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Abstract An exact solution is established pertaining to the dynamic response of an Euler–Bernoulli beam
resting on a Winkler foundation with variable subgrade modulus. The solution is performed by employing the
infinite power seriesmethod.Moreover, using the Frobenius theorem, the proposedmethod is extended in order
to solve the problems wherein the variation of the modulus is not an analytic function. The solution procedure
is demonstrated by several illustrative examples, and the correctness of the results has been ascertained by
comparison with recognized solutions in the literature. Finally, it is shown that the proposedmethod of solution
is directly applicable to the more general problem of beams on a variable-modulus Pasternak-type foundation.

1 Introduction

Many problems of considerable practical importance can be related to the solution of beams resting on an elastic
foundation. The structural analysis of railroad tracks, highway pavements, continuously supported pipelines,
and strip foundations is a well-known direct real-world application.

The simplest model to idealize the behavior of the elastic foundation is the one proposed by Winkler [1].
In this model, the relation between the pressure and the deflection of the foundation surface at any point is:

q = kw (1)

where k is the modulus of subgrade reaction, q is the resting pressure of the foundation, andw is the deflection
of the beam. Taking the modulus of subgrade reaction, k, as uniformly distributed below the beam, signif-
icantly simplifies the solution of the relevant differential equations. This is the basis of the extensive usage
of the constant modulus assumption related to soil models. The well-known text by Hetényi [2] provides a
comprehensive treatment of the constant Winkler model for elastic foundations.

However, it is commonly acknowledged that this assumption is far from reality, and a more robust analysis
requires the consideration of the inhomogeneity of the subgrade [3–5]. Furthermore, the consideration of
the variation of the soil subgrade modulus beneath footings, as stipulated in most design codes (e.g., [6]), is
essential in some footing design methods.

M. A. Foyouzat · M. Mofid (B)
Civil Engineering Department, Sharif University of Technology, Azadi Ave., Tehran, Iran
E-mail: mofid@sharif.edu

M. A. Foyouzat
E-mail: foyozat_mohammadali@mehr.sharif.ir

J. E. Akin
Mechanical Engineering Department, Rice University, Houston, TX, USA
E-mail: akin@rice.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-015-1485-1&domain=pdf


550 M. A. Foyouzat et al.

The literature contains a wealth of research on the static analysis of beams pertaining to variable Winkler
foundations, of which a brief survey is presented here. Franklin and Scott [7] presented a closed-form solution
for a linear variation of the foundation modulus, using contour integrals. For a higher-order variation in x (the
coordinate along the beam), they presented a partial solution, which is applicable to infinite beams (or piles).
Lentini [8] presented a finite difference method to solve the problem when the foundation stiffness varies
along x as a power of x . Clastornik et al. [9] presented a solution for finite beams resting on Winkler elastic
foundations with a stiffness variation that can be represented as a general polynomial of x .

As far as the dynamic analysis of beams on a variable elastic foundation is concerned, a variety of numerical
and approximate methods can be found in the literature. Eisenberger and Clastomik [10,11] have applied a
finite element approach to attack the problem for both one- and two-parameter foundations. Moreover, their
solution is based primarily on using the exact stiffness, consistent mass, and geometric stiffness matrices.
Ding [12] has obtained a general solution in the form of an integral equation. The integrals in the solution have
approximately and numerically been calculated by means of the trapezoidal rule.

The current study offers an exact solution to the dynamic response of an Euler–Bernoulli beam supported
by aWinkler foundation with variable subgrade modulus. The proposed method is based on the series solution
of differential equations, and it is applicable to any type of classical boundary condition (simply supported,
clamped, free, elastically supported, etc.). Moreover, it is shown that, using the Frobenius theorem, themethod-
ology can be extended to solve the problems wherein the variation of the modulus is not an analytic function
of x . Several examples are presented in order to demonstrate how the work proceeds. The results prove to be
in excellent agreement with those available in the literature as well as the finite element results. Finally, the
applicability of the proposed solution to beams on a Pasternak-type foundation with a spring layer of variable
modulus is set forth.

2 Problem formulation

Consider the problem of an Euler–Bernoulli beam of length s and with constant flexural stiffness EI, resting
on aWinkler-type foundation of variable modulus k(x) and subjected to a load P(x, t) (Fig. 1). Assuming that
the beam maintains continuous contact with the base, the governing differential equation of this problem can
be expressed as

EI
∂4w

∂x4
+ k(x)w + ρA

∂2w

∂t2
= P(x, t) (2)

where w(x, t) is the deflection of the beam, ρ is the mass density of the material, and A is the cross-sectional
area of the beam. In order to seek a solution for Eq. (2), one should begin with the solution of the corresponding
homogeneous equation, that is, when P(x, t) = 0. Therefore, in what follows, the solution of the homogeneous
equation is first elucidated, while the forced vibration response will be treated afterward.

As far as the homogeneous solution is concerned, by applying the method of separation of variables, one
can assume a solution as

w(x, t) = W (x)T (t) (3)

where W (x) is the shape function which describes the modes of the vibration and T (t) is a separable solution
of W (x). Introducing the above into Eq. (2) yields

EI

ρAW

d4W

dx4
+ k(x)

ρA
= − 1

T

d2T

dt2
. (4)

Fig. 1 An Euler–Bernoulli beam supported by a Winkler foundation of variable modulus
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Since the left-hand side of this equation is a function of variable x , whereas the right-hand side depends only
on time variable t , it can be concluded that either side of Eq. (4) must be equal to a constant. Denoting the
aforementioned constant by ω2, one will get:

d2T

dt2
= −ω2T (5)

Solving this for T yields:

T = A1 cosωt + A2 sinωt (6)

The arbitrary constants A1 and A2 are determined from specifying the initial conditions. Equation (6) shows
that ω is the natural circular frequency of vibration of the beam. Introducing Eq. (6) into Eq. (4), one can reach:

EI
d4W

dx4
+ [

k(x) − ω2ρA
]
W = 0 (7)

In the ensuing section, the solution of Eq. (7) is explained further in detail.

