or qn = q∗

n , on aq (20)

For an isotropic incompressible viscous fluid, κ = 0, let σ
(r)
i j = −pδi j , σ ′(i)

i j = 2με̇i j , ε̇i j = ε̇′
i j due to

εmm = 0, where p and μ are the pressure and viscosity coefficient; we get the theory of the thermal viscous
Newtonian fluid, i.e.,

−p,i + μu̇i, j j + fi = ρüi ; T ṡ = ṙ − qi,i + με̇i j ε̇ j i in V .

A similar work in the thermal viscous fluid can also be seen in Bejan’s work [19].



Physical variational principle in dissipative media 1101

If we assume the explicit expression of g is still Eq. (11), we get

σ
(r)
i j = ∂g/∂εi j = Ci jklεkl − αi jϑ, s = −∂g/∂ϑ = αi jεi j + Cϑ/T0,

σi j = σ
(r)
i j + σ

(i)
i j = Ci jklεkl − αi jϑ + βi jkl ε̇kl − κi jkϑ,k . (21)

The explicit motion and temperature equations are:
(
Ci jklεkl − αi jϑ + βi jkl ε̇i j − κiklϑ,i

)
, j + fi = ρüi ,

T
(
αi jεi j + Cϑ/T0

)· = ṙ + (
λi jϑ, j + κkl j ε̇l j

)
,i + (

βi jkl ε̇i j − κiklϑ,i
)
ε̇ j i . (22)

For a more complicated thermo-viscoelastic integral constitutive equation, we can discuss in the same way.

4 The PVP in a thermal elastoplastic material under small deformation

In the usual elastoplastical theory [17,20], according to the type of the constitutive equation, we should
distinguish two regions: in region V1 including the elastic region, elastoplastic region at the unloading or neutral
state, the constitutive equation is the elastic one; and in the elastoplastic loading region V2, the constitutive
equation is the elastoplastic one. The loading and unloading regions are determined by the loading criterion
[17,20]. In V2, part of the plastic deformation can transform to heat. The entropy equation Eq. (3) is changed
to

T ṡ = ṙ + σi j ε̇
(p)
i j − qi,i ; ṡ = ṡ(r) + ṡ(i); T ṡ(r) = ṙ − T η̇i,i ,

Tσ = T
(
ṡ − ṡ(r)

)
= T ṡ − ṙ + T η̇i,i = σi j ε̇

(p)
i j − T,i η̇i ≥ 0; in V2,

T ṡ = ṙ − qi,i ; ṡ = ṡ(r) + ṡ(i); T ṡ(r) = ṙ − T η̇i,i ,

Tσ = T
(
ṡ − ṡ(r)

)
= T ṡ − ṙ + T η̇i,i = −T,i η̇i ≥ 0; in V2 (23)

where εi j = ε
(e)
i j +ε

(p)
i j , ε

(e)
i j and ε

(p)
i j are the elastic and plastic strain, respectively. For simplicity, it is assumed

that the plastic work is fully changed to irreversible heat. From Eq. (23), it is known that σi j , ε̇
(p)
i j and T,i , η̇i

are two pairs of irreversible variables definitely, but their evolution equation cannot be obtained by the classical
theory of TIP; it should be determined by experiments and rational theories [17,20].

On the interface of V1 and V2, the connective conditions should be satisfied, i.e.,

σ
(1)
i j = σ

(2)
i j , u(1)

i = u(2)
i , T (1) = T (2) on interface aint (24)

where σ
(1)
i j , u(1)

i , T (1) and σ
(2)
i j , u(2)

i , T (2)
i are the stress, displacement and temperature in V1 and V2, respec-

tively. Because the constitutive equations in V1 and V2 are different, the PVP should be divided into two parts.
Under the conditions that the boundary and interface conditions of u and T on au, aT and aint are satisfied
prior, the PVP for the thermal elastoplastic field can be expressed as

δΠ̃ =
∑2

j=1

(∫
Vj

δg( j)dV − δ Q̃(t)( j) − δW̃ (r)( j)

