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Abstract This article deals with the vibration analysis of functionally graded carbon nanotube-reinforced
composite (FG-CNTRC) shell structures. The material properties of an FG-CNTRC shell are graded smoothly
through the thickness direction of the shell according to uniformdistribution and someother functionally graded
(FG) distributions (such as FG-X, FG-V, FG-OandFG-�) of the volume fraction of the carbon nanotube (CNT),
and the effective material properties are estimated by employing the extended rule of mixture. An eight-noded
shell element considering transverse shear effect according to Mindlin’s hypothesis has been employed for the
finite element modelling and analysis of the composite shell structures. The formulation of the shell midsurface
in an arbitrary curvilinear coordinate system based on the tensorial notation is also presented. The Rayleigh
dampingmodel has been implemented in order to study the effects of carbon nanotubes (CNTs) on the damping
capacity of such shell structures. Different types of shell panels have been analyzed in order to study the impulse
and frequency responses. The influences of CNT volume fraction, CNT distribution, geometry of the shell
and material distributions on the dynamic behavior of FG-CNTRC shell structures have also been presented
and discussed. Various types of FG-CNTRC shell structures (such as spherical, ellipsoidal, doubly curved
and cylindrical) have been analyzed and discussed in order to compare studies in terms of settling time, first
resonant frequency and absolute amplitude corresponding to first resonant frequency based on the impulse and
frequency responses, and the effects of CNTs on vibration responses of such shell structures are also presented.
The results show that the CNT distribution and volume fraction of CNT have a significant effect on vibration
and damping characteristics of the structure.

List of symbols

Vcnt, Vm Carbon nanotube and matrix volume fraction
Ecnt
11 and Ecnt

22 Young’s moduli of CNT in longitudinal and transverse directions
Gcnt

12 Shear modulus of CNT
Em and Gm Young’s moduli and shear modulus of the isotropic matrix
η1, η2 and η3 CNT efficiency parameters
υcnt
12 and υm Poisson’s ratio of CNT and matrix

h Thickness
nd Number of nodes in an element
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Ni Shape function corresponding to the i node
α1, α2 Curvilinear coordinates
u0i , v0i and w0i Deflection of midsurface at i th node in α1, α2 and z directions
θ1i , θ2i Rotation of normal at i th node about α2 axis and α1 axis, respectively
ε0xx , ε

0
yy and γ 0

xy In-plane strains of the midsurface in the Cartesian coordinate system
kxx , kyy and kxy Bending strains (curvatures) of the midsurface in the Cartesian coordinates system
Ai j , Bi j , Di j and As

i j Extensional, flexural-extensional coupling, bending and transverse shear stiffness,
respectively

1 Introduction

Composite shell structures are very important structural components as they support applied external forces
efficiently by virtue of their special geometrical shape. Such structures are widely used in numerous fields
such as civil, architectural, aeronautical and marine engineering and are frequently subjected to dynamic loads
that cause vibrations. So the study of vibration is an important facet in the successful application of these
structures.

Functionally graded materials (FGMs) are a new breed of composites that have a smooth and continuous
variation of material properties from one surface to another which in turn helps to mitigate the stress concen-
trations found in laminated composites. The concept of FGM can be efficiently utilized for better management
of material’s microstructure in a plate/shell structure reinforced by CNTs to achieve improved vibrational
behavior. The addition of CNT with functionally graded material (FGM) provides enriched mechanical, elec-
trical as well as thermal properties with an additional advantage of attaining desired properties by varying the
distribution and composition of CNTs.

From a technological point of view, nanostructuredmaterials have shown the prospective to become the new
generation material due to their high levels of performance and multifunctionality. Carbon nanotubes (CNTs)
and their composites have fascinated many researchers to work in this area because of their superior mechan-
ical, thermal and electrical properties. Compared with the conventional CFRP, carbon nanotube-reinforced
composites (CNTRCs) have the potential of significantly better strength and stiffness. Among the major prop-
erties exhibited by nanocomposites, their unique ability to absorb vibrations turns out to be one of the most
important features in view of numerous applications in distinct fields of engineering such as aerospace, auto-
motive and civil engineering. The ability to absorb and dissipate mechanical energy, normally referred to as
damping capacity, has become an essential feature for multifunctional composite structures.

After the discovery of carbon nanotubes by Iijima [1], most studies have focused on the material properties
of carbon nanotube-reinforced composites [2,3]. Thermo-mechanical properties of epoxy-based nanocom-
posites based on low-weight fraction of randomly oriented single- and multiwalled CNTs were investigated
by Fidelus et al. [4]. Using molecular dynamic simulation, Han and Elliott [5] obtained the elastic modulus
of composite structures under CNT reinforcement and investigated the effect of volume fraction of SWNTs
on mechanical properties of nanocomposites. Zhu et al. [6] revealed that the addition of a small amount of
carbon nanotube in the matrix can considerably improve the mechanical, electrical and thermal properties of
a polymeric composites. Odegard et al. [7] have presented a technique for developing constitutive models for
polymer composite systems reinforced with single-walled carbon nanotubes (SWCNTs). Dong-Li Shi et al.
[8] obtained the elastic properties of a CNT-reinforced composite for aligned and randomly oriented CNT
by micromechanics method to account for nanotube waviness and agglomeration. The waviness and agglom-
eration result in reduction of the stiffness of the material. Wuite and Adali [9] examined the deflection and
stress of nanocomposite-reinforced beams using a multiscale analysis. They found that a small percentage of
nanotube reinforcement leads to significant improvements in beam stiffness.

