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Abstract Multi-axial hyper-elastic models for large strain rubberlike elasticity are established in a broad
sense free of the commonly assumed constraint of incompressibility. Results are derived directly from uniaxial
stress–strain relations by means of certain explicit procedures. Novelties in four respects are incorporated in
the newmodels: (i) constitutive parameters of direct physical meaningsmay be introduced to represent features
of rubberlike elasticity; (ii) the usual incompressibility constraint is no longer assumed and relevant issues
may be rendered irrelevant; (iii) the incompressibility case may be derived as a natural limit; and (iv) accurate
agreement with benchmark data for several deformation modes may be achieved, including uniaxial extension,
equi-biaxial extension as well as plane-strain extension and others.

1 Introduction

Rubberlike materials are highly elastic and give rise to large recoverable deformations under relatively low
stress levels. Because of their unique properties, such as high flexibility, abrasion resistance, insulation, and
waterproof, rubberlike materials are widely used in everyday life and in various fields of engineering and
technology. Constitutive models for rubberlike elasticity establish relationships between large elastic defor-
mations and stress responses for rubberlike materials and play a central role in reasonable design and efficient
applications of rubber products. The determination of such models has been a central topic both in the theory
of finite elasticity and in related fields.

However, large strain rubberlike elasticity exhibits undue complexities arising from strong nonlinearities.
It appears difficult to treat such complexities in a general case of large deformation. Usually, results are
derived in an approximate or idealized sense of assuming the incompressibility constraint. In the past decades,
two approaches, namely statistical approach and phenomenological approach, have been used to establish
hyper-elastic constitutive models for rubberlike materials at large incompressible deformations. The former
approach derives elastic potentials via averaging procedures based on certain approximations and idealizations
concerning the network structures of long chainlike macromolecules. Representative samples of recent results
may be found in Arruda and Boyce [2], Wu and van der Giessen [38], Fried [14], Zuniga and Beatty [54],
Drozdov and Gottlieb [11], Ogden et al. [32], Zuniga [53], Beatty [4] and many others. On the other side, the
latter approach is based on continuum mechanics and directly presents various nonlinear forms of the elastic
potential in terms of either strain invariants or principal stretches, with a number of adjustable parameters to
be determined. Representative results in this respect may be found in Ogden [27–29,31], Gent [15] and Beatty
[3] for recent developments.
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Irrespective of the fact that incompressible hyper-elastic models provide good approximations in many
cases, issues and anomalies may emerge in association with the incompressibility constraint. In particular, this
may be the case in numerical implementations. In fact, particular treatments should be introduced to ensure the
incompressibility condition for the purpose of bypassing possible related issues. However, such issues may be
rendered irrelevant withmodels for general compressible deformations without assuming the incompressibility
condition. This consideration in a broad sense is just in accord with realistic material behavior. It is noted
that the incompressibility is not the reality but merely an approximation of realistic material behavior. Indeed,
realistic rubberlikematerials display various effects of compressibility, as shown in experimental studies earlier
in, e.g., [16] and recently in, e.g., [1,9] and many others. Constitutive models for rubberlike elasticity with
compressibility behavior were investigated earlier in, e.g., [7,10,12,13,30] and recently in [6,12,18–20,25,26]
and many others.

In amost recent study [42], a new, explicit approach has been proposed to establishmulti-axial hyper-elastic
models for general compressible deformations. In this contribution, this newapproachwill be further developed,
and new models will be proposed. Results will be derived directly from uniaxial stress–strain relations via
certain explicit procedures based on Hencky’s logarithmic strain. In contrast to usual models, novelties in four
respects will be incorporated in the newmodels proposed, namely (i) constitutive parameters of direct physical
meanings may be introduced to represent features of rubberlike elasticity; (ii) the usual incompressibility
constraint is no longer assumed and relevant issues may be bypassed; (iii) the incompressibility case may be
derived as a natural limit; and (iv) accurate agreement with benchmark data for several deformationmodesmay
be achieved, including uniaxial extension, equi-biaxial extension as well as plane-strain extension and others.