)
= 0,

δ Q̃(t)( j) = −
∫
Vj

δϑ

∫ t

0
(ṙ/T )dτdV −

∫
Vj

δϑ

∫ t

0
ṡ(i)dτdV +

∫
aq j

δϑ

∫ t

0
η̇∗dτda,

δW̃ (r)( j) =
∫
Vj

( fk − ρük)δukdV +
∫
aσ j

p∗
k δukda −

∫
Vj

δh̃ jdV ,

δg( j) = σklδε
( j)
kl − s(k)δϑ(k), V = V1 + V2, aq = aq1 + aq2, aσ = aσ1 + aσ2,

δh̃1 = 0, δh̃2 = σi jδε
p
i j . (25)
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Because Eq. (24) is assumed, the integral on the interface is eliminated, so

∑2

j=1

∫
aσ j+aintσ

p∗
k δukda +

∫
aq j+aintq

δϑ

∫ t

0
η̇∗dτda =

∫
aσ

p∗
k δukda +

∫
aq

δϑ

∫ t

0
η̇∗dτda.

The above result has been used in Eq. (25). Finishing the variational calculation, finally we get

σi j, j + fi = ρüi , in V ; σklnl = p∗
k , on aσ ,

T ṡ = ṙ − qi,i + σi j ε̇
(p)
i j in V2; T ṡ = ṙ − qi,i in V1; qn = q∗

n , on aq . (26)

For an isotropic hardening material with associated flow rule under small deformation, the constitutive
equations are discussed in many textbooks, such as in [17,20],

σ̇ = 2G

(
ε̇ + ν

1 − 2ν
ε̇mmI2

)
− (αT )· , in V1; σ̇ = 2G

(
˜̇ε + ν

1 − 2ν
˜̇εmmI2 − 3λ̇σ ′

)
, in V2,

λ̇ = σ ′ : ˜̇ε − √
J2/3kṪ /G

6J2 (1 + H/3G)
, ˜̇ε = ε̇ − (αmmT )· I − Ȧ

−1
σ , H = ∂σs

∂ε
, k = ∂σs

∂T
,

σ 2
r = 3

2
σ ′ : σ̇ ′ = 3J2, σ ′ = σ − σmmI2, A−1 = 1

2G

(
I4 − ν

1 + ν
I2 ⊗ I2

)
(27)

where σs is the yielding stress, H is the tangential modulus in a uniaxial tension, G is the shear modulus, ν is
Poisson’s ratio, and I2 and I4 are the unit tensors of second order and fourth order, respectively.

Yang et al. [21] give a variational principle in a dissipative material by using the thermodynamics with the
internal variable theory under finite deformation. TIP (The thermodynamics of irreversible processes) and the
internal variable theory are two important theories in irreversible thermodynamics. As we know, in mechanics
there are two types of governing equations: One is the universal for all materials, and the other is special for a
special material. In TIP, the Gibbs equation is a universal principle in the first-order precision, and the difficult
evolution equation is put in the entropy production rate equation. PVP is based on the extended Gibbs equation,
so it is also a universal principle in the first-order precision, if the external force is free of the deformation.
If a variational principle includes the constitutive and evolution equations, the variational principle cannot
be a universal physical principle, but a variational principle of a kind of material, though it is valuable in
engineering. We can also use some mathematical methods [1,17] to get the generalized physical variational
principle including the constitutive and evolution equations from PVP.

5 The PVP in a linear thermoelastic diffusive material

5.1 Fick’s laws [22]

First law J = −D′∇c, J = ρw = ρ(v′ − v), (28.1)

Modified Fick’s first law J = −D∇μ, (28.2)

Second law ċ = ∂c/∂t = −∇ · J = −Ji,i (28.3)

where ċ = −Ji,i is the mass conservation equation, ρ is the density; c is the concentration (kg/m3);μ is the
chemical potential, J is the diffusion mass flux of the diffusing material (kg/

(
m2 · s)),w = v′ −v is the diffuse

velocity, v is the centroid velocity of an element (consisting of matrix and diffusing material), and v′ is the
velocity of the diffusing material. When we use J = −D∇μ in Eq. (28.2), Eq. (28.2) can apply to downhill
and uphill diffusions, but J = −D′∇c in Eq. (28.1) only appropriate for the downhill diffusion.
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5.2 Momentum and energy equations for a linear thermoelastic diffusive material