Shen et al. [10] used the idea of FGM to the nanocomposites to investigate thermal buckling and post-
buckling behavior of CNTRC plates. By using the concept of FGM, Shen [11,12] suggested that the interfacial
bonding strength can be improved by the use of a graded distribution of CNTs in the matrix and studied
the nonlinear bending behavior of simply supported, functionally graded nanocomposite plates reinforced
by SWNTs subjected to a transverse uniform or sinusoidal load in thermal environment. Zhu et al. [13]
presented bending and free vibration analyses of thin-to-moderately thick composite plates reinforced by
SWCNTs using the finite element method. Vibrational properties of functionally graded nanocomposite beams
reinforced by randomly oriented straight SWCNTs under the action of moving load were presented by Yas
and Heshmati [14]. Based on the Eshelby–Mori–Tanaka approach, Aragh et al. [15] presented the vibrational
behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Moradi-Dastjerdi et al. [16]
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reported the effect of nanotube aspect ratio on the free vibration characteristics of a functionally graded
nanocomposite cylinder reinforced by wavy single-walled carbon nanotubes (CNTs) based on a mesh-free
method. In recent times, several research works have been carried out on functionally graded carbon nanotube-
reinforced composites considering various types of distribution (uniform and functionally graded distribution).
Flexural strength and free vibration of FG-CNTRC cylindrical panels have been analyzed by Zhang et al. [17]
considering four types of distributions of uniaxial aligned reinforcements by using the mesh-free kp-Ritz
method. Liew et al. [18] identified and highlighted topics relevant to FG-CNTRC and reviewed the recent
research works that have been reported in these topics and also explored the possibility of future work in this
area. Zhang et al. [19–21] extended the element-free IMLS-Ritzmethod to obtain approximate solutions for the
free vibration of various types of moderately thick FG-CNTRC skew plates and triangular plates reinforced by
single-walled carbon nanotubes (SWCNTs). They have also presented the buckling solution of an FG-CNT-
reinforced composite thick skew plate. Phung-Van et al. [22] presented a simple and effective formulation
based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) to investigate the
static and dynamic behavior of functionally graded carbon nanotube-reinforced composite plates. Alibeigloo
and Emtehani [23] presented the elasticity solution of an FG-CNTRC plate for free vibration and the bending
behavior of an FG-CNTRC rectangular plate subjected to uniform pressure with different edges boundary
condition by using the differential quadrature method (DQM) along in-plane coordinates and state-space
analytical approach in transverse direction. Recently, Kundalwal and Meguid [24] investigated the effects of
carbon nanotube (CNT) waviness on the active constrained layer damping (ACLD) of the laminated hybrid
composite shells. Zeighampour et al. [25] derived the governing equations of the conical shell by using the
first-order shear deformable shell model.

Weng [26] predicted the effective bulk moduli, and the underlying elastic fields of a particle and a fiber-
reinforced composite whose matrix properties were graded linearly along the radial distance by means of
change of the dependent variable. Alian et al. [27] developed amultiscale modelling technique to determine the
effective elastic moduli of CNT-reinforced epoxy composites containing either well-dispersed or agglomerated
carbon nanotubes (CNTs) by employing MD simulations and the Mori–Tanaka method. Kumar and Ray [28]
investigated active damping of geometrically nonlinear vibrations of doubly curved smart sandwich shells
integrated with a patch of active constrained layer damping (ACLD) treatment. The constraining layer of
the ACLD treatment was made of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs).
Kundalwal et al. [29] studied the damping characteristics of smart laminated continuous fuzzy fiber-reinforced
composite (FFRC) shells integrated with the patches of ACLD treatment. The study revealed that the damping
characteristics of these structures can be improved significantly by using 1–3 piezoelectric composites (PZCs).

The aim of the present work is the vibration analysis of a carbon nanotube-based functionally graded com-
posite shell structure. It involves the mathematical modelling of material properties, finite element modelling
and analysis of various types of composite shell structures and the effects of CNTs on the vibration character-
istics (viz. settling time, resonant frequencies and absolute amplitudes of vibration) of such shell structures.
An eight-noded shell finite element has been formulated in a curvilinear coordinate system based onMindlin’s
hypothesis. The formulation of the shell midsurface in an arbitrary curvilinear coordinate system based on
the tensorial notation is also presented. Various types of FG-CNTRC shell structures (such as spherical, ellip-
soidal, doubly curved and cylindrical) have been analyzed and discussed based on the impulse and frequency
responses in order to study the effects of CNTs on vibration responses of such structures. After validating
the formulation, the influence of CNT volume fraction, CNT distribution, geometry of the shell structure and
material distributions on the vibration behavior of such shell structures is investigated. It is observed that the
addition of CNTs and CNT distribution has a significant influence on the elastic properties as well as on the
vibration behavior of such a structure.

2 Modelling of material properties

It is assumed that the FG-CNTRC shell structure is made from a mixture of isotropic matrix (epoxy resin) and
fibers (CNTs), and the material properties are assumed to be graded along the thickness direction according
to linear distributions (UD, FG-X, FG-V, FG-O and FG-�) of the volume fraction of carbon nanotubes.

2.1 Linear material distribution

In order to examine the effect of different distributions of the CNT on the dynamic behavior of the FG-CNTRC
shell, uniform distribution (UD) and functionally graded distributions (FG-X, FG-V, FG-O and FG-�) of
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Fig. 1 Configurations of various CNTRC spherical shells

carbon nanotubes along the thickness direction of the nanocomposite shell are considered as in Fig. 1. The
CNT volume fractions Vcnt of various types of the FG-CNTRC beam can be expressed as:

Vcnt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ∗
cnt (UD CNTRC) ,
(
1 − 2|z|

h

)
V ∗
cnt (FG-V CNTRC) ,

4|z|
h V ∗

cnt (FG-X CNTRC),

2
(
1 − 2|z|

h

)
V ∗
cnt (FG-O CNTRC),

(
1 + 2z

h

)
V ∗
cnt (FG-� CNTRC).

(1)

Here, V ∗
cnt depends on density and mass fractions of both matrix and CNT,

V ∗
cnt

= wcnt

wcnt + ρcnt
ρm

−
(

ρcnt
ρm

)
wcnt

, (2)

where wcnt is themass fraction of the nanotube and ρcnt and ρm are the densities of carbon nanotube andmatrix,
respectively. For this linear material property variation, material properties can be obtained by substituting the
value of Vcnt in Eq. (1).