The main content will be organized as follows. In Sect. 2, large strain hyper-elastic constitutive relations
for isotropic, compressible materials will be formulated based on Hencky’s logarithmic strain, and, moreover,
certain well-chosen Hencky invariants will be introduced. In Sect. 3, Poisson’s ratio at infinitesimal strain
will be extended to large strain, and a new quantity from this extension will be introduced to characterize
the compressibility behavior, and, moreover, single-variable potentials will be derived from uniaxial stress–
strain relations with two strain limits. In Sect. 4, compressible multi-axial elastic potentials will be obtained
directly from these single-variable potentials by means of multi-axial bridging and matching procedures. In
Sect. 5, three usually treated deformation modes are studied, including uniaxial, equi-biaxial and plane-strain
extension, and analytic results with compressibility effects are derived from the proposed modes. In Sect. 6,
the model predictions for the just mentioned deformation modes are compared with well-known benchmark
data from Treloar [37] and Jones and Treloar [24]. Finally, some remarks will be given in Sect. 7.

2 Compressible elastic potentials based on Hencky strain

Consider a material body undergoing finite deformations. Let F be the deformation gradient and B = F · FT

the left Cauchy-Green tensor. The three eigenvalues and the three corresponding orthonormal eigenvectors of
B are designated by λ2r and nr , r = 1, 2, 3. Usually, the λr and nr are referred to as the principal stretches and
the principal axes.

As indicated in monographs in finite elasticity (see, e.g., Hill [17], Ogden [31], Saccomandi [35]), hyper-
elastic constitutive equations may be formulated in terms of various finite strain measures. From a general
mathematical standpoint, different finite strainmeasuresmaybe used to formulate elastic stress–strain relations.
However, that may not be the case for the purpose of determining specific forms of stress–strain relations from
test data. In the subsequent study, a formulation with Hencky’s logarithmic strain will prove essential. Earlier,
Hill [17] demonstrated certain inherent advantages of Hencky strain over other strain measures in a unified
study of constitutive inequalities. It has found various applications in treating finite deformation problems.
Its far-reaching roles in consistent formulation of Eulerian finite elastoplasticity have been uncovered in, e.g.,
Bruhns et al. [8] and Xiao et al. [44–49]. A recent review for use of Hencky strain in material modeling at
finite deformations may be found in Xiao [40].

In most recent developments [21,23,39,41–43,50–52], new logarithmic invariants have been introduced
and found essential in establishing direct, explicit approaches for constructing new elastic potentials. A short
account of hyper-elastic relations based on Hencky strain is presented below.

Hencky’s logarithmic strain of Eulerian type, denoted h, is of the following principal axis form:

h = 1

2
B =

3∑

α=1

(ln λα) nα ⊗ nα. (1)
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The deformation Jacobian J = detF specifies the volumetric ratio. The logarithm of J is just the trace of
Hencky strain, namely

trh = ln J. (2)

As indicated earlier, usually the incompressibility constraint J = 1, namely

trh = 0 (3)

should be imposed as a restrictive condition in an approximate sense. In the subsequent development, this
restriction will not be assumed, and general compressible deformations will be taken into consideration. With
an elastic potential in terms of Hencky strain,

W = W (h), (4)

a direct potential relation may be derived as follows (see, e.g., Fitzjerald [13] and Hill [17]; see also Xiao and
Chen [49]):

τ = Jσ = ∂W

∂h
(5)

for a compressible, isotropic hyper-elastic material. Here, τ = Jσ is the Kirchhoff stress.
Instead of Hencky’s logarithmic strain, other finite strain measures, such as Green strain and Almansi

strain, may be used in treating finite deformation behaviors, as indicated before. Here, advantages of Hencky’s
strain measure over other strain measures arise out of its unique properties. First, it allows for a direct additive
separation of the volumetric and the deviatoric deformation. Second, it leads to a direct potential relation for
isotropic, compressible hyper-elasticity, as indicated by Eq. (5), whereas that may not be the case with any
other strain measure. By exploiting these unique properties, new, explicit approaches may be established to
obtain forms of the hyper-elastic potential that accurately, automatically match test data, as has been and will
be shown in most recent studies and in the subsequent development.