The momentum equation, which can be found in all textbooks of continuum mechanics, is [17,23]

∇ · σ + f = ρv̇. (29)

The thermoelastic diffusive problem is an open system, so the energy conservation equation is:

dU = dW + dQ + dΦ, d� = −
∫
a
μJ · nda (30)

where dΦ is the energy rate introduced by the mass conversion through the boundary.
Applying the Gauss theorem and the momentum equation, from Eq. (30) we get the local energy conser-

vation equation:

u̇ = σ : ε̇ + ṙ − ∇ · q − ∇ · (μJ). (31)

In some literatures, e.g., [24], there is no term ∇ · (μJ) in the local energy conservation equation. In this paper,
we shall use the energy equation Eq. (31) to give the appropriate PVP and derive the governing equations.

5.3 The Gibbs equation and the entropy production rate

The Gibbs equation is [15]:

u̇ = σ : ε̇ + T ṡ + μċ. (32)

Substituting the energy equation (31) into the Gibbs equation (32), we get the entropy equation:

T ṡ = ṙ − ∇ · q − ∇ · (μJ) − μċ = ṙ − ∇ · q − ∇μ · J,
T ṡ = T

(
ṡ(r) + σ

)
, ṡ(r) = ṙ/T − ∇ · (q/T ),

Tσ = T
(
ṡ − ṡ(r)

)
= −q · (∇T /T ) − ∇μ · J = −T,i η̇i − μ,i ξ̇i ; J = ξ̇ . (33)

Equation (33) shows that a part of the external heat is stored in the system, and the other part is dissipated by the
heat conduction. However, the diffuse process is fully dissipative. The dissipative heat Tσ has the dimension of
energy. So we prefer Tσ to σ . According to TIP, (q, ∇T/T ) and (∇μ, J) are two pairs of conjugate variables.
So we have the following evolution equations:

T η̇ = q = −λ̂ · (∇T /T ) − L · ∇μ, ξ̇ = J = −L · (∇T /T ) − D · ∇μ,

T η̇i = −λi jϑ, j − Li jμ, j , ξ̇i = −Li j
(
ϑ, j/T

) − Di j μ, j ,

λ̂i j = λ̂ j i , Li j = L ji , Di j = Dji , λi j = λ̂i j/T (34)

where λ̂ = λT,L,D arematerial constants. Equations (33) and (34)modify the entropy and evolution equations
adopted in some previous literatures.

5.4 PVP in thermoelastic diffusive theory

Under the assumption that the mechanical displacement u, the temperature ϑ and the chemical potential μ
satisfy their own boundary conditions, u = u∗, ϑ = ϑ∗ and μ = μ∗ on au, aT and aμ, respectively. When the
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variation of temperature is not large, the PVP for the thermoelastic diffusive problem is

δΠ̃ =
∫
V

δgdV − δ Q̃(t) − δΦ̃ − δW̃ (r) = 0,

δ Q̃(t) = −
∫
V

δϑ

∫ t

0
ṙ T−1dτdV −

∫
V

δϑ

∫ t

0
ṡ(i)dτdV +

∫
aq

δϑ

∫ t

0
η̇∗dτda,

δΦ̃ =
∫
a�

δμ

∫ t

0
ξ̇∗dτda,

δW̃ (r) =
∫
V

( fk − ρük)δukdV +
∫
aσ

p∗
k δukda −

∫
V

δh̃dV ,

δg = σi jδεi j − sδϑ − cδμ,

δh̃ = −T,iδηi − μ,iδξi + δ
(
T,iηi

) + δ(μ,iξi ) = η jδϑ, j + ξ jδμ, j . (35)

In Eqs. (35), fk, p∗
k η̇∗ = η̇∗

i ni and ξ̇∗ = ξ̇∗
i ni are given values, and δΦ̃ is the complement diffusion energy.