2.2 Extended rule of mixture

To determine the effective material properties of the CNTRC shell the extended rule of mixture is employed,
which can be expressed as [11]

E11 = η1VcntE
cnt
11 +VmEm,

η2

E22
= Vcnt

Ecnt
22

+ Vm
Em

,

η3

G12
= Vcnt

Gcnt
12

+ Vm
Gm

. (3)

Since Poisson’s ratio depends weakly on the position, we assume υ12 to be:

υ12 = V ∗
cntυ

cnt
12 + Vmυm .
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Fig. 2 a Geometry of shell structure in Cartesian coordinates, b coordinate system of laminate and c eight-noded shell element

2.3 Finite Element formulation and analysis of FG-CNTRC shell structure

The stress-resultant-type Koiter’s shell theory [30] has been considered in the present finite element (FE)
formulation of the composite shell structures. The effect of shear deformation to Koiter shell theory based on
Mindlin’s hypothesis [31,32] has also been considered in the present FE formulation.

2.3.1 Geometry of midsurface

The shell geometry used in the present formulation has been developed using a curvilinear coordinate system
with the midplane of the shell assumed to be the reference surface as shown in Fig. 2a. The normal direction
coordinate to the middle surface of the shell has been represented by z. A set of parametric equations can be
defined in the following form:

X = X (α1, α2); Y = Y (α1, α2); Z = Z(α1, α2)

where (α1, α2) are two independent coordinates in the parametric space of the midsurface curvilinear coor-
dinates of the shell. The reference surface or the shell midsurface can be described in the global Cartesian
coordinates in terms of the position vector as

r(α1, α2) = X (α1, α2)
∧
i +Y (α1, α2)

∧
j +Z(α1, α2)

∧
k (4)

where î, ĵ and k̂ are unit vectors along the X , Y and Z axis, respectively.
The tangent vectors to the coordinate curves at a point can be represented as the basis vectors

r,1 = ∂r

∂α1
, and r,2 = ∂r

∂α2
. (5)

Letting (X, Y, Z) = (x1, x2, x3) and (α1, α2) = (u1, u2), the position (�r) and tangent ( �Eα) vectors can be
written in the form of summation as follows:

�r = �r(u1, u2) = xi (u1, u2)êi , �Eα = ∂�r
∂uα

= ∂xi

∂uα
êi , α = 1, 2. (6)
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The unit normal vector to the tangent plane of any point on the reference surface can be expressed as

ên = n̂(α1, α2) = �E1 × �E2
∣
∣
∣ �E1 × �E2

∣
∣
∣

= r1 × r,2
|r1 × r2| . (7)

The scalar product of a vector joining two points on the middle surface (α1, α2) and (α1 + dα1, α2 + dα2) is
given as

ds2 = d�r · d�r = (r,1dα1 + r,2dα2) · (r,1dα1 + r,2dα2) = ∂�r
∂uα

· ∂�r
∂uβ

duαduβ = aαβdu
αduβ (8)

where aαβ = ∂�r
∂uα · ∂�r

∂uβ = ∂xi
∂uα

∂xi

∂uβ with α, β = 1, 2 is called two-dimensional surface metric tensor. The scalar
product of the arc length on the shell midsurface can also be written in the quadratic form (i.e., called first
fundamental form of surface) as

ds2 = r,1 · r,1(dα1)
2 + 2r,1 · r,2dα1dα2 + r,2 · r,2(dα2)

2

= A2
1(dα1)

2 + 2A12dα1dα2 + A2
2(dα2)

2

= a11(dα1)
2 + 2a12dα1dα2 + a22(dα2)

2. (9)

The conjugate metric tensor (aαβ) is defined such that aαβaβγ = δα
γ , where δα

γ is the Kronecker delta. A point

is considered on the shell midsurface with the unit normal vector (n̂) at this point. The unit tangent vector (T̂ )
to the curve which lies in the tangent plane to the surface of that point can be written as

T̂ = d�r
ds

. (10)

The curvature vector at the point of consideration can be expressed as

�K = d�r
ds

. (11)

A unit vector on the surface which is perpendicular to both the surface tangent vector (T̂ ) and surface normal
vector (n̂) can be written as

û = n̂ × T̂ (12)

where T i , ui and ni form a right-handed system. The curvature vector ( �K ) in the component form can be
written as

�K = dT̂

ds
= k(nor)n̂ + k(geo)û = �Kn + �Kg (13)

where k(nor) and k(geo) are called normal and geodesic curvatures, respectively. The normal curvature can be
determined as follows:

k(nor) = −T̂ · dn̂
ds

= −d�r
ds

· dn̂
ds

⇒ k(nor)ds
2 = −d�r · dn̂ = e(du1)2 + 2 f du1du2 + g(du2)2

= b11(du
1)2 + 2b12du

1du2 + b22(du
2)2

= bαβdu
αduβ (14)

where bαβ = − ∂�r
∂uα · ∂ n̂

∂uβ with α, β = 1, 2 is called the curvature tensor and bαγ bαβ = bγ
β is called an associated

curvature tensor. The normal curvature can also be expressed as

k(nor) = bαβduαduβ

ds2
= bαβduαduβ

aαβduαduβ
. (15)

The principals’ curvatures k(nor1) and k(nor2) are the eigenvalues of the matrix with elements of bγ
β = bαγ bαβ .
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So, the characteristic equation for the eigenvalue problem can be written as

(bαβ − k(nor)aαβ)λαλβ = 0. (16)

The maximum and minimum normal curvatures can be determined in those directions λα ,

(bαβ − k(nor)aαβ)λα = 0. (17)

Therefore, k(nor) must satisfy the following determinant:
∣
∣(bαβ − k(nor)aαβ)

∣
∣ = 0,

⇒ k2(nor) − bαβaαβk(nor) + (b11b22−b12b21)
(a11a22−a12a21)

= 0,
⇒ k2(nor) − (k(nor1) + k(nor2))k(nor) + k(nor1)k(nor2) = 0

(18)

where k(nor1), k(nor2) is the total or Gaussian curvature and 1
2 (k(nor1) + k(nor2)) is a mean curvature which

are invariants. For an orthogonal curvilinear coordinate system, the surface metric tensor (aαβ) and curvature
tensor (bαβ) can be written as given by Wempner and Talaslidis [33]

aαβ =
{
aαα if α = β
0 if α �= β

and bαβ =
{
bαα if α = β
0 if α �= β

. (19)

The normal curvatures of the shell midsurface in orthogonal curvilinear coordinates can be expressed using
Eqs. (9) and (15) as