The objectivity principle and the material symmetry principle in continuummechanics jointly require that,
for a compressible, isotropic hyper-elastic material, the potentialW as shown by Eq. (4) should be an isotropic
scalar function of Hencky strain and therefore expressible as a function of an irreducible set of three invariants
of Hencky strain. There are infinitely many such sets of invariants. One of them is formed by the first, second,
third basic Hencky invariants below:

iq = trhq = (ln λ1)
q + (ln λ2)

q + (ln λ3)
q , q = 1, 2, 3. (6)

Note here that the first, i.e., i1, is just the trace of h. Every Hencky invariant may be given in terms of the
above three basic Hencky invariants. In particular, that is the case for the two basic invariants of the deviatoric
Hencky strain h̃, viz.,

j2 = trh̃
2 = i2 − 1

3
i21 , j3 = trh̃

3 = i3 − i1i2 + 1

3
i31 (7)

where

h̃ = h − 1

3
(trh)I . (8)

Here and henceforward, I is the second-order identity tensor. The elastic potential W , cf. Eq. (4), for a com-
pressible, isotropic hyper-elastic material may be reduced to a function of the three invariants i1, j2 and j3. In
general, it is expressible as a function of any other three irreducible Hencky invariants, as indicated before. In
the succeeding study, use of three well-chosen Hencky invariants will prove to be essential, which are given
by the first basic Hencky invariant i1 and the following two:

ϕ = √
j2 , (9)

γ = √
6

j3√
J 32

. (10)
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The invariant ϕ is just the magnitude of the deviatoric Hencky strain. The invariant γ specifies the ratios of
the three principal values of the deviatoric Hencky strain and ranges from −1 to 1, namely

−1 ≤ γ ≤ 1. (11)

Hencky strain h is determined by the three invariants i1, ϕ and γ in a coordinate-free sense. Details may be
found in [43].With theses threeHencky invariants the elastic potential Eq. (4) is now reduced to a three-variable
function as shown below:

W = W (i1, ϕ, γ ) (12)

for a compressible, isotropic hyper-elastic material. Whenever a form of the above three-variable function is
given, from Eqs. (5) and (12) we then derive the multi-axial stress–strain relation as follows:

Jσ = ∂W

∂i1
I + ∂W

∂ϕ
ĥ +

√
6

ϕ4

∂W

∂γ
h̆ (13)

with

ĥ = h̃
ϕ

, (14)

h̆ = 3ϕ3 ĥ
2 − 3 j3 ĥ − ϕ3 I . (15)

Expressing the Cauchy stress σ in terms of the principal axes nr , namely

σ =
3∑

α=1

σαnα ⊗ nα (16)

with the three principal stresses σα and using Eq. (13), we derive the following relations:

J (σ1 − σ3) = (h1 − h3)(A − Bh2(h2 − h1)(h2 − h3)), (17)

J (σ2 − σ3) = (h2 − h3)(A − Bh1(h1 − h2)(h1 − h3)), (18)

J (σ1 − σ2) = (h1 − h2)(A − Bh3(h3 − h1)(h3 − h2)) (19)

with

A = 1

ϕ

∂W

∂ϕ
, B = 3

√
6

ϕ5

∂W

∂γ
. (20)

Here and henceforward, the hα are used to designate the three principal Hencky strains, viz.,

hα = ln λα, α = 1, 2, 3. (21)

From Eqs. (12) to (13) it follows that the central issue in modeling rubberlike elasticity for general com-
pressible large deformations is to determine suitable forms of the elastic potential as a three-variable function
[cf. Eq. (12)], so that these forms canmatch given data sets as accurately as possible. In the succeeding sections,
we are going to develop the explicit approach suggested in a latest study [42] and obtain newmulti-axial elastic
potentials from uniaxial stress–strain relations. The main steps are as follows: (i) by virtue of Hencky strain
the Poisson ratio at infinitesimal strain will be extended to characterize the compressibility behavior at finite
strain; (ii) single-variable potentials will be derived from uniaxial stress–strain relations; and (iii) from these
uniaxial potentials, multi-axial potentials will be obtained by means of certain explicit procedures based on
well-chosen Hencky invariants and others. Details will be given below.
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3 Strain and stress in the uniaxial case

In this section, we are going to present a study of the uniaxial deformation mode. Results given will serve as
a starting point for subsequent development.