Using the following relations:
∫
V

δgdV =
∫
a
σi j n jδuida −

∫
V

σi j, jδuidV −
∫
V
sδϑdV −

∫
V
cδμdV ,

∫
V

δh̃dV =
∫
V

(
η jδϑ, j + ξ jδμ, j

)
dV =

∫
a

(
η j n jδϑ + ξ j n jδμ

)
da −

∫
V

(
η j, jδϑ + ξ j, jδμ

)
dV (36)

finishing the variational calculation, we get

δΠ =
∫
aσ

(σi j n j − p∗
i )δuida −

∫
V

(σi j, j + fi − ρüi )δuidV −
∫
V
sδϑdV −

∫
V
cδμdV

+
∫
V

δϑ

∫ t

0
ṙ T−1dτdV +

∫
V

δϑ

∫ t

0
ṡ(i)dτdV −

∫
aq

δϑ

∫ t

0
η̇∗dτda −

∫
a�

δμ

∫ t

0
ξ̇∗dτda

+
∫
a

(
η j n jδϑ + ξ j n jδμ

)
da −

∫
V

(
η j, jδϑ + ξ j, jδμ

)
dV

=
∫
aσ

(σi j n j − p∗
i )δuida −

∫
V

(σi j, j + fi − ρüi )δuidV

−
∫
V

{
s +

∫ t

0

(
−T−1ṙ + η̇ j, j − ṡ(i)

)
dτ

}
δϑdV

−
∫
V

(
c + ξ̇ j, j

)
δμcdV +

∫
aq

(
η j n j − η∗) δϑda +

∫
a�

(
ξ j n j − ξ∗) δμda = 0. (37)

By using

−T−1ṙ + η̇ j, j − ṡ(i) = −T−1 (
ṙ − T η̇ j, j − T,i η̇i − μ,i ξ̇i

) = −T−1 [
ṙ − q j, j − μ,i ξ̇i

]
and the arbitrariness of δu, δϑ and δμ, from Eq. (37) we get

σkl,l + fk = ρük , inV ; σklnl = p∗
k , on aσ (38)

and ∫
V

∫ t

0
ṡdτdV =

∫
V

∫ t

0
T−1 (

ṙ − q j, j − μ,i ξ̇i
)
dτdV ,

∫
V

∫ t

0
ċdτdV = −

∫
V

∫ t

0
ξ̇ j, jdτdV in V,

η̇ j n j = η̇∗, or qn = q∗
n on aq ,

ξ̇ j n j = ξ̇∗, or Jn = J ∗
n on a�. (39)
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The first two formulas in Eq. (39) can be rewritten as

T ṡ = ṙ − q j, j − μ,i ξ̇i ; ċ = −ξ̇ j, j ; or

T ṡ + μċ = ṙ − q j, j − μ,i ξ̇i − μξ̇ j, j = ṙ − q j, j − (μJi ),i ; in V . (40)

The last equation in Eq. (40) is just the same as that in Eq. (33).
The above variational principle requests prior that the u, ϑ and μ satisfy their own boundary conditions,

so in the governing equations the following equations should also be added:

u = u∗, on au; ϑ = ϑ∗, on aT ; μ = μ∗, on aμ. (41)

Equations (38)–(41) are the governing equations of the generalized thermal diffusion theory.

5.5 Governing equations of the temperature and chemical potential

In irreversible thermodynamics, the Gibbs free energy g can be selected as

g (εkl , ϑ, μ) = 1

2
Ci jklε j iεlk − αi jεi jϑ − 1

2T0
Cϑ2 − 1

2
bμ2 − bi jεi jμ − aμϑ (42)

where a, b, bi j are also material constants. The constitutive equations are:

σi j = ∂g/∂εi j = Ci jklεkl − αi jϑ − bi jμ,

s = −∂g/∂ϑ = αi jεi j + Cϑ/T0 + aμ, c = −∂g/∂μ = bμ + bi jεi j + aϑ. (43)

Substituting Eqs. (34) and (43) into Eq. (33) and Second Fick’s law Eq. (28.3), we get the temperature and
chemical potential equations:

T
(
αi jεi j + Cϑ/T0 + aμ

)· = ṙ + (
λi jϑ, j + Li jμ, j

)
,i + μ,i

(
Li j T

−1ϑ, j + Di j μ, j
)
,(

bμ + bi jεi j + aϑ
)· = (

Li j T
−1ϑ, j + Di j μ, j

)
,i ; in V . (44)

If there is no coupling in ϑ and μ, i.e., let Li j = 0 and a = 0, then for ṙ = 0 and constant coefficients, the
linearized form of Eq. (44) is

T
(
αi j u̇i, j + Cϑ̇/T0 + aμ̇

) = λi jϑ, j ,

bμ̇ + bi j u̇i, j + aϑ̇ = Di jμ, j i ; in V . (45)

In the literature formulas analogous to Eq. (45) can be found.
If there is no diffusion, the thermoelastic diffusive problem is reduced to the thermoelastic problem as

shown in Sect. 2. The PVP and governing equation of an isothermal diffusive problem can also be obtained
from the thermoelastic diffusive problem by omitting r, T and q.

6 The PVP in linear electromagnetic thermoelastic media with current

6.1 The Maxwell equations

The electromagnetic theory has been discussed in many literatures [25–28]. The Maxwell equation is:

∇ × H = −Ḋ + I, ∇ × E = −Ḃ, ∇ · B = 0, ∇ · D = ρe; in V (46.1)

where E,D,H and B are the electric field intensity, electric displacement or electric flux density, magnetic
field intensity and magnetic induction or the magnetic flux density, respectively; ρe is the free electric charge
density; I is the total electric current density. Some time I is divided into I(e) and I(γ) corresponding to the
given external exciting current density and the induction or eddy current density, respectively.

If we introduce an electric scalar potential ϕ and a magnetic vector potential A such that

B = ∇ × A, or Bi = �ikl Al,k; E = −∇ϕ − Ȧ, (46.2)
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the equations ∇ × E = −∂B/∂t, ∇ · B = 0 and ∇ · J = −ρ̇e will be satisfied automatically. In Eq. (46.2), �
is the permutation notation. The boundary conditions are

D · n = −σ ∗; on aD; ϕ = ϕ∗; on aϕ,

A = A∗; on aA; H × n = I∗ on aH (47)

where σ ∗, I∗, ϕ∗ and A∗ are given values.

6.2 The PVP in a linear electromagnetic thermoelastic field with current

As in section 2, by using TIP [15–17] the entropy equation can be written as

T ṡ = ṙ + Ei Ii − qi,i ; ṡ = ṡ(r) + ṡ(i); T ṡ(r) = ṙ − T η̇i,i ,

Tσ = T ṡ(i) = T
(
ṡ − ṡ(r)

)
= Ei Ii − T,i η̇i ≥ 0 (48)

where E · I is the dissipative heat produced by the current. From Eq. (48), we get the evolution equations as:

I = γ · E + β · ∇T /T, T η̇ = q = −λ · ∇T + β · E (49)

where γ is the electric conductivity, β is the current–temperature coefficient.
Under the conditions that on the boundary a the boundary conditions are satisfied prior, and the time

conditions at the initial time t = 0 and the terminal time t f satisfy

δA(0) = δA(t f ) = 0, (50)

the PVP for the linear electromagnetic thermoelastic field can be expressed as

δΠ̃ =
∫ t f

0

(∫
V

δgdV − δ Q̃(t) − δW̃ (r)
)
dt = 0,

δ Q̃(t) = −
∫
V

δϑ

∫ t

0
ṙ T−1dτdV −

∫
V

δϑ

∫ t

0
ṡ(i)dτdV +

∫
aq

δϑ

∫ t

0
η̇∗dτda,

δW̃ (r) =
∫
V

(f − ρü) · δudV −
∫
V

ρeδϕdV −
∫
V

δh̃dV −
∫
aD

σ ∗δϕda +
∫
aσ

p∗ · δuda +
∫
aH

I∗ · δAda,

δh̃ = −I · δA +
(∫ t

0
η̇ jdτ

)
δϑ, j ,

δg = σi jδε j i − DkδEk + HkδBk − sδϑ (51)

where −I · δA is the dissipative work density rate of the electromagnetic field with current. Equation (51) is
similar to the Hamilton variational principle in dynamics. Certainly, we can reduce Eq. (51) to a variational
principle without the time integral, just as in the previous sections.