1

R1
= b11

a11
= − ên .r,11

A2
1

and
1

R2
= b22

a22
= − ên .r22

A2
2

(20)

where A1 = √
r,1.r1 and A2 = √

r,2.r,2 are the Lamé parameters, and the twist curvatures of the shell
midsurface can be obtained as

1

R12
= −

∧
en .r,12
A1A2

. (21)

2.3.2 Isoparametric mapping

Figure 3 shows how Cartesian coordinates are converted into curvilinear coordinates, and it is again mapped
into isoparametric form. The curvilinear coordinates (α1, α2) of any pointwithin an elementmay be represented
as

α1 =
nd∑

i=1

Niα1i ; α2 =
nd∑

i=1

Niα2i . (22)

Fig. 3 Mapping of coordinates
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The displacement components on the shell midsurface of any element can be given by

{
u0 v0 w θ1 θ2

}T =
nd∑

i=1

Ni
{
u0i v0i wi θ1i θ2i

}T
. (23)

In the present analysis, shape functions of an eight-node serendipity element are used which are given in the
“Appendix”.

2.3.3 Strain–displacement relations

Neglecting the normal strain component in the thickness direction, the five strain components of a doubly
curved shell may be expressed as

[
εxx εyy γxy γyz γxz

]T = [
ε0xx ε0yy γ 0

xy γ 0
yz γ 0

xz

]T + z
[
kxx kyy kxy 0 0

]T
. (24)

The in-plane and transverse strain–displacement relations may be derived based on the present formulation
and Koiter’s shell theory [30].

In-plane/bending strain–displacement matrix

The strain components on the midsurface of the shell element are

{ε} = [
ε0xx ε0yy γ 0

xy kxx kyy kxy
]T

. (25)

By using an isoparametric eight-noded shell element shown in Fig. 2c, the displacement component on the
shell midsurface at any point within an element can be expressed as

{
u0 v0 w θ1 θ2

}T = [N ]
{
de
}
. (26)

The midsurface strains and curvatures from Koiter’s shell theory are:

ε0xx = 1

A1

∂u

∂α1
+ v

A1A2

∂A1

∂α2
+ w

R1
, (27)

ε0yy = 1

A2

∂v

∂α2
+ u

A1A2

∂A2

∂α1
+ w

R2
, (28)

γ 0
xy = 1

A1

∂v

∂α1
+ 1

A2

∂u

∂α2
− u

A1A2

∂A1

∂α2
− v

A1A2

∂A2

∂α1
+ 2w

R12
, (29)

kyy = 1

A2

∂θ2

∂α2
+ θ1

A1A2

∂A2

∂α1
− 1

2R12

(
1

A1

∂v

∂α1
− 1

A2

∂u

∂α2
− u

A1A2

∂A1

∂α2
+ v

A1A2

∂A2

∂α1

)

, (30)

kxy =
[ 1

A1

∂θ2
∂α1

+ 1
A2

∂θ1
∂α2

− θ1
A1A2

∂A1
∂α2

− θ2
A1A2

∂A2
∂α1

−
1
2

(
1
R1

− 1
R2

) (
1
A1

∂v
∂α1

− 1
A2

∂u
∂α2

− u
A1A2

∂A1
∂α2

+ v
A1A2

∂A2
∂α1

)

]

. (31)

By using eight-noded isoparametric shape functions for Eq. (25), the strain components at any point on the
shell midsurface can be expressed as

{ε} =
8∑

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
A1

∂Ni
∂α1

Ni
A1A2

∂A1
∂α2

Ni
R1

0 0

Ni
A1A2

∂A2
∂α1

1
A2

∂Ni
∂α2

Ni
R2

0 0

1
A2

∂Ni
∂α2

− Ni
A1A2

∂A1
∂α2

1
A1

∂Ni
∂α1

− Ni
A1A2

∂A2
∂α1

2Ni
R12

0 0

− 1
2

1
R12

(
1
A2

∂Ni
∂α2

+ Ni
A1A2

∂A1
∂α2

)
1
2

1
R12

(
1
A1

∂Ni
∂α1

+ Ni
A1A2

∂A2
∂α1

)
0 1

A1
∂Ni
∂α1

Ni
A1A2

∂A1
∂α2

1
2

1
R12

(
1
A2

∂Ni
∂α2

+ Ni
A1A2

∂A1
∂α2

)
− 1

2
1
R12

(
1
A1

∂Ni
∂α1

+ Ni
A1A2

∂A2
∂α1

)
0 Ni

A1A2
∂A2
∂α1

1
A2

∂Ni
∂α2

C0

(
1
A2

∂Ni
∂α2

+ Ni
A1A2

∂A1
∂α2

)
− C0

(
1
A1

∂Ni
∂α1

+ Ni
A1A2

∂A2
∂α1

)
0 1

A2
∂Ni
∂α2

− Ni
A1A2

∂A1
∂α2

1
A1

∂Ni
∂α1

− Ni
A1A2

∂A2
∂α1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0i
v0i
wi
θ1i
θ2i

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

{ε} = [
Be
b
] {

de
}
. (32)

[
Be
b

]
is the element in-plane strain–displacement matrix, and Co = 1

2

(
1
R1

− 1
R2

)
.
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2.3.4 Transverse strain–displacement matrix

The transverse shear strain vector of a doubly curved shell element based on FSDT can be represented as

{
γyz
γxz

}

=
{

θ2 + 1
A2

∂w
∂α2

− u
R12

− v
R2

θ1 + 1
A1

∂w
∂α1

− u
R1

− v
R12

}

. (33)

Also the transverse shear strain at any point on the shell midsurface can be represented as

{
γyz
γxz

}

=
nd∑

k=1

[− Ni
R12

− Ni
R2

1
A2

∂Ni
∂α2

0 Ni

− Ni
R1

− Ni
R12

1
A1

∂Ni
∂α1

Ni 0

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0i
v0i
wi
θ1i
θ2i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (34)

{
γyz
γxz

}

= [
Be
s

] {
de
}
. (35)

[
Be
s

]
is the element transverse strain–displacement matrix.