Consider a uniform cylindrical bar subjected to loading in the axial direction, and then the usual uniaxial
deformation mode is generated in this bar. In this simple case, the stress is determined by the true axial stress,
denoted σ , while the deformation is determined by the axial stretch and the lateral stretch, denoted λ and λ ,
respectively.

The material behavior in the uniaxial case may be described by specifying two relations, namely
{

σ = f (λ) ,

λ = P(λ).
(22)

Generally, forms of the above functions rely on the material property and should be determined from test data.

3.1 Poisson’s ratio for compressibility

We first consider the relation Eq. (23) between the uniaxial stretch λ and the lateral stretch λ, in which the
compressibility effect is incorporated. This relation is determined from test data. Given this relation, we
introduce the following quantity:

ν = − ln λ

ln λ
= − ln P(λ)

ln λ
. (23)

Hence,

λ = λ−ν. (24)

Note in the above that theHencky strains are used for both the axial and lateral strains. This definition of Poisson
ratio is inspired byBeatty and Stalnaker [5] (see alsoMurphy [25], and Scott [35]), inwhich different definitions
associated with other cases are given. Physically, this ratio characterizes the compressibility property of the
material at issue. Its physical meaning may be seen from two particular cases, namely the case of infinitesimal
deformations and the case of incompressible deformation. In fact, the ν is exactly Poisson’s ratio at infinitesimal
strain, and, moreover,

ν = 0.5 , (25)

λ = λ−0.5 , (26)

for large incompressible deformations.
The compressibility property of a rubberlike material is represented by Poisson’s ratio ν = ν(h) with the

axial Hencky strain h = ln λ. It will play a central role in constructing multi-axial elastic potentials in the
sequel. Usually, rubberlike materials exhibit slight compressibility, and Poisson’s ratio ν defined by Eq. (24)
may be taken to be a constant close to 0.5 with sufficient accuracy.

3.2 Uniaxial stress–strain relations with strain limits

Wenext take the uniaxial stress–strain relation [cf. Eq. (22)] into account. For rubberlikematerials, experimental
data reveal that the so-called strain-stiffening effect will emerge, namely the stress will sharply grow up as
the stretch approaches a certain limit under either extension or compression, as schematically shown in Fig. 1.
Such strain-stiffening effects were observed; refer to, e.g., the early data by Treloar [36] and the recent data by
Arruda and Boyce [2] for details, as well as further studies in latest contributions by Puglisi and Saccomandi
[34] and De Tommasi et al. [36].

We are in a position to present a uniaxial stress–strain relation that can characterize the strain-stiffening
effects at issue and, in the meantime, can accurately match uniaxial data. Most recently [21,41–43,50–52],
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Fig. 1 Uniaxial stress–strain curve with strain limits

it has been found that a simple form of rational functions with the two poles he and −hc may well serve the
purpose. Here, such a stress–strain relation is extended to a general compressible case and of the form:

τ = Jσ = g(h) = αEh(
1 − h

he

) (
1 + h

hc

) + (1 − α)Eh. (27)

In the above, τ = Jσ and h = ln λ are the axial Kirchhoff stress and the axial Hencky strain; he > 0 and
hc > 0 are two limits of h at extension and compression, referred to as the extension limit and the compression
limit, respectively; E is Young’s modulus at infinitesimal strain (i.e., the slope at the origin in Fig. 1), and
α > 0 prescribes the growth degree of the stress as either of the two limits is approached, and therefore is
named the stiffening index.

In summary, it follows from Eqs. (24) to (28) that the five quantities of direct physical meanings, including
Poisson’s ratio ν, Young’s modulus E , the extension limit he, the compression limit hc, as well as the stiffening
index α, together characterize features of large strain rubberlike elasticity for general compressible deforma-
tions. These constitutive quantities will be incorporated in the multi-axial models that will be established in
the next section.