3 Method of solution

From the theory of ordinary differential equations, it turns out that point x = 0 is an ordinary point for Eq. (7),
as long as the function k(x) is analytic in a neighborhood of x = 0. The analyticity requires that the Taylor
series of k(x) about x = 0 exist and converge to k(x). On the other hand, if k(x) is not analytic at x = 0, but
x4k(x) is analytic in a neighborhood of x = 0, then point x = 0 is called a regular singular point for Eq. (7)
(e.g., see [13,14]). It should be noted that the study of the solution can be confined to the neighborhood of
x = 0, with no loss of generality. In fact, if it is desired to study the solution in the vicinity of a nonzero regular
singular point, say x = x0 �= 0, the equation can be transformed into one for which the singular point is at the
origin by a simple change of variable, x − x0 = z.

The solution of Eq. (7) is closely associated with the behavior of function k(x) in the neighborhood of
x = 0, in the sense that the treatment of the problem differs for the two above-mentioned cases. Accordingly,
this paper will first present the solution corresponding to the case when x = 0 is an ordinary point for Eq. (7),
while the latter case will be treated afterward.

3.1 Solution near an ordinary point

In this case, one can assume a series solution of the form:

W (x) =
∞∑

m=0

amx
m . (8)

On substituting the series in Eq. (8) and its derivatives for W in Eq. (7), one can obtain:

∞∑

m=0

(m + 4) (m + 3) (m + 2) (m + 1) am+4x
m + k(x) − ω2ρA

EI

∞∑

m=0

amx
m = 0. (9)

In referring to the assumption that k(x) is analytic at x = 0, the Taylor series of function k(x)/EI about x = 0
exists. This Taylor series could be expressed within the following form:

k(x)

EI
=

∞∑

m=0

Qmx
m (10)

where Qm’s are the coefficients of the Taylor series. Substituting Eq. (10) into Eq. (9) yields:

∞∑

m=0

(m + 4) (m + 3) (m + 2) (m + 1) am+4x
m +

( ∞∑

m=0

Qmx
m − ω2ρA

EI

) ∞∑

m=0

amx
m = 0. (11)
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Making use of the Cauchy product property, the product of the two series can be replaced with one series. In
this regard, there is:

( ∞∑

m=0

Qmx
m

) ( ∞∑

m=0

amx
m

)

=
∞∑

m=0

gmx
m (12)

where

gm =
m∑

k=0

akQm−k . (13)

Introducing Eq. (12) to Eq. (11), one will get:

∞∑

m=0

(m + 4) (m + 3) (m + 2) (m + 1) am+4x
m +

∞∑

m=0

gmx
m − ω2ρA

EI

∞∑

m=0

amx
m = 0. (14)

Setting the coefficient of each power of x equal to zero and applying Eq. (13) gives:

(m + 4) (m + 3) (m + 2) (m + 1) am+4 − ω2ρA

EI
am +

m∑

k=0

akQm−k = 0. (15)

The successive coefficients can be obtained one by one by writing the recurrence relation first for m = 0, then
form = 1, and so forth. By doing so, the coefficients am are evaluated in terms of four coefficients: a0, a1, a2,
and a3. These four unknowns are determined by imposing the four boundary conditions that are required for
solving Eq. (2). As far as the free vibration problem is concerned, the existence of a non-trivial solution for
this system entails the determinant of its coefficients being equal to zero, whose solution yields the natural
frequencies of the problem, ω.

3.2 Solution near a regular singular point

Here, the discussion is restricted primarily to the interval x > 0. The interval x < 0 can be treated by making
the change of variable x = −z and then solving the resulting equation for z > 0. According to the Frobenius
theorem (e.g., see [13,14]), Eq. (7) has at least one solution that can be represented in the form of

W (x) = xr
∞∑

m=0

amx
m (16)

where exponent r can be any real or complex number and r is chosen so that a0 �= 0. Moreover, Eq. (7) has
solutions other than the solution represented in Eq. (16). The remaining solutions must be obtained in such a
way as to make a set of four linearly independent solutions possible. Substituting Eq. (16) and its derivatives
into Eq. (7) along with multiplying the result by x4 gives:

∞∑

m=0

(m + r) (m + r − 1) (m + r − 2) (m + r − 3) amx
m+r + x4

k(x) − ω2ρA

EI

∞∑

m=0

amx
m+r = 0. (17)

Moreover, the Taylor series of function x4k(x)/EI could be expressed in the following form:

x4k(x)

EI
=

∞∑

m=0

Lmx
m (18)

where Lm’s are the coefficients of the Taylor series. Substituting Eq. (18) into Eq. (17) yields:

∞∑

m=0

(m + r) (m + r − 1) (m + r − 2) (m + r − 3) amx
m+r +

( ∞∑

m=0

Lmx
m − ω2ρA

EI
x4

) ∞∑

m=0

amx
m+r = 0.