2.3.5 Equation of motion

The dynamic finite element formulation has been derived by usingHamilton’s principle after solving the energy
expression, and the equation of motion can be written as

[
Me

uu

] {
d̈e
}+ [

Ke
uu

] {
de
} = {

Fe} . (36)

Equation (36) is the dynamic finite element equation of one element.

Element Mass matrix

The element mass matrix can be expressed as:

[Me] =
∫ 1

−1

∫ 1

−1
[N ]T [ρ] [N ] |J | dξdη (37)

where [ρ] and [N ] are density and shape function matrix, respectively, which are given in the ‘Appendix.’
The final form of the elemental mass matrix can be expressed as

[
Me

uu

] =
1∫

−1

1∫

−1

h/2∫

−h/2

ρ [N ]T [N ] dz |J | dξdη. (38)

[
Ke
uu

]
is the element structural stiffness matrix which is given by

[
Ke
uu

] =
∫

V

[
Be
u

]T
[C]

[
Be
u

]
dV (39)

where
[
Ke
uu

] = [
Ke
bb

]+ [
Ke
ss

]
and the matrices

[
Be
u

]
and [C] are presented in the ‘Appendix.’

The elements of ABD can be determined from the following integral forms:

(
Ai j Bi j Di j

) =
∫ + h

2

− h
2

(
1zz2

)
Qi jdz,

(
As
i j

)
=
∫ + h

2

− h
2

ks Qi jdz.
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The shear correction factor of out-of-plane shears is denoted by ks (taken as 5/6 for the present analysis).
The shell structure is divided into ‘n’ number of layers in thickness direction as shown in Fig. 2b in order to
determine the elements of ABD matrix,

Ai j =
n∑

k=1

(
Qi j

)

k (zk − zk−1) ,

Bi j = 1

2

n∑

k=1

(
Qi j

)

k

(
z2k − z2k−1

)
, Here, i = 1, 3 and j = 1, 3

Di j = 1

3

n∑

k=1

(
Qi j

)

k

(
z3k − z3k−1

)
,

(
Qi j

)

k is a transformed stiffness matrix at the midpoint of each layer which is a function of volume fraction
of carbon fiber, ply angle, and power law index and Bi j �= 0 due to material asymmetry.

[
Ke
bb

]
is the element in-plane/bending stiffness matrix.

[
Ke
bb

] =
∫

V

[
Be
b

]T
Db
[
Be
b

]
dV,

[
Ke
bb

] =
∫

�

[
Be
b

]T
[
A B
B D

]
[
Be
b

]
d�. (40)

[
Ke
ss

]
is the element transverse shear stiffness matrix,

[
Ke
ss

] =
∫

V

[
Be
s

]T
Ds
[
Be
s

]
dV,

[
Ke
ss

] =
∫

�

[
Be
s

]T [
Ds
] [

Be
s

]
d�, (41)

{Fe} is the element external mechanical force vector

{
Fe} =

∫

A

[N ]T
{
f es (x, y)

}
dA. (42)

Damping in large systems can be modelled using Rayleigh damping or proportional damping and can be
calculated as given by Chowdhury and Dasgupta [34] for a large degree of freedom system. Here the [C]
matrix is found such that

{X}T [C] {X} =

⎡

⎢
⎢
⎢
⎢
⎣

α + βω2
1 0 · · · 0

0 α + βω2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 α + βω2

N

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

2ξ1ω1 0 · · · 0

0 2ξ2ω2
. . .

...
...

. . .
. . . 0

0 · · · 0 2ξNωN

⎤

⎥
⎥
⎥
⎦

(43)

where {X} is the eigenvector of the system and α and β are the coefficients to be determined for N simultaneous
equations.

ξi = α

2ωi
+ βωi

2
. (44)

ωi and ξi are i th modal natural frequency and damping ratio, respectively. For any linear system, only few
modes are enough to study its overall dynamics, so in the present study first 3% of the total modes are taken as
significant mode and 2.5 times of the chosen modes (and beyond the significant modes) are used. The damping
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ratio of the first and last significant mode is taken as 0.01 and 0.03, respectively, after which all the damping
ratios are either interpolated or extrapolated depending on their sequence as follows:

ξi = ξm − ξ1

ωm − ω1
(ωi − ω1) + ξ1; 1 ≤ i ≤ m,

ξi = ξm − ξ1

ωm − ω1
(ωm+i − ω1) + ξ1; m ≤ i ≤ 2.5m. (45)

After assembly of elemental matrices, the equation of motion of whole structure can be represented as

[M]
{
d̈
}+ [C]

{
ḋ
}+ [K ] {d} = {F} . (46)

2.4 Frequency response analysis

A frequency response analysis is also carried out. In Eq. (42) if {F} takes the form {F0} eiωt , {d} is likely to take
the form {d0} eiωt , where F0, ω, d0 are the amplitude of excitation force, exciting frequency and displacement
vector achievable due to the excitation, respectively. The frequency-dependent responses can be obtained as

|{d}| =
∣
∣
∣
[− [M]ω2 + i [C]ω + [K ]

]−1 {F0}
∣
∣
∣ . (47)

3 Results and discussion

Based on the finite element formulation, a computer code has been developed for the vibration analysis of FG-
CNTRC shell structures. The non-dimensional central deflection and non-dimensional fundamental frequency
of simply supported laminated spherical shells are obtained from the present code which are presented in
Tables1 and 2. It has been observed from Tables 1 and 2 that results are in excellent agreement with already
published results [31,32]. After validation, various results are presented for vibration analysis of a functionally
graded carbon nanotube-reinforced composite (FG-CNTRC) shell structure. Transient and frequency response
analysis of different types of FG-CNTRC simply supported shell structures (i.e., spherical, ellipsoidal, doubly
curved and cylindrical) is carried out to investigate the effects of some of the important parameters.