By using Eq. (50), we have
∫ t f

0
dt

∫
V
Diδ ȦidV =

∫ t f

0
dt

∫
V

∂(DiδAi )/∂tdV −
∫ t f

0
dt

∫
V

∂Di/∂tδAidV

=
(∫

V
DiδAidV

)∣∣∣∣
t f

0
−

∫ t f

0
dt

∫
V

∂Di/∂tδAidV = −
∫ t f

0
dt

∫
V
ḊiδAidV . (52)

By using Eq. (52), we have
∫
V

δgdV =
∫
V

σi jδεi jdV +
∫
V
Diδϕ,idV +

∫
V
Diδ ȦidV +

∫
V
HiδBidV −

∫
V
sδϑdV

=
∫
V

σi jδεi jdV +
∫
V
Diδϕ,idV −

∫
V
ḊiδAidV +

∫
V
HiδBidV −

∫
V
sδϑdV . (53)
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Applying Eq. (52), the first relation in Eq. (51) can be reduced to
∫
V

δgdV − δ Q̃(t) − δW̃ (r) = 0. (54)

Substituting Eq. (53) into Eq. (54), we get

δΠ =
∫
V

σi jδεi jdV +
∫
V
Diδϕ,idV −

∫
V
ḊiδAidV +

∫
V
HiδBidV −

∫
V
sδϑdV −

∫
aσ

p∗
i δuida

+
∫
V

δϑ

∫ t

0
ṙ T−1dτdV +

∫
V

δϑ

∫ t

0
ṡ(i)dτdV −

∫
aq

δϑ

∫ t

0
η̇∗dτda −

∫
V

( fi − ρüi )δuidV

+
∫
V

ρeδϕdV +
∫
a
σ ∗δϕda −

∫
V
IiδAidV −

∫
aH

I ∗
l δAldV +

∫
V

(∫ t

0
η̇ jdτ

)
δϑ, jdV

=
∫
a

(
σi j

)
n jδuida −

∫
V

[(
σi j

)
, j + fi − ρüi

]
δuidV +

∫
V
Di

[
(δϕ),i − ϕ,pδu p,i

]
dV −

∫
aσ

p∗
i δuida

+
∫
V
Hi (�iklδAl),k dV +

∫
V

ρeδϕdV −
∫
V

(
Ii + Ḋi

)
δAidV +

∫
a
σ ∗δϕda −

∫
aH

I ∗
l δAldV

+
∫
V

δϑ

(
−s +

∫ t

0
ṙ T−1dτ +

∫ t

0
ṡ(i)dτ

)
dV +

∫
a
δϑη j n j −

∫
V

η j, j δϑdV −
∫
aq

δϑ

∫ t

0
η̇∗dτda

=
∫
a

(
σi j n j − p∗

i

)
δuida −

∫
V

(
σi j, j + fi − ρüi

)
δuidV −

∫
V

(
Di,i − ρe

)
δϕdV

−
∫
V

(
�ikl Hi,k + Ḋl + Il

)
δAldV +

∫
a

(
Dknk + σ ∗) δϕda +

∫
aH

(
�mli Hinm − I ∗

l

)
δAldV

−
∫
V

δϑ

[
s −

∫ t

0
T−1

(
−ṙ − T ṡ(i) + T η̇ j, j

)
dτ

]
dV +

∫
aq

δϑ

∫ t

0

(
η̇ j n j − η̇∗) dτda = 0. (55)

Due to the arbitrariness of δu, δA, δϕ, etc, we get

σ j i, j + fi − ρüi = 0; Di,i − ρe = 0; �mli Hi,m + Ḋl + Il = 0;
T ṡ = ṙ + T ṡ(i) − T η̇ j, j = 0, or T ṡ = ṙ − qi,i + Ei Ii ; in V,

σ j i n j = p∗
i , on aσ ; Dknk + σ ∗ = 0, on aD,

�mli Hinm − I ∗
l = 0, on aH ; η̇ j n j = η̇∗; on aq (56)

where �mli Hi,m = −∇ ×H and �mli Hinm = H× n. I and q are expressed in Eq. (49). For the case without
current, some variational principles in the thermal electric material were also seen in literature, like in [12,29].