(19)
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Similar to the previous section, use can be made of the Cauchy product property in order to replace the product
of the two series with one series, leading to:

( ∞∑

m=0

Lmx
m

) ( ∞∑

m=0

amx
m+r

)

= xr
( ∞∑

m=0

cmx
m

)

=
∞∑

m=0

cmx
m+r (20)

where

cm =
m∑

k=0

ak Lm−k = amL0 +
m−1∑

k=0

ak Lm−k . (21)

For the sake of convenience, the function F(r) will be defined as follows:

F(r) = r (r − 1) (r − 2) (r − 3) + L0. (22)

Applying this definition to Eq. (19) gives:

∞∑

m=0

am [F (m + r) − L0] x
m+r +

∞∑

m=0

cmx
m+r − ω2ρA

EI

∞∑

m=4

am−4x
m+r = 0. (23)

Setting the coefficient of each power of x equal to zero gives (note that a0 �= 0):

F(r) = 0, (24.1)

a1F(r + 1) + a0L1 = 0, (24.2)

a2F(r + 2) + a0L2 + a1L1 = 0, (24.3)

a3F(r + 3) + a0L3 + a1L2 + a2L1 = 0, (24.4)

amF(m + r) − ω2ρA

EI
am−4 +

m−1∑

k=0

ak Lm−k = 0 (m ≥ 4) . (24.5)

In deriving the results above, use is made of Eq. (21).
In view of Eq. (22), Eq. (24.1), which is referred to as the indicial equation, has four roots, namely r1, r2, r3,

and r4. Regarding the Frobenius theory, if
(
ri − r j

)
/∈ Z for i �= j (i, j = 1, . . . , 4), where Z denotes the set

of integers, the four independent solutions of Eq. (7) have the following form:

Wi (x) = xri
∞∑

m=0

a(i)
m xm (i = 1, . . . , 4) (25)

where superscript (i) in a(i)
m denotes the series coefficients corresponding to the i th solution,Wi (x). Therefore,

in this case, the homogeneous solution assumes the form as indicated in Eq. (26):

W (x) = C1x
r1

∞∑

m=0

a(1)
m xm + C2x

r2
∞∑

m=0

a(2)
m xm + C3x

r3
∞∑

m=0

a(3)
m xm + C4x

r4
∞∑

m=0

a(4)
m xm (26)

where Ci ’s (i = 1, . . . , 4) are constant coefficients which must be determined by imposing the boundary
conditions.

Nevertheless, according to the Frobenius theory, if
(
ri − r j

)
is an integer for a couple i �= j , for the

solution corresponding to root r j , i.e., Wj (r), an additional logarithmic term must be added to the series

xr j
∑∞

m=0 a
( j)
m xm . Otherwise, the two solutions cease to be independent. For ri = r j , this additional term is

Wi (x)ln(x), while for
(
ri − r j

)
being a positive integer, it is a constant multiple of Wi (x)ln(x), where the

constant must be determined by substituting the solution into Eq. (7). However, this constant may turn out to
be zero, in which case there is no logarithmic term in the solution.

If xi is a root of multiplicity m, the other (m − 1) solutions are obtained successively by multiplying the
preceding solution by ln(x) and adding the outcome to a power series, whose coefficients are to be determined



554 M. A. Foyouzat et al.

by substituting the solution into Eq. (7). A discussion on the form of the solutions corresponding to the roots
that differ by an integer can be found in the literature (e.g., [13,14]).

If the roots of the indicial equation are complex, then they cannot be equal or differ by an integer; hence,
there are always two solutions of the form (25). If r = λ + iμ, where λ = Re(r) and μ = Im(r), then xr is
defined as:

xλ+iμ = xλ [cos (μln(x)) + i sin (μln(x))] .

The solution obtained by this method is applicable to any type of boundary condition, that is simply supported,
clamped, free, etc.

4 Solution of the forced vibration equation

Up until now, the discussion was devoted to the homogeneous solution of Eq. (2). Basically, the correspond-
ing general solution could be achieved with relative ease, using modal analysis. With regard to Sect. 3, the
eigenvalue problem of Eq. (7) has been solved for the natural frequencies and modes; hence, the displacement
w(x, t) in Eq. (2) can be given by a linear combination of modes:

w(x, t) =
∞∑

n=1

W (n)(x)Tn(t) (27)

where W (n)(x) is the shape function corresponding to the nth mode and Tn(t) is to be determined. Equation
(27) indicates that the response has been expressed as the superposition of the contributions of the individual
modes. Substituting Eq. (27) into Eq. (2) gives:

∞∑

n=1

ρAW (n)(x)
d2Tn(t)

dt2
+

∞∑

n=1

[
EI

d4W (n)(x)

dx4
+ k(x)W (n)(x)

]
Tn(t) = P(x, t). (28)

Multiplying each term in Eq. (28) byW (i)(x), integrating it over the length of the beam, and interchanging the
order of integration and summation yields:

∞∑

n=1

d2Tn(t)

dt2

∫ s

0
ρAW (i)(x)W (n)(x)dx +

∞∑

n=1

Tn(t)
∫ s

0
W (i)(x)

[
EI

d4W (n)(x)

dx4
+ k(x)W (n)(x)

]
dx

=
∫ s

0
W (i)(x)P(x, t)dx . (29)

By virtue of the orthogonality properties of modes (for proof see “Appendix”), all terms in each of the
summations on the left-hand side vanish except the one term for which i = n, leaving:

d2Tn(t)

dt2

∫ s

0
ρA

[
W (n)(x)

]2
dx + Tn(t)

∫ s

0
W (n)(x)

[
EI

d4W (n)(x)

dx4
+ k(x)W (n)(x)

]
dx

=
∫ s

0
W (n)(x)P (x, t) dx . (30)

This equation can be rewritten as:

Mn
d2Tn(t)

dt2
+ KnTn(t) = Pn(t) (31)

where

Mn =
∫ s

0
ρA

[
W (n)(x)

]2
dx, (32)

Kn =
∫ s

0
W (n)(x)

[
EI

d4W (n)(x)

dx4
+ k(x)W (n)(x)

]
dx, (33)

Pn(t) =
∫ s

0
W (n)(x)P (x, t) dx . (34)
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Moreover, dividing by Mn , Eq. (31) can be rewritten as follows (for proof see “Appendix”):

d2Tn(t)

dt2
+ ω2

nTn(t) = Pn(t)

Mn
(35)

where ωn is the natural frequency of vibration corresponding to the nth mode and is known from the homoge-
neous solution presented in the previous sections.

