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Abstract Visco-elastic material models with fractional characteristics have been used for several decades.
This paper provides a simple methodology for Finite-Element-based dynamic analysis of structural systems
with viscosity characterized by fractional derivatives of the strains. In particular, a re-formulation of the well-
known Newmark method taking into account fractional derivatives discretized via the Grünwald–Letnikov
summation allows the analysis of structural systems using standard Finite Element technology.
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1 Introduction

With increasing advanced manufacturing processes, visco-elastic materials are very attractive for mitigation
of vibrations, provided that you have advanced studies for capturing the realistic behavior of such materials.
Experimental verification of the visco-elastic behavior is limited to somewell-known low-ordermodels like the
Maxwell or Kelvin–Voigt models. However, both models are not sufficient to model the visco-elastic behavior
of real materials, since only the Maxwell type can capture the relaxation tests and the Kelvin–Voigt the creep
tests, respectively. Very recently, it has been stressed that the most suitable model for capturing visco-elastic
behavior is the springpot, characterized by a fractional constitutive law. A detailed description how to arrive
at a fractional visco-elastic formulation from experimental data is given in [7]. Once asserted that this is the
proper model for understanding the visco-elastic behavior, the structural response was evaluated considering
this internal bond and fundamental analyses of beams with fractional visco-elastic properties were carried out
in [17]. Time domain analysis of fractionally damped oscillators has been investigated earlier [14]. Numerical
solution procedures are discussed in [11]. Now the challenge is that such a model can be utilized in the
engineering field practically. To this aim, since the Finite Element method is commonly used in engineering,
the algorithm solution has been suitably modified inserting the terms representing the discretized fractional
derivative. In this context, a Finite Element formulation using the central difference method is described
in [20] and a boundary element formulation is presented in [12]. The Newmark method was applied to a
single-degree-of-freedom system in [21]. A comparison of various explicit and implicit integration schemes is
carried out in [5]. Although focused on frequency domain analysis, the condensation technique described in
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[5] can also be relevant for time domain analysis. Additional considerations regarding the numerical treatment
of nonlinearities in fractional material behavior can be found in the recent work [13]. In order to arrive at
a generally applicable methodology, it is essential that existing Finite Element formulations can be used
without modification for fractional visco-elastic analysis. This paper provides such a non-intrusive approach
by combining a time-discrete formulation of the fractional derivative with an implicit discrete time integration
procedure. It is demonstrated that this approach does not require a treatment of visco-elasticity at material
point level, but rather at the level of global system matrices. The validity of this approach is demonstrated
by comparison to existing analytical solutions for special structural models based on the Euler–Bernoulli and
Timoshenko beam theories, and by applying it to a realistic structural model subject to earthquake excitation.

2 Elements of fractional calculus

2.1 Formal definitions

Among the various possible definitions of fractional derivatives, the so-called Caputo derivative [19] is con-
sidered to be the most suitable for describing visco-elastic material behavior. The formal definition is

Dα
t f (t) = 1

Γ (r − α)

t∫

0

f (r)(τ )dτ

(t − τ)α+1−r
, r − 1 < α < r, (1)

in which r is an integer number and f (r)(τ ) is the r -th derivative of the function f w.r.t. τ . This definition
requires t ≥ 0 and is therefore suitable for initial value problems which usually arise in structural dynamics.
In fact, the typical initial value problem is defined by “at-rest” initial conditions (i.e., the displacements and
the velocities are zero initially).

2.2 Grünwald–Letnikov