Equation (56) and the prior conditions on the interface and boundary of the PVP and the initial condi-
tion form the governing equations for the linear electromagnetic thermoelastic analysis under the general
electromagnetic field with current.

In engineering power systems, the frequency of the electromagnetic variables is usually less than 10MHz,
so comparing with electric current density I, Ḋ can be neglected. The above theory can still be used, but the
PVP is without Ḋ.

6.3 The governing equation of temperature

According to the Continuum thermodynamics, the electric Gibbs function g in the linear electromagnetic
thermoelastic media can be assumed as

g = (1/2)Ci jklε j iεlk − (1/2) ∈kl Ek El − eeki j Ekεi j + emki j Bkεi j

+ (1/2) μ−1
i j Bi B j − αi jεi jϑ − τ ei Eiϑ + τmi Biϑ − (1/2T0)Cϑ2,

Ci jkl = C jikl = Ci jlk = Ckli j , eeki j = eek ji , ∈kl = ∈lk, emki j = emk ji , μkl = μlk, αi j = α j i (57)
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whereC, ee, ∈, em, μ, α, τ e, τm andC are the elastic, piezoelectric, permittivity, piezomagnetic, permeability,
thermo-mechanical, thermo-electric, thermo-magnetic coefficients, and the heat capacity, respectively. The
consecutive equation corresponding to Eq. (57) is

σ j i = ∂g/∂εi j = Ci jklεkl − eeki j Ek + emki j Bk − αi jϑ,

Di = −∂g/∂Ei =∈i j E j + eeiklεkl + τ ei ϑ,

Hi = ∂g/∂Bi = μ−1
i j B j + emiklεkl + τmi ϑ,

s = −∂g/∂ϑ = αi jεi j + τ ei Ei − τmi Bi + Cϑ/T0. (58)

By using Eqs. (48), (56), (58), the temperature equation can be expressed as

T
(
αi jεi j + τ ei Ei − τmi Bi + Cϑ/T0

)· = ṙ + (
λi j T, j + βi j E j

)
,i + Ei

(
γi j E j + βi j T, j/T

)
. (59)

7 The PVP including the hyperbolic temperature wave equation

Due to the paradox of infinite thermal wave velocity and the Landau second sound speed observed by experi-
ments in liquid helium and in solids at low temperatures, the hyperbolic temperature wave equation instead of
the parabolic thermal equation is developed. Kuang pointed out that [30,31] the variation of temperature with
time should be supplied by extra heat from the environment, which is formally similar to the inertial work
produced by the inertial force in the mechanical dynamics, i.e., when the temperature is varied with time the
first law of thermodynamics for a closed system is changed to [30,31]

U̇ = Ẇ + Q̇ − Q̇(a); Q̇(a) =
∫
V
T ṡ(a)dV (60)

where Q(a) is the inertial heat, and s(a) is the inertial entropy density. The usual local entropy equation (5) is
changed to

T
(
ṡ + ṡ(a)

)
= ṙ − qi,i , ṡ = ṡ(r) + ṡ(i),

T
(
ṡ(r) + ṡ(a)

)
= ṙ − T η̇i,i ; ṡ(a) = ρs0CT̈ /T,

Tσ = T
(
ṡ − ṡ(r)

)
= T

[(
ṡ + ṡ(a)

)
−

(
ṡ(r) + ṡ(a)

)]
= −η̇i T,i (61)

where ρs0 is a coefficient, and C is the specific heat per volume. From Eq. (61), it is seen that if instead of ṡ in
usual entropy equation there is ṡ+ ṡ(a), we get the entropy equation of inertial entropy theory. If we use ṡ+ ṡ(a)

instead of ṡ in the PVP of the dissipative media established in the previous sections, the hyperbolic temperature
wave equation will be instead of the parabolic temperature equation, and the other governing equations are
kept. Therefore by using the inertial entropy theory, the temperature wave equation in the dissipative media
can easily be obtained.