Table 1 Comparison of non-dimensional frequency

Ply orientation a/h R/a

Source 1 2 5 10 20 50 100 500

[0/90] 10 Present 13.834 10.4314 9.1644 8.96641 8.91575 8.89989 8.89488 8.87028
Refs. [31,32] 14.481 10.749 9.2302 8.9841 8.9212 8.9035 8.9009 8.9001

100 Present 124.21 67.3348 28.811 16.6965 11.8366 10.0591 9.77558 9.65602
Refs. [31,32] 125.93 67.369 28.826 16.706 11.841 10.063 9.7825 9.6873

[0/90]s 10 Present 14.3219 12.8041 12.3229 12.251 12.2326 12.2264 12.2238 12.2083
Refs. [31,32] 16.172 13.447 12.437 12.28 12.24 12.229 12.228 12.226

100 Present 124.056 68.0219 30.9927 20.347 16.627 15.4223 15.2405 15.1662
Refs. [31,32] 126.33 68.294 31.079 20.38 16.638 15.426 15.245 15.184

For simply supported laminated spherical shells under uniformly distributed load

Table 2 Comparison of non-dimensional central deflection

Ply orientation a/h R/a

Source 1 2 5 10 20 50 100 500

[0/90] 10 Present 6.18987 13.3927 18.1998 19.1372 19.3846 19.4548 19.4648 19.4681
Refs. [31,32] 6.054 12.668 17.994 19.069 19.365 19.452 19.464 19.469

100 Present 0.06893 0.28439 1.75376 5.54788 11.2796 15.7164 16.6452 16.9657
Refs. [31,32] 0.0718 0.2855 1.7535 5.5428 11.273 15.714 16.645 16.98

[0/90]s 10 Present 5.82537 8.85739 10.0072 10.1884 10.2345 10.2474 10.2493 10.2499
Refs. [31,32] 4.8366 8.0517 9.8249 10.141 10.222 10.245 10.249 10.251

100 Present 0.0694 0.28527 1.54422 3.73305 5.6687 6.61625 6.77747 6.8307
Refs. [31,32] 0.0715 0.2844 1.5358 3.7208 5.6618 6.6148 6.7772 6.8331

For simply supported laminated spherical shells under uniformly distributed load
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3.1 Material properties of FG-CNTRC

A mathematical modelling for material properties is carried out in order to determine the mechanical prop-
erties of the FG composite laminates. First of all, the effective material properties of a FG-CNTRC shell
are determined. Poly {(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]}, referred as PmPV,
is considered as the matrix in the present work, and the material properties of the matrix are considered as
Em = 2.1 GPa, νm = 0.34 and ρm = 1150 kg/m3 [21]. Han and Elliott [5] have selected a low value of
Young’s modulus, as those of Odegard et al. [7], for (10,10) SWCNTs assuming the effective thickness of
CNTs to be 0.34nm or more. As reported recently, the effective thickness of SWCNTs should be smaller than
0.142nm to satisfy the Vodenitcharova–Zhang criterion [35]. Therefore, all material properties and effective
thickness of SWCNTs used for the present analysis are properly selected according to the MD simulation
results of Shen and Zhang [10]. So, considering (10, 10) SWCNTs for reinforcement, their material properties
at T = 300K (room temperature) associated with the effective wall thickness (h = 0.067nm) are considered
to be as follows [10]:

Ecnt
11 = 5.64665 GPa, Ecnt

22 = 7.0800 GPa, Gcnt
12 = 1.9445GPa, νcnt12 = 0.175, ρcnt = 1400 kg/m3.

The CNT efficiency parameters appearing in Eq. (3) are evaluated by matching the Young’s moduli Ecnt
11 , E

cnt
22

and shear modulus Gcnt
12 of CNTRCs obtained from the extended rule of mixture to ones predicted from MD

simulations in [5]. For three values of nanotube volume fractions, the values of η1, η2 and η3 are given in
Table 3. As there are no MD results available for shear modulus G12 in [5] so presently it is assumed that
η2 = η3 and G23 = G13 = G12 [11]. Finally, the extended rule of mixture is employed to obtain the effective
material properties of the FG-CNTRC shell. The volume fraction of carbon nanotubes is graded using uniform
distribution (UD) and functionally graded distributions (FG-X, FG-V, FG-O and FG-�) along the thickness of
the shell. Figure 4 shows the variation of the carbon nanotube volume fraction along the thickness of the shell
for various CNT distributions. It is also observed that the obtainedmaterial properties follow the corresponding
trends of CNT distributions (such as UD, FG-X, FG-V, FG-O and FG-�).

After determining the material properties, finite element modelling of the spherical shell was carried out
by dividing it into 100 elements. After finite element modelling of the shell structure, impulse and frequency
response analysis for a sixteen-layered laminate is performed. The analysis has been carried out by varying

Table 3 Comparison of Young’s moduli for PmPV/CNT composite reinforced by SWCNT (10, 10) at T0 = 300K

Vcnt MD [5] Rule of mixture [21]

E11 (Gpa) E22 (Gpa) E11 (Gpa) η1 E22(Gpa) η2

0.11 94.8 2.2 94.57 0.149 2.2 0.934
0.14 120.2 2.3 120.09 0.150 2.3 0.941
0.17 145.6 3.5 145.08 0.149 3.5 1.381

Fig. 4 Variation of CNT volume fraction through the thickness of shell for various CNT distributions
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Table 4 Parameters and their variations used for the analysis

Parameters Variations

SWCNT volume fraction (%age) 11, 14, 17
CNT distribution UD, FG-V, FG-X, FG-O and FG-�
a/h 10, 100
R/a 1, 2, 5, 10, 50,100, 500

Fig. 5 Transient response of system due to impulse load for spherical shell with FG-X distribution

four parameters, namely SWCNT volume fraction, CNT distribution, a/h, and R/a as mentioned in Table 4.
The results for impulse and frequency responses of an FG-CNTRC spherical shell are presented in Sects. 3.2
and 3.3, and a comparative study is also carried out for other types of shells which is described in Sect. 3.4.

3.2 Transient responses due to impulse loading

Impulse loading is applied at middle node in transverse direction, and a constant load 10N is applied up to
10 time steps. Then, the transient response due to the load is obtained by the Duhamel integration technique,
as any kind of vibration can be described as weighted combination of all possible fundamental modes for a
linear system. The response in global coordinate is obtained by using the most significant mode. A parameter
(i.e., settling time) is used in this present work for a comparative study of vibration damping. For the present
study, the settling time is taken as the time at which the amplitude of response of vibration settles to 5% of the
maximum amplitude.