Thus, an infinite number of equations have been obtained, one for each mode and independent of the
equations for all other modes, which can therefore be solved separately. Substituting the solution for Tn(t) in
Eq. (27), one will arrive at the general solution of Eq. (2).

5 Illustrative examples

5.1 Example 1

Consider a beam of length s, as shown in Fig. 2, with uniform flexural stiffness EI and uniform cross-sectional
area A, resting on a foundation with modulus k(x) = k0

[
1 − β

(
x2/s2

)]
, where β is a constant and β < 1.

Both ends of the beam are simply supported. The objective is to derive an expression for the deflection response
of the beam due to the load distribution shown in Fig. 2. The load is uniformly distributed from x = s/3 to
x = s/2, varying as P (x, t) = p0 sin (Ω t) within this interval. Moreover, the beam is initially at rest, that is
w (x, 0) = 0 and ∂w (x, 0) /∂t = 0.

To begin with, one should determine the natural vibration frequencies and modes of the system. Since k(x)
is a polynomial, it is analytic everywhere, so that x = 0 is an ordinary point for Eq. (7). The Taylor series of
k(x)/EI about x = 0 is given by:

k(x)

EI
= k0

EI
− β

s2
k0
EI

x2. (36)

Hence, regarding Eq. (10), it turns out that Q0 = k0/EI , Q1 = 0, Q2 = −βk0/
(
EIs2

)
, and Qm = 0 for

m > 2. Assuming a series solution of the form presented in Eq. (8) and making use of the recurrence relation
obtained in Eq. (15), one will get:

24a4 − ω2ρA

EI
a0 + k0

EI
a0 = 0,

120a5 − ω2ρA

EI
a1 + k0

EI
a1 = 0,

(m + 4) (m + 3) (m + 2) (m + 1) am+4 − ω2ρA

EI
am + k0

EI
am − β

s2
k0
EI

am−2 = 0 (m > 1),

or

a4 =
(
ω2ρA − k0

)

24EI
a0, a5 =

(
ω2ρA − k0

)

120EI
a1,

a6 = 1

360EI

[(
ω2ρA − k0

)
a2 + β

s2
k0a0

]
,

Fig. 2 Example 1: simply supported beam on variable Winkler elastic foundation



556 M. A. Foyouzat et al.

a7 = 1

840EI

[
(
ω2ρA − k0

)
a3 + β

s2
k0a1

]
,

a8 = 1

1680EI

[(
ω2ρA − k0

)
a4 + β

s2
k0a2

]
= 1

1680EI

[(
ω2ρA − k0

)2

24EI
a0 + β

s2
k0a2

]

,

a9 =
(
ω2ρA − k0

)
a5 + β

s2
k0a3

3024EI
= 1

3024EI

[(
ω2ρA − k0

)2

120EI
a1 + β

s2
k0a3

]

,

and so forth. The above results show that each coefficient am can be expressed in terms of the four coefficients:
a0, a1, a2, and a3. Therefore, substituting am’s into Eq. (8), the general solution is obtained as follows:

W (x) = a0

[

1 +
(
ω2ρA − k0

)

24EI
x4 + βk0

360EIs2
x6 +

(
ω2ρA − k0

)2

40320 (EI)2
x8 + · · ·

]

+ a1

[

x +
(
ω2ρA − k0

)

120EI
x5 + βk0

840EIs2
x7 +

(
ω2ρA − k0

)2

362880 (EI)2
x9 + · · ·

]

+ a2

[

x2 +
(
ω2ρA − k0

)

360EI
x6 + βk0

1680EIs2
x8 + · · ·

]

+ a3

[

x3 +
(
ω2ρA − k0

)

840EI
x7 + βk0

3024EIs2
x9 + · · ·

]

(37)

or more compactly:

W (x) = a0W0(x) + a1W1(x) + a2W2(x) + a3W3(x) (38)

where

W0(x) = 1 +
(
ω2ρA − k0

)

24EI
x4 + βk0

360EIs2
x6 +

(
ω2ρA − k0

)2

40320 (EI)2
x8 + · · · , (39)

W1(x) = x +
(
ω2ρA − k0

)

120EI
x5 + βk0

840EIs2
x7 +

(
ω2ρA − k0

)2

362880 (EI)2
x9 + · · · , (40)

W2(x) = x2 +
(
ω2ρA − k0

)

360EI
x6 + βk0

1680EIs2
x8 + · · · , (41)

W3(x) = x3 +
(
ω2ρA − k0

)

840EI
x7 + βk0

3024EIs2
x9 + · · · (42)

Moreover, the simply supported ends impose the following boundary conditions on the general solution:

W (0) = 0, W ′′(0) = 0, W (s) = 0, W ′′(s) = 0 (43)

where the prime is used to indicate a differentiation with respect to x . Furthermore, Eq. (43) is a system of
four equations with four unknowns, namely a0, a1, a2, and a3. The existence of a non-trivial solution for
this system entails the determinant of its coefficients being equal to zero; therefore, the frequency equation
becomes as follows:

det

⎡

⎢⎢
⎢
⎣

W0(0) W1(0) W2(0) W3(0)

W ′′
0 (0) W ′′

1 (0) W ′′
2 (0) W ′′

3 (0)

W0(s) W1(s) W2(s) W3(s)

W ′′
0 (s) W ′′

1 (s) W ′′
2 (s) W ′′

3 (s)

⎤

⎥⎥
⎥
⎦

= 0. (44)
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Table 1 Values of the frequency parameter for the first five modes in example 1 (K0 = 500)