For the thermoelastic media in Eq. (13), the temperature governing equation is changed to

T
(
ṡ + ṡ(a)

)
= ṙ − qi,i , or T

(
αi j ε̇i j + Cϑ̇/T0

) + ρs0Cϑ̈ = ṙ + (
λi jϑ, j

)
,i inV . (62)

For the thermal viscoelastic media in Eq. (22), the temperature governing equation is changed to

T
(
ṡ + ṡ(a)

)
= ṙ − qi,i + σ

(i)
i j ε̇ j i , or

T
(
αi j ε̇i j + Cϑ̇/T0

) + ρs0Cϑ̈ = ṙ + (
λi jϑ, j + κkl j ε̇l j

)
,i + (

βi jkl ε̇i j − κiklϑ,i
)
ε̇ j i . (63)

The similar case is also true for the thermal elastoplastic media.
For the thermoelastic diffusive media, a generalized inertial entropy theory is introduced, where analogous

to the inertial entropy concept an inertial concentration concept is introduced in the thermo-diffusion problem
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[30,31]. In the generalized inertial entropy theory, the entropy equation of the classical thermal diffusion
theory, Eq. (33), is changed to:

T
(
ṡ + ṡ(a)

)
+ μ

(
ċ + ċ(a)

)
= ṙ − ∇ · q,

ṡ(a) = ρs T̈ = ρs0(C/T )T̈ , ċ(a) = ρμμ̈; ċ = −∇ · J,
Tσ = ρT

(
ṡ − ṡ(r)

)
= −T,i η̇i − μ,i ξ̇i ; J = ξ̇ (64)

where ρμ is the inertial concentration coefficient. Instead of Eq. (44), the temperature and chemical potential
governing equations are, respectively, changed to

T
(
αi j ε̇i j + Cϑ̇/T0 + aμ̇

) + ρs0Cϑ̈ = ṙ + (
λi jϑ, j + Li jμ, j

)
,i + μ,i

(
Li j T

−1ϑ, j + Di j μ, j
)
,

bμ̇ + bi j ε̇i j + aϑ̇ + ρμϑ̈ = (
Li j T

−1ϑ, j + Di j μ, j
)
,i . (65)

If considering the temperature inertia for the electromagnetic thermoelasticmediawith current, the temperature
wave equation in Eqs. (48) and (59) is changed to

T
(
ṡ + ṡ(a)

)
= ṙ − qi,i + Ei Ii ; or

T
(
αi jεi j + τ ei Ei − τmi Bi + Cϑ/T0

)· + ρs0Cϑ̈ = ṙ + Ei
(
γi j E j + βi j T, j/T

) − (
λi j T, j + βi j E j

)
,i . (66)

From the above discussion, it is found that when we study the temperature wave equation the inertial entropy
theory is the easiest theory compared with other theories [32,33].

8 Conclusions

In this paper, we give an extended Gibbs equation for dissipative media, and on this basis the PVP for dis-
sipative media, which is a universal principle, is established. The dissipation work and its converted internal
irreversible heat are simultaneously included in the PVP. From this PVP, the governing equation, includ-
ing thermodynamic and irreversible variables, and the boundary conditions of the dissipative media can be
obtained. The conservative system is the special case of the dissipative system. The governing equations of
the thermoelastic, thermal viscoelastic, thermal elastoplastic, linear thermoelastic diffusive and linear electro-
magnetic thermoelastic media are derived by the PVP in this paper or the PVP for dissipative media gives the
“generalized motion equations”. The PVP in dissipative media can be applied to more complex multi-field
problems. Applying the inertial entropy theory, the PVP is easily extended to the case where the temperature
propagates with finite wave speed. Other than the mathematical variational principle, where the variational
principle is derived from known governing equations, in the PVP the governing equations are obtained by
it. The PVP can also be used to check the current governing equation. When we accept PVP, the universal
principles in continuum mechanics are the mass conservation, the energy conservation and the PVP (or the
principle of energy stationary value) laws. In the engineering applications, these governing equations derived
by PVP can be simplified according to the practical situation. The constitutive and evolution equations and the
material constants should be determined by experiments and other appropriate theories.
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