Figure 5 shows the transient responses of the spherical shell structure due to impulse load for an FG-X-type
distribution considering different CNT volume fractions. It is evident from Fig. 5 that as the volume fraction
of CNT increases the settling time decreases. So it is obvious from Fig. 5 that due to the addition of CNTs
an increase in the damping capacity of the FG-CNTRC shell can be achieved. Figure 6 represents the effects
of CNT volume fractions and shell geometry on the settling time (i.e., damping) of the thin shell spherical
structure for FG-X distribution. In Fig. 6, the settling time increases rapidly for deep shell region and then
becomes constant for a shallow shell and plate. Figure 6 also depicts that as the CNT volume fraction increases,
the settling time decreases quickly which shows that CNTs have prominent effect on the settling time and hence
on the damping. Figure 7 represents the effects of CNT distributions and shell geometry on the settling time of
the thin spherical shell structure for 11% CNT volume fraction. In Fig. 7, the settling time increases rapidly
for the deep shell region and then becomes constant for the shallow shell and plate region for all types of CNT
distributions. It is also observed from Fig. 7 that the FG-V distribution has the highest settling time and the
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Fig. 6 Settling time with R/a ratio considering a/h = 100 and FG-X distribution for different CNT volume fractions

Fig. 7 Settling time with R/a ratio considering a/h = 100 and Vcnt = 11% for different CNT distributions

FG-� distribution has the lowest settling time. It is also clearly observed from Figs. 5, 6 and 7 that the settling
time decreases with inclusions of CNTs, and the best CNT distribution is FG-� which gives the least settling
time compared to the other CNT distributions considered.

3.3 Frequency response analysis of FG-CNTRC shell structures

A frequency response analysis has been carried out in order to study the effects of CNTs on the absolute
transverse displacements of the midpoint of the shell and resonant frequencies. A concentrated load with an
amplitude of 10 N is applied at the midnode in the transverse direction in order to perform frequency response
based on Eq. (47) for various volume fractions of CNT.

Figure 8 depicts the frequency response of the spherical shell structure for different values of CNT volume
fractions for a certain geometry (thick and deep); i.e., R/a = 5 and a/h = 10. It is clearly observed from
Fig. 8 that there are clear variations in each curve, peak value of each curve and corresponding frequency of
excitation (corresponding to the damped natural frequency) for a certain value CNT volume fraction. Figure 8
also reveals that as the volume fraction of CNT increases from 11 to 17% the absolute amplitude decreases,
whereas the corresponding resonant frequency increases. A similar trend is observed in Fig. 9 for various CNT
distributions; the absolute amplitude follows a decreasing trend for all types of distribution, and it is more
prominent in case of FG − �-type distribution where a minimum value of absolute amplitude and maximum
value of corresponding resonant frequency are observed. Figure 10 shows the variation of absolute amplitude
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Fig. 8 Absolute amplitude with excitation frequency considering R/a = 5, a/h = 10 and FG-X distribution for various CNT
volume fractions

Fig. 9 Absolute amplitude with excitation frequency considering R/a = 5, a/h = 10 and FG-X distribution for various CNT
distributions

with respect to shell geometry (R/a), for FG-X distribution considering different CNT volume fractions of the
thin spherical shell structures. From Fig. 10, it is observed that the absolute amplitude drastically decreases
with an increase in CNT volume fraction. It can also be seen from Fig. 10 that there is rapid variation of the
absolute amplitude with respect to R/a for the deep shell region, and afterward (for shallow to plate region)
it has almost negligible variation of the absolute magnitude. So it is cleared from Fig. 10 that the variation
of the carbon nanotube volume fraction has ample effect on the absolute amplitude and the corresponding
resonant frequency. Figure 11 depicts the variation of the absolute amplitude with respect to R/a, for several
CNT distributions considering 11% CNT volume fraction for a thin shell. From Fig. 11, it is observed that
the absolute displacement has more variation in the deep shell region and it has less variation for an other
region (i.e., shallow shell and plate). Figure 11 also reveals that various CNT distributions have significant
effect on absolute displacement; specifically FG-V and FG-� distributions attain the highest and lowest value
of absolute displacement, respectively. It is also clearly observed from Figs. 8, 9, 10 and 11 that the absolute
amplitude of frequency response decreases with inclusions of CNTs, and the best CNT distribution is FG-�
which gives the least absolute amplitude andmore resonant frequency compared to the other CNT distributions
considered.
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Fig. 10 Absolute amplitude with R/a ratio considering a/h = 100 and FG-X distribution for various CNT volume fractions

Fig. 11 Absolute amplitude with R/a ratio considering a/h = 100 and Vcnt = 11% for various CNT distributions

3.4 Comparative study of different types of FG shell structures

For the comparative study, various types of simply supported FG shell structures on the square base (a = b)
such as ellipsoidal (R1 = 1.5R2), doubly curved (R1 = 2R2), spherical (R1 = 1.5R2), and cylindrical
(R2 = 1.5R2) have been analyzed for impulse and frequency responses in terms of settling time, first resonant
frequency and absolute amplitude corresponding to the resonant frequency. The thicknesses of these shells are
considered the same as the spherical shell structure. Table 5 represents the comparison of settling times for
various types of shell structures considering different volume fractions of CNTs for a particular type of shell
(R/a = 5, a/h = 10 and 100). It is observed from Table 5 that the settling time required for the impulse
response is more in case of a cylindrical shell than that of the other types of shells considered, whereas it is
least in case of a doubly curved shell as it is stiffer than other types of shell. It has also been observed from
Table 5 that settling times for the impulse responses of the above four types of shell decrease as the volume
fraction of CNT increases. The comparative study of the first resonant frequency and the absolute amplitude
corresponding to the first resonant frequency of various types of shell structures is also presented in Table 6.
From Table 6, it is observed that the maximum value of the first resonant frequency and minimum value of the
absolute amplitude corresponding to the first resonant frequency occur for a doubly curved shell as it is stiffer
than the other type of shell. It has also been observed from Table 6 that for all types of shell the first resonant
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Table 5 Settling time variation for different types of shell (for FG-X distribution)

Vcnt(%) a/h R/a Settling time in seconds (×10−3 s)