Reference β λ1 λ2 λ3 λ4 λ5

Present study 0.2 4.8838 6.7096 9.5613 12.6248 15.7380
0.6 4.7535 6.6570 9.5426 12.6166 15.7337

Ding [12] 0.2 4.884 6.710 9.562 12.624 15.737
0.6 4.753 6.657 9.542 12.616 15.733

Finite element method 0.2 4.884 6.711 9.561 12.617 15.749

Considering Eqs. (39)–(42), the above determinant simplifies to

det

⎡

⎢
⎢⎢
⎣

1 0 0 0

0 0 2 0

W0(s) W1(s) W2(s) W3(s)

W ′′
0 (s) W ′′

1 (s) W ′′
2 (s) W ′′

3 (s)

⎤

⎥
⎥⎥
⎦

= 0 (45)

which reduces to

W1(s)W
′′
3 (s) − W ′′

1 (s)W3(s) = 0. (46)

This equation solves to give the natural frequencies of vibration of the beam.
Ding [12], by applying a numerical method, has solved this problem for various values of β and K0 =

k0s4/EI . In Table 1, the values of the non-dimensional frequency parameter, λ = s 4
√

ω2ρA/EI , are shown for
K0 = 500 and β = 0.2 along with 0.6 for the first five modes, and the results are compared with those of Ding
[12]. To this end, as it can be observed, excellent agreement is achieved between the two sets of results.

The general solution to the imposed load can now be readily obtained, using the procedure in Sect. 4. The
loading function is given by:

P (x, t) =
{
p0 sin (Ωt) s/3 ≤ x ≤ s/2

0 0 ≤ x < s/3 and s/2 < x ≤ s
, (47)

Applying Eq. (34), one will get:

Pn(t) = p(n)
0 sin (Ωt) (48)

where

p(n)
0 =

∫ s/2

s/3
p0W

(n)(x)dx (49)

and

W (n)(x) = a0W
(n)
0 (x) + a1W

(n)
1 (x) + a2W

(n)
2 (x) + a3W

(n)
3 (x) (50)

where W (n)
i (x)’s (i = 0, 1, 2, 3) are obtained from Eqs. (39)–(42) by substituting ω = ωn . Imposing the

boundary conditions in Eq. (43) on W (n)(x) gives:

a0 = a2 = 0,

a3 = −W (n)
1 (s)

W (n)
3 (s)

a1. (51)

The value of a1 can be arbitrarily chosen as being equal to unity. Therefore, the mode shapes could be
represented in the following form:

W (n)(x) = W (n)
1 (x) − W (n)

1 (s)

W (n)
3 (s)

W (n)
3 (x). (52)
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Fig. 3 Example 1: Deflection at midspan as a function of time

Apart from this, considering Eq. (48) as well as the at-rest initial conditions, the solution of Eq. (35) will be:

Tn(t) = p(n)
0

Mn

1

ω2
n − Ω2

[
sin (Ωt) − Ω

ωn
sin (ωnt)

]
. (53)

On substituting Eqs. (52) and (53) into Eq. (27), one will arrive at the expression sought for the deflection
response of the beam due to the applied loading:

w (x, t) =
∞∑

n=1

p(n)
0

Mn

1

ω2
n − Ω2

[

W (n)
1 (x) − W (n)

1 (s)

W (n)
3 (s)

W (n)
3 (x)

][
sin (Ω t) − Ω

ωn
sin (ωnt)

]
. (54)

Figure 3 represents the deflection at midspan (x = s/2) as a function of time for the following numerical
values:

s = 4.0m, EI = 1.8 × 106 Nm2, ρA = 15.7 kg/m,

K0 = 500, β = 0.2,

p0 = 4000N, Ω = 400 rpm.

The response is plotted up to t = 4.0 s. It is noteworthy to mention that the solution converges by retaining
only the first seven modes, and the effect of higher modes becomes less pronounced.

For comparison, the foregoing problem is solved once again by applying a finite element analysis. The
dashed curve in Fig. 3 demonstrates the deflection at midspan resulted from the finite element analysis.
Basically, as it is discernible in the figure, the solid curve, which was obtained by the series solution, agrees
closely with the finite element result insofar as the two sets of results are indistinguishable. Furthermore, the
maximum absolute deflection from the exact series solution iswmax = 0.35867mm and from the finite element
solution is wmax = 0.35878mm, which are very close to each other.

The finite element solution is also employed in order to obtain the natural vibration frequencies of the
beam, and the non-dimensional results are reported in Table 1. Making comparison with the values obtained
from the series solution, the agreement between the two sets of results is clear.

5.2 Example 2

The properties of the beam to be investigated herein are shown in Fig. 4. The variation of the foundation
modulus along the beam is k(x) = k0s/ (x + 0.5s). Moreover, both ends of the beam are supposed to be
supported by linear translational and rotational point springs, of which the stiffness coefficients are as shown
in Fig. 4. The objective is to derive the frequency equation corresponding to the free vibration of the system.

It is clear that function k(x) is not analytic at point x = −0.5s. Making use of the change of variable
z = x +0.5s, the singular point for Eq. (7) is transformed into point z = 0. Introducing this change of variable
into Eq. (7) yields:

EI
d4W

dz4
+ [

κ (z) − ω2ρA
]
W = 0 (55)
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Fig. 4 Example 2: Beam on variable Winkler elastic foundation supported by linear translational and rotational springs at both
ends

where κ (z) = k0s/z. It should be noted that if one decides to directly write the Taylor series of k(x) about
x = 0 and apply a similar treatment as accomplished for example 1, the resulting series solutions will not be
convergent at all the points lying in the interval [0, s]. In principle, it can be shown that, for this example, the
radius of convergence of the series solutions obtained in this particular way is equal to the distance from x = 0
to the nearest singular point of Eq. (7), which is x = −0.5s. Thus, the radius of convergence will be equal
to 0.5s. Therefore, the solution will be correct only in the interval [0, 0.5s] and does not cover the remaining
interval [0.5s, s].