The uniaxial stress–strain relation Eq. (28) is more general than the counterpart given in [41–43]. In fact,
the former includes the latter as the special case when the stiffening index α is set to be 2.

It should be pointed out that other forms of rational functions in treating strain-stiffening effects were also
found useful from different standpoints; refer to, e.g., Horgan and Saccomandi [20,21].

3.3 Uniaxial elastic potentials

Let w denote the elastic potential at uniaxial strain. Then, the time rate of w is given by

ẇ = J σ ḣ. (28)

As a result, we have

w = w(h) =
∫ h

0
J σ dh =

∫ h

0
g(h) dh. (29)

Itmay be clear that the above equation determines a single-variable potentialw = w(h)with the axialKirchhoff
stress τ = g(h) given by Eq. (28). Substituting Eq. (28) into (30) and working out the integration, we obtain
the following explicit expression for the potential:

w = 1 − α

2
E h2 − αhehc

he + hc

(
he ln

(
1 − h

he

)
+ hc ln

(
1 + h

hc

))
. (30)

This gives a unified expression for both cases of extension with h > 0 and compression with h < 0.
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4 Multi-axial elastic potentials

In this section, we are going to develop the explicit approach suggested in a most recent study [42] and obtain
new compressible multi-axial elastic potentials directly from the uniaxial elastic potential given in the last
section, as well as certain relevant constitutive quantities.

4.1 New explicit approach

In [42], a direct, explicit approach has been proposed to obtain multi-axial elastic potentials W = W (h) =
W (i1, ϕ, γ ) [cf. Eqs. (4) and (12)] fulfilling the following three requirements:

(i) The uniaxial potential should be exactly given;
(ii) the uniaxial stress–strain relation should be exactly derived; and
(iii) the relation between the lateral and axial stretches should also be derived.

The above requirements mean that, in the uniaxial strain case, the sought multi-axial potential should exactly
supply the uniaxial potential, the uniaxial stress–strain relation and the uniaxial Poisson relation as given by
Eqs. (30), (28) and (25), respectively. Since the uniaxial case is prescribed by γ = ±1, precisely the following
conditions should be satisfied:

W |γ±1 = w(h) =
∫ h

0
g(h) dh , (31)

∂W

∂ϕ

∣∣∣∣
γ=±1

= g(h) (32)

where the function τ = g(h) is given by Eq. (28) or may be of any given form. Moreover, the condition (iii)
in the foregoing requires that the Poisson relation Eq. (25), namely

h = −νh (33)

should be derived by setting

γ = 1, h = he ⊗ e + h(I − e ⊗ e) , (34.1,2)

with the axial and lateral Hencky strains h and h. Here, e is a unit vector in the axial direction.
In [42], results are derived from the foregoing requirements. However, the requirements for the derivatives

∂W/∂γ at γ = ±1 are not taken into consideration. This may be understandable, since only one nonvanishing
principal stress needs to be treated for the uniaxial mode. That may not be the case for any other deformation
mode with at least two nonvanishing principal stresses. From Eqs. (17) to (20) it follows that the three principal
stresses should be related to the three derivatives, ∂W/∂i1, ∂W/∂ϕ and ∂W/∂γ . It is expected that incorporation
of these three derivatives will lead to new results that may bemore flexible in fitting data for deformationmodes
other than the uniaxial mode, e.g., plane-strain extension with two nonvanishing principal stresses.

The above understanding leads to a development by further incorporating suitable values of the derivative
∂W/∂γ at γ = ±1. Namely, in addition to the foregoing three requirements [cf., Eqs. (32)–(34)], the following
further requirements are introduced:

∂W

∂γ

∣∣∣∣
γ=1

= P1(h),
∂W

∂γ

∣∣∣∣
γ=−1

= P−1(h) , (35)

∂W

∂i1

∣∣∣∣
γ=±1

= 1

3
g(h) (36)

where the two functions P±1(h) will be given later on. Note that the last condition above is introduced in a
sense consistent with Eq. (13).
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4.2 Multi-axial potentials via bridging procedure

Nowwe are in a position to construct a multi-axial potential meeting the requirements prescribed by Eqs. (32)–
(37). This will be done by developing the bridging and matching procedures suggested in [42].