Spherical Cylindrical Ellipsoidal Doubly curved

11 10 5 1.0460 1.0457 1.0417 1.0391
10 1.0416 1.0415 1.0406 1.0400
50 1.0402 1.0402 1.0402 1.0402

100 1.0402 1.0402 1.0402 1.0402
100 5 48.771 59.692 46.903 43.543

10 59.496 63.547 58.599 56.812
50 64.741 64.923 64.695 64.597

100 64.920 64.963 64.909 64.885
14 10 5 0.9940 0.9935 0.9900 0.9877

10 0.9896 0.9894 0.9886 0.9880
50 0.9882 0.9882 0.9881 0.9881

100 0.9881 0.9881 0.9881 0.9881
100 5 45.365 54.110 43.775 40.905

10 53.925 56.994 53.220 51.818
50 57.867 58.001 57.832 57.759

100 57.999 58.031 57.991 57.973
17 10 5 0.8365 0.8364 0.8331 0.8309

10 0.8331 0.8331 0.8323 0.8318
50 0.8321 0.8321 0.8320 0.8320

100 0.8320 0.8320 0.8320 0.8320
100 5 39.159 48.186 37.634 34.894

10 48.029 51.421 47.284 45.800
50 52.430 52.584 52.391 52.308

100 52.582 52.619 52.573 52.552

Table 6 Absolute amplitude and corresponding first resonant frequency for different types of shell

Parameters Vcnt (%) Type of shell

Spherical Cylindrical Ellipsoidal Doubly curved

First resonant frequency
(rad/sec)

11 4.9 × 104 4.9 × 104 4.92 × 104 4.92 × 104

14 5.14 × 104 5.14 × 104 5.16 × 104 5.18 × 104

17 6.12 × 104 6.12 × 104 6.14 × 104 6.16 × 104

Absolute amplitude
corresponding to first
resonant frequency (m)

11 10.7 × 10−5 10.81 × 10−5 10.61 × 10−5 10.59 × 10−5

14 9.65 × 10−5 9.68 × 10−5 9.567 × 10−5 9.55 × 10−5

17 6.854 × 10−5 6.896 × 10−5 6.795 × 10−5 6.707 × 10−5

For R/a = 5, a/h = 10 and FG-X distribution

frequency increases and the absolute amplitude corresponding to the first resonant frequency decreases as the
volume fraction of CNT increases. From Tables 5 and 6, it has been observed that the settling time decreases
and resonant frequency increases for various types of FG shell structures with the inclusion of CNTs in host
structures. Thus, the results signify that addition of CNTs increases the damping capacity of the structures.

4 Conclusions

In this article, a vibration analysis of various functionally graded carbon nanotube-reinforced composite (FG-
CNTRC) shell structures is performed. The extended rule of mixture is employed to find the effective elastic
properties of a SWCNT-reinforced composite laminate. The evaluated material properties have been used to
study the impulse and frequency responses of the different types of FG-CNTRC shell structures. In order to
examine the effect of different distributions of the CNTs on the dynamic behavior of the FG-CNTRC shell,
uniform distribution (UD) and functionally graded distributions (such as FG-X, FG-V, FG-O and FG-�) of
carbon nanotubes along the thickness direction of the nanocomposite shell have also been considered. An eight-
node shell element is employed for finite element discretization of such shell structures. The study reveals that
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all the elastic properties of the composite are influenced by the volume fraction of CNTs and CNT distribution.
The transient analysis reveals that the settling time of the said structure is predominantly influenced by the
SWCNT volume fraction and CNT distributions which imply that the damping capacity of such a composite
structure can be improved by the addition of CNTs and by selecting an appropriate distribution. So, there is a
significant effect of addition of SWCNT in vibration and damping characteristics of the structure.

A frequency response analysis confirms that the system has gained stiffness and damping due to the use
of SWCNT in the composite shell. In addition, a comparative study of the impulse and frequency response
analysis for different types of shells confirms that addition of CNTs has a significant effect on the damping
capacity of the structure.

Further, transient and frequency response analysis also reveals that FG-V and FG-� distributions have
more prominent effects on the responses as they attain the highest and lowest values of settling time and
absolute amplitude, respectively.

Finally, it can be concluded that due to addition of CNTs good vibration and damping characteristic as
well as better dynamic behavior of the structure can be achieved by proper grading of distributions of CNTs
along the thickness direction of the structure.

Appendix

The matrices associated with Eq. (37) are given below:

[ρ] =
n∑

k=1

∫ zk+1

zk

⎡

⎢
⎢
⎢
⎢
⎣

ρk 0 0 ρk z 0
ρk 0 0 ρk z

ρk 0 0
ρk z2 0

ρk z2

⎤

⎥
⎥
⎥
⎥
⎦

,

[N ] =

⎡

⎢
⎢
⎢
⎣

N1 0 0 0 0 . . . Nn 0 0 0 0
0 N1 0 0 0 . . . 0 Nn 0 0 0
0 0 N1 0 0 . . . 0 0 Nn 0 0
0 0 0 N1 0 . . . 0 0 0 Nn 0
0 0 0 0 N1 . . . 0 0 0 0 Nn

⎤

⎥
⎥
⎥
⎦

where the shape functions of the eight-node serendipity element are:

N1 = 1
4 (1 − ξ)(1 − η)(−1 − ξ − η); N2 = 1

2 (1 − ξ2)(1 − η);
N3 = 1

4 (1 + ξ)(1 − η)(−1 + ξ − η); N4 = 1
2 (1 + ξ)(1 − η2);

N5 = 1
4 (1 + ξ)(1 + η)(−1 + ξ + η); N6 = 1

2 (1 − ξ2)(1 + η);
N7 = 1

4 (1 − ξ)(1 + η)(−1 − ξ + η); N8 = 1
2 (1 − ξ)(1 − η2).

Here, ρk is the volumetric density at the kth layer.
The various submatrices of Eq. (39) are given as below:

[
Be
u

] =
[
Be
b 0
0 Be

s

]

,

C =
[
Db 0
0 Ds

]

=
⎡

⎣
A B 0
B D 0
0 0 As

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 A44 A45
0 0 0 0 0 0 A45 A55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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