The above discussion clarifies the importance of taking into consideration the point at which the equation
is not analytic, i.e., x = −0.5s or, equivalently, z = 0. This will guarantee the convergence of the solutions
within the whole domain of the problem. Moreover, since z4κ (z) is analytic at the origin, point z = 0 is a
regular singular point for Eq. (55). The Taylor series of z4κ (z) /EI about z = 0 is:

z4κ (z)

EI
= k0s

EI
z3. (56)

Therefore, by considering Eq. (18) and replacing x with z, it turns out that L3 = k0s/EI , and Lm = 0 for
m �= 3. Substituting L0 = 0 into Eq. (22)—the indicial equation—gives:

F(r) = r (r − 1) (r − 2) (r − 3) = 0. (57)

The roots of this equation are r1 = 3, r2 = 2, r3 = 1, and r4 = 0. Accordingly, the complementary solutions
take the following forms:

W1 = z3
∞∑

m=0

amz
m, (58)

W2 = αW1 ln (z) + z2
∞∑

m=0

bmz
m, (59)

W3 = βW2 ln (z) + γW1 ln (z) + z
∞∑

m=0

cmz
m, (60)

W4 = μW3 ln (z) + ξW2 ln (z) + θW1 ln (z) +
∞∑

m=0

dmz
m (61)

where α, β, γ , μ, ξ , and θ are unknown constants. The unknown coefficients in Eqs. (58) through (61) can
be readily determined by substituting these solutions into Eq. (55). For W1, an alternate way is to apply the
recursive formulae expressed by Eqs. (24.1–5). On substituting r = r1 = 3 into these equations, one will get

a1 = a2 = 0, a3 = −k0s

360EI
a0,

am = ω2ρAam−4 − k0sam−3

EI (m + 3) (m + 2) (m + 1)m
(m ≥ 4) . (62)

a0 can be arbitrarily chosen as being equal to 1 (note that, as referred in the foregoing section, a0 is a
nonzero coefficient; thus, the arbitrary value assigned to a0 must be nonzero). ForW2, in addition to the series
coefficients, there is an unknown coefficient, α, that must be determined. Substitution of W2 into Eq. (55)
gives:
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αz4 ln (z)

[
d4W1

dz4
+ κ (z) − ω2ρA

EI
W1

]
+ 4αz3

d3W1

dz3
− 6αz2

d2W1

dz2
+ 8αz

dW1

dz
− 6αW1

+ z4
κ (z) − ω2ρA

EI

∞∑

m=0

bmz
m+2 +

∞∑

m=0

bmm (m − 1) (m + 1) (m + 2) zm+2 = 0. (63)

The expression within the brackets is equal to zero, since W1 is a solution for Eq. (55). Using Eq. (58) and
substituting the Taylor series of z4κ (z) /EI , the above equation becomes:

2α
∞∑

m=1

am−1 (2m + 1)
(
m2 + m − 1

)
zm+2 + k0s

EI

∞∑

m=3

bm−3z
m+2 − ω2ρA

EI

∞∑

m=4

bm−4z
m+2

+
∞∑

m=0

bmm (m − 1) (m + 1) (m + 2) zm+2 = 0. (64)

Rearranging the terms in the ascending order of powers of z yields

(6αa0) z
3 + (50αa1 + 24b2) z

4 +
(
154αa2 + k0s

EI
b0 + 120b3

)
z5

+
∞∑

m=4

[
2αam−1 (2m + 1)

(
m2 + m − 1

) + k0s

EI
bm−3 − ω2ρA

EI
bm−4

+ bmm (m − 1) (m + 1) (m + 2)

]
zm+2 = 0. (65)

In order for this equation to be satisfied for all z, the coefficient of each power of z must vanish independently;
for that reason:

α = b2 = 0, b3 = −k0s

120EI
b0,

bm = ω2ρAbm−4 − k0sbm−3

EI m (m − 1) (m + 1) (m + 2)
(m ≥ 4) . (66)

b0 and b1 are arbitrary and b0 must be a nonzero value. Let b0 = 1 and b1 = 0. Since coefficient α is turned
out to be zero, W2 does not contain any logarithmic terms.

By substitutingW3 and thenW4 into Eq. (55), cm’s and dm’s can be obtained in a similar manner, the results
of which will be

β = γ = 0, c3 = −k0s

24EI
,

cm = ω2ρAcm−4 − k0scm−3

EI m (m − 2) (m − 1) (m + 1)
(m ≥ 4) (67)

and

μ = ξ = 0, θ = −k0s

6EI
,

dm = 3ω2ρAdm−4 − 3k0sdm−3 + k0sam−3 (2m − 3)
(
m2 − 3m + 1

)