Toward our goal, the first step is to extend the single-variable potential w = w(h) to general compressible
multi-axial deformations. The idea is to find out two bridging invariants such that they reduce to the axial
Hencky strain h in the uniaxial strain case. According to [42], these two invariants may be given by ±π with

π = ϕ

b
(37)

where

b =
√
6

3
(1 + ν) (38)

with Poisson’s ratio ν given by Eq. (24). By using Eqs. (34) and (9), (6) and (7), it may readily be verified that,
for the uniaxial strain case, together the two invariants ±π indeed provide the axial Hencky strain h.

Now, simply replacing the axial Hencky strain h with the two bridging invariants ±π , separately, we may
extend the uniaxial potential w = w(h) [cf. Eq. (31)] limited to the uniaxial strain to general compressible
multi-axial deformations. This leads to two multi-axial potentials given by w(±π).

4.3 Unified potential via matching procedure

The next step is to construct a multi-axial potential meeting all the requirements indicated before. Utilizing
the two multi-axial potentials w(±π) and regarding the conditions Eqs. (32), (33) and (36) as interpolating
conditions at γ = ±1 as well as considering the conditions Eqs. (34) and (37), we eventually obtain the sought
multi-axial potential as follows:

W = 1 − 2ν

3
w(q) + 1 + ν

6

(
((2 − γ )w(π) + (γ − 1)Y1)(1 + γ )2 (39)

+ ((2 + γ )w(−π) + (γ + 1)Y−1)(1 − γ )2
)

(40)

where π and b are given by Eqs. (38)–(39) and

q = i1
1 − 2ν

, (41)

Y1 = ξϕ3 , (42)

Y−1 = ηϕ3. (43)

It should be pointed out that the two functions Y±1 given by Eqs. (42), (43) are related to the values of the
derivative ∂W/∂γ at γ = ±. Here, Eqs. (42), (43) merely supply the simplest form (the cases either linear or
quadratic in ϕ may be excluded).

In the next section, it will be shown that the multi-axial potential given by Eq. (40) indeed fulfills all the
conditions prescribed by Eqs. (32)–(37).

Some remarks are now opportune. Since the conditions given by Eqs. (32), (33) are met, the multi-axial
potential Eq. (40) can exactly reproduce the uniaxial stress–strain relation of any given form. As a result,
whenever the former accurately matches given uniaxial data, accordingly the latter can automatically match
the same data. In the next two sections, the predictions of the multi-axial potential proposed will be studied for
three usually treated deformation modes, such as uniaxial extension, equi-biaxial extension and plane-strain
extension, and results will be compared with test data in literature.

5 Compressible responses for three modes

In this section, analytic results for three usually treated deformation modes will be derived from the proposed
model for the purpose of highlighting the compressibility effects. In the next section these results will be used
for the purpose of comparison with test data.
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5.1 Model prediction for uniaxial extension

We are going to demonstrate that all the requirements given by Eqs. (32)–(37) may be satisfied by the proposed
multi-axial potential Eq. (40). The Hencky strain tensor for uniaxial deformation mode is given by Eq. (34.2),
while the Cauchy stress tensor in this case is of the simple form

σ = σ e ⊗ e. (44)

As indicated earlier, e is a unit vector in the axial direction, and σ is the true axial stress. By using Eq. (34),
we have [cf., Eqs. (7)–(15) (15), (38), (39) and (41)]

h̃ = 1

3
(h − h)(I − 3e ⊗ e) , (45)

i1 = h + 2h, j2 = 2

3
(h − h)2, j3 = 2

9
(h − h)3 , (46)

ϕ =
√
6

3
|h − h|, γ = ±1, π = |h − h|/b, q = (h + 2h)/(1 − 2ν). (47)

Moreover, we have [cf., Eqs. (30) and (40), (41)]

∂W

∂ϕ

∣∣∣∣
γ=±1

= w′(±π) ,
∂W

∂γ

∣∣∣∣
γ=±1

= 2

3
(1 + ν)Y±1 ,

∂W

∂i1

∣∣∣∣
γ=±1

= 1

3
w′(q) = 1

3
g(q).