3EI m (m − 3) (m − 2) (m − 1)
(m ≥ 4) (68)

where the values that are assigned to c0, c1, c2, d0, d1, d2, and d3 were arbitrarily chosen (with regard to the
fact that c0 and d0 must be nonzero). In substituting the recursive relations acquired above for am , bm , cm , and
dm in Eqs. (58)–(61), the general solution will be acquired: W (z) = ∑4

i=1 CiWi .
For the unknown coefficients C1, C2, C3, and C4 to be determined, the general solution must satisfy the

boundary conditions. The elastically supported ends (at z = 0.5s and z = 1.5s) impose the following boundary
conditions on the general solution:

kt1W (0.5s) + EIW ′′′(0.5s) = 0, kθ1W
′(0.5s) − EIW ′′(0.5s) = 0,

kt2W (1.5s) + EIW ′′′(1.5s) = 0, kθ2W
′(1.5s) − EIW ′′(1.5s) = 0

(69)
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where the prime is used to indicate a differentiation with respect to z. Furthermore, Eq. (69) is a system of
four equations with four unknowns, namely C1, C2, C3, and C4. The existence of a non-trivial solution for
this system entails the determinant of its coefficients being equal to zero; therefore, the frequency equation
becomes as follows:

det

⎡

⎢
⎢
⎢⎢
⎢
⎣

kt1W1(0.5s) + EIW ′′′
1 (0.5s) kt1W2(0.5s) + EIW ′′′

2 (0.5s) kt1W3(0.5s) + EIW ′′′
3 (0.5s) kt1W4(0.5s) + EIW ′′′

4 (0.5s)

kθ1W ′
1(0.5s) − EIW ′′

1 (0.5s) kθ1W ′
2(0.5s) − EIW ′′

2 (0.5s) kθ1W ′
3(0.5s) − EIW ′′

3 (0.5s) kθ1W ′
4(0.5s) − EIW ′′

4 (0.5s)

kt2W1(1.5s) − EIW ′′′
1 (1.5s) kt2W2(1.5s) − EIW ′′′

2 (1.5s) kt2W3(1.5s) − EIW ′′′
3 (1.5s) kt2W4(1.5s) − EIW ′′′

4 (1.5s)

kθ2W ′
1(1.5s) + EIW ′′

1 (1.5s) kθ2W ′
2(1.5s) + EIW ′′

2 (1.5s) kθ2W ′
3(1.5s) + EIW ′′

3 (1.5s) kθ2W ′
4(1.5s) + EIW ′′

4 (1.5s)

⎤

⎥
⎥
⎥⎥
⎥
⎦

= 0.

(70)

The roots of this equation are the natural frequencies of vibration of the system.

6 Extension to Pasternak-type foundation

The linear elastic Winker model explained by Eq. (1) may not be accurate in a number of practical situations.
Accordingly, several alternate foundation models have been suggested to achieve some degree of accuracy.
The Pasternak foundation model that represents an extension of the Winkler foundation accounting for the
effect of in-plane shear may be accurate in certain applications [15]. According to this model, the response of
the foundation is given by Eq. (71):

q = kw − G
∂2w

∂x2
(71)

where both k and G are foundation constants. Consider the problem of an Euler–Bernoulli beam with constant
flexural stiffnessEI resting on a Pasternak-type elastic foundation, involving a spring layer of variable modulus
k(x) and a shear layer of constant modulus G. Moreover, the beam is subjected to a load P (x, t). Assuming
that the beam maintains continuous contact with the base, the governing differential equation of this problem
can be expressed as

EI
∂4w

∂x4
− G

∂2w

∂x2
+ k(x)w + ρA

∂2w

∂t2
= P (x, t) (72)

where w (x, t) is the deflection of the beam, ρ is the mass density of the material, and A is the cross-sectional
area of the beam. In order to solve Eq. (72), similar to the procedure explained for Eq. (2), one should begin
with the solution of the corresponding homogeneous equation, that is, when P (x, t) = 0. To this aim, one can
assume a solution as

w (x, t) = W (x)T (t). (73)

By pursuing a similar procedure as discussed for Eq. (2), it turns out that T (t) satisfies Eq. (6), and W (x)
is the solution of Eq. (74):

EI
d4W

dx4
− G

d2W

dx2
+ [

k(x) − ω2ρA
]
W = 0 (74)

which is reduced to Eq. (7) when G is set equal to zero. If k(x) is analytic, the solution of the above equation
will be as indicated in Eq. (8). The coefficients am are obtained in amanner similar to that discussed in Sect. 3.1,
where they appear to be satisfying the following recurrence relation:

(m + 4) (m + 3) (m + 2) (m + 1) am+4 − G

EI
(m + 1) (m + 2) am+2 − ω2ρA

EI
am +

m∑

k=0

akQm−k = 0, (75)

which is reduced to Eq. (15) when G is set equal to zero. On the other hand, if k(x) is not analytic, Eq. (74)
has at least one solution in the form represented in Eq. (16). The indicial equation corresponding to Eq. (74)
can be derived in a similar manner as performed for Eq. (7), leading to
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F(r) = 0, (76.1)

a1F (r + 1) + a0L1 = 0, (76.2)

a2F (r + 2) − G

EI
r (r − 1) a0 + a0L2 + a1L1 = 0, (76.3)

a3F (r + 3) − G

EI
r (r + 1) a1 + a0L3 + a1L2 + a2L1 = 0, (76.4)

amF (m + r) − G

EI
(m + r − 2) (m + r − 3) am−2 − ω2ρA

EI
am−4 +

m−1∑

k=0

ak Lm−k = 0 (m > 3) (76.5)

where all the parameters in Eq. (76) are previously defined in Sect. 3.2. Referring to Sect. 3.2, Eq. (76.1) is
the indicial equation of the governing differential equation (74), where F(r) is defined in Eq. (22). Solving
the indicial equation, the general solution of Eq. (74) can be obtained in a similar particular way as discussed
for Eq. (7) in the foregoing sections.

Having solved the homogeneous equation, the general solution of Eq. (72) can be derived by applying the
same procedure as discussed for Eq. (2) in Sect. 4.

7 Summary and conclusions

In the present study, an exact solution was set forth for the vibration of an Euler–Bernoulli beam supported
by a variable-modulus Winkler foundation. The method of solution was based on the power series solution of
ordinary differential equations. Two different cases were examined to treat the problem: the case wherein the
variation of the modulus is an analytic function of x , and the case in which the variation is not analytic, but
the singularity is of a regular type. The latter case was tackled by applying the Frobenius theorem. Moreover,
it was shown that the proposed method could be applied for any type of classical boundary condition (simply
supported, clamped, free, etc.)with no restriction.At the same time, several illustrative exampleswere presented
to show the procedure inmore detail. The results, where possible, were verified upon comparisonwith available
values in the literature as well as the finite element solution, and excellent agreement was obtained. Finally, it
was demonstrated that the proposed method could be readily extended to solve the more general problem of
the dynamic response of beams resting on a Pasternak-type foundation with a spring layer of variable modulus.

While at first sight it may appear unattractive to seek a solution in the form of a power series, this is actually
a convenient and useful form for a solution. Within their intervals of convergence, power series behave very
much like polynomials and are easy to manipulate both analytically and numerically. Indeed, even if one can
obtain a solution in terms of elementary functions, such as exponential or trigonometric functions, one is likely
to need a power series or some equivalent expression if they want to evaluate those functions numerically or
to plot their graphs.

Appendix

In order to prove the orthogonality property of the modes, one can substitute the nth mode shape,W (n)(x) into
Eq. (7), giving:

EI
d4W (n)

dx4
+ k(x)W (n)(x) = ω2

nρAW
(n)(x). (77)

Multiplying both sides by W (i)(x) and integrating from 0 to s results in:

EI
∫ s

0
W (i)(x)

d4W (n)

dx4
dx +

∫ s

0
k(x)W (i)(x)W (n)(x)dx = ρAω2

n

∫ s

0
W (i)(x)W (n)(x)dx . (78)
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The first integral on the left-hand side of this equation is integrated by parts; applying this procedure twice
leads to:

∫ s

0
W (i)(x)

d4W (n)

dx4
dx =

[
W (i) d

3W (n)

dx3

]s

0
−

[
dW (i)

dx

d2W (n)

dx2

]s

0
+

∫ s

0

d2W (i)

dx2
d2W (n)

dx2
dx . (79)

It is easy to see that the quantities enclosed in the brackets are zero at x = 0 and x = s if the ends of
the beam are free, simply supported, clamped, or sliding. For example, this is true at a simply supported end,
because W = 0 and the bending moment is zero (i.e., W ′′ = 0). In general, if the ends of the beam are
elastically supported, as in Example 2, the quantities in the brackets resolve into the ones having the same
order of differentiation with respect to W (i) and W (n).

For example, in regard to Fig. 4, one could write W ′′′(0) = −kt1W (0)/EI, W ′′′(s) = kt2W (s)/EI,
W ′′(0) = kθ1W ′(0)/EI, and W ′′(s) = −kθ2W ′(s)/EI . Therefore, Eq. (79) becomes:

∫ s

0
W (i)(x)

d4W (n)

dx4
dx = kt2

EI
W (i)(s)W (n)(s) + kt1

EI
W (i) (0)W (n) (0) + kθ2

EI

dW (i)(s)

dx

dW (n)(s)

dx

+ kθ1

EI

dW (i) (0)

dx

dW (n) (0)

dx
+

∫ s

0

d2W (i)

dx2
d2W (n)

dx2
dx . (80)

Substituting this equation into Eq. (78) yields:

kt2W
(i)(s)W (n)(s) + kt1W

(i) (0)W (n) (0) + kθ2
dW (i)(s)

dx

dW (n)(s)

dx
+ kθ1

dW (i) (0)

dx

dW (n) (0)

dx

+EI
∫ s

0

d2W (i)

dx2
d2W (n)

dx2
dx +

∫ s

0
k(x)W (i)(x)W (n)(x)dx = ρAω2

n

∫ s

0
W (i)(x)W (n)(x)dx . (81)

Similarly, starting with Eq. (77) written for the i th mode, multiplying both sides by W (n)(x), integrating
from 0 to s, and using integration by parts twice leads to:

kt2W
(i)(s)W (n)(s) + kt1W

(i) (0)W (n) (0) + kθ2
dW (i)(s)

dx

dW (n)(s)

dx
+ kθ1

dW (i) (0)

dx

dW (n) (0)

dx

+EI
∫ s

0

d2W (i)

dx2
d2W (n)

dx2
dx +

∫ s

0
k(x)W (i)(x)W (n)(x)dx = ρAω2

i

∫ s

0
W (i)(x)W (n)(x)dx . (82)

Subtracting Eq. (81) from Eq. (82) gives (note that ρA �= 0):

(
ω2
i − ω2

n

) ∫ s

0
W (i)(x)W (n)(x)dx = 0. (83)

Therefore, if ωi �= ωn ,
∫ s

0
W (i)(x)W (n)(x)dx = 0, (84)

and this substituted into Eq. (78) leads to
∫ s

0
EIW (i)(x)

d4W (n)

dx4
dx +

∫ s

0
k(x)W (i)(x)W (n)(x)dx = 0. (85)

Equations (84) and (85) are the orthogonality relations for the natural vibration modes. Moreover, if one
performs a summation on Eq. (78) over all modes, the result will be:

∞∑

i=1

{∫ s

0
EIW (i)(x)

d4W (n)

dx4
dx +

∫ s

0
k(x)W (i)(x)W (n)(x)dx

}
= ρAω2

n

∞∑

i=1

∫ s

0
W (i)(x)W (n)(x)dx . (86)

Applying the orthogonality property, this equation reduces to:
∫ s

0
W (n)(x)

[
EI

d4W (n)(x)

dx4
+ k(x)W (n)(x)

]
dx = ω2

n

∫ s

0
ρA

[
W (n)(x)

]2
dx . (87)
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In referring to the definitions presented in Eqs. (32) and (33), Eq. (87) may be written as:

Kn = ω2
nMn. (88)

This equation verifies the derivation of Eq. (35) from Eq. (31).
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