From Eq. (13) we deduce

J trσ = 3
∂W

∂i1
.

Then, from the last two expressions and Eq. (44) we infer [cf. Eq. (28)]

g(h) = g(q),

namely

h = q = (h + 2h)/(1 − 2ν), i.e., h = −ν ,

which exactly yields the Poisson relation Eq. (25). Thus, Eqs. (32), (33) and Eqs. (36), (37) may be derived.
Now the nominal axial stress F is given by

F = E
ln λ

λ

⎛

⎝ α(
1 − ln λ

he

) (
1 + ln λ

hc

) + 1 − α

⎞

⎠ (48)

where λ is the axial stretch, and the volumetric ratio J by

J = λ1−2ν. (49)

5.2 Model prediction for equi-biaxial extension

Let λ and F be the stretch and the nominal normal stress in the two loading directions, respectively, and let β
be the stretch in the direction free of loading. The Hencky strain tensor and the Cauchy stress tensor are of the
forms:

h = (ln λ)(I − e ⊗ e) + ((ln β)e ⊗ e, σ = σ(I − e ⊗ e). (50)

equation.34.1,2
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Following the same procedures as in the last subsection, we obtain

F = − E

2ν2
ln λ

λ

⎛

⎝ α(
1 + λ

νhe

) (
1 − ln λ

νhc

) + 1 − α

⎞

⎠ , (51)

J = λ−(1−2ν)/ν , (52)

for the nominal normal stress in the two loading directions and the volumetric ratio, respectively.

5.3 Model prediction for plane-strain extension

As in the above, let λ and sigma1 be the stretch and the true normal stress in the loading direction, and let σ2
be the stretch in the free direction, and, moreover, let 2 be the true normal stress in the un-deformed direction.
Then, the Hencky strain tensor and the Cauchy stress tensor are of the forms:

h = (ln λ)e1 ⊗ e1 + (ln β)e3 ⊗ e3, σ = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 (53)

where e1, e2, e3 are unit vectors in the loading, un-deformed and free directions, respectively.
From the potential Eq. (40) and the stress–strain relation Eq. (13), each of the three quantities β, σ1, σ2

may be derived as a function of the stretch λ. However, in contrast to the incompressibility case with β = λ−1,
now the relation β = q(λ) is very complicated. It does not appear that closed-form results in explicit form
are derivable due to the complexity arising from compressibility. As a result, generally numerical procedures
should be used. Here, for nearly incompressible deformations with a ν very close to 0.5 we derive analytic
results in an approximate sense. Toward this goal, we first present an approximate solution for the stretch β as
follows:

β = λ−ν/(1−ν). (54)

Then, by setting γ = 0, approximate results for the two nominal normal stresses F and F0 and the
volumetric ratio J are derived from Eqs. (17) to (20) and (50) and from J = λβ as follows:

J = λ(1−2ν)/(1−ν) , (55)

σ1
′ = 4Gαh

⎛

⎝
1 − 3h2

(1+ν)2hehc(
1 − 3h2

(1+ν)2h2e

) (
1 − 3h2

(1+ν)2h2c

) + α−1 − 1

⎞

⎠ + √
2 (1 + ν)(ξ − η)h2 , (56)

σ2 = 1

2
σ1 +

√
6

2
(1 + ν)(ξ + η)h2 + C

⎛

⎝he
h

ln
1 −

√
3h

(1+ν)he

1 +
√
3h

(1+ν)he

+ hc
h

ln
1 +

√
3h

(1+ν)hc

1 −
√
3h

(1+ν)hc

⎞

⎠ (57)

where

C =
√
27

2

(1 + ν)2αG he hc
he + hc

, h = ln λ.

In the above, 2G = E/(1+ν) is the shearmodulus. The above results clearly show the effects of compressibility.

6 Numerical examples for model predictions

In presenting numerical examples for the purpose of studying the predictabilities of the proposed model, test
data from Treloar [37] and Jones and Treloar [24] will be taken into consideration, separately. These data are
concerned with the three deformation modes treated in the last section. In this section, model predictions for
these modes will be compared with the data just mentioned.

6.1 Treloar’s data

The parameter values are as follows:

E = 1.1MPa, ν = 0.499, α = 2, he = ln 8.7, hc = ln 41, ξ = η = 0.
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Fig. 2 Comparison of model predictions with Treloar’s data in cases of uniaxial, equi-biaxial and plane-strain extension (F for
nominal normal stress and for stretch)

Fig. 3 Volume changes in cases of uniaxial and plane-strain extension

Results are shown in Fig. 2 for the nominal normal stresses in the three cases. Moreover, results for volumetric
changes are shown in Figs. 3 and 4. In the latter, test data are unavailable and hence not incorporated. The
curves in Figs. 3 and 4 are generated fromEqs. (49), (49) and (51), (52). Result for the stress in the un-deformed
direction in the plane-strain case is not involved, since relevant data in this case are also unavailable. It should
be pointed out that the two parameters ξ and η play a role in fitting data for the two normal stresses in the
loading and un-deformed directions. However, with a lack of data for the stress in the un-deformed direction,
here the contributions from Y±1 are neglected by setting ξ = η = 0. This respect will be discussed in the next
subsection.

Variousmodels suggested in literature have been used in fitting Treloar’s data. In particular, the well-known
Gent model was used for this purpose; refer to, e.g., Pucci and Saccomandi [33]. It is noted that the Gent model
is for incompressible deformations, while the model proposed here is for general compressible deformations.
As such, comparisons of model predictions may not be performed on a common ground. This respect will be
treated in a further study.

6.2 Data from Jones and Treloar

In the case of plane-strain extension, there are two nonvanishing principal stresses. However, in Treloar [37],
only data for the stress in the loading direction are provided, whereas data for the stress in the un-deformed
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Fig. 4 Volume change in case of equi-biaxial extension

Fig. 5 Comparison of model predictions with Jones and Treloar’s data in cases of uniaxial extension and equi-biaxial extension
(for true stresses)

direction are not supplied. Data for the stresses just mentioned are available in Jones and Treloar [24] and will
be taken into account below.

For Jones and Treloar’s data, the following parameter values are found:

E = 1.45MPa, ν = 0.499, α = 2, he = ln 11, hc = ln 54, ξ = η = 0.14MPa.

Results are shown in Figs. 5 and 6.
In the new model proposed, requirements for the derivative ∂W/∂γ in the uniaxial case are incorporated,

as has been done in Sect. 4. The contributions from these requirements are represented by Y±1 with two
parameters ξ and η [cf., Eqs. (42), (43)]. The effect in this respect is evidenced in Fig. 6, in which the true
stress σ2 in the un-deformed direction is shown for two different cases when ξ = η = 0 (dotted line) and
ξ = η = 0.14MPa (solid line). Results with no contributions from Y±1 deviate appreciably from test data,
whereas results with appropriate contributions from Y±1 agree accurately with test data.

7 Concluding remarks

In the previous sections, the explicit approach proposed in a most recent study [22] has been developed toward
obtaining a new multi-axial elastic potential for general compressible deformations. The proposed model is
free of the commonly assumed constraint of incompressibility and thus bypasses possible issues resulting from
this constraint. Numerical examples show good agreement with data from several benchmark tests.
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Fig. 6 Comparing model predictions for plane-strain extension with Jones and Treloar’s data (1 and 2 for true normal stresses in
loading and un-deformed directions, respectively)

In this study, results are derived based merely on a single deformation mode, namely the uniaxial mode.
As such, the model may be calibrated simply with uniaxial data. However, it may be expected that more robust
models should be based on data for a few suitable deformation modes. Results in this respect have been derived
mostly recently in [43] for the case of incompressibility. Further results for general compressible deformations
will be presented in ensuing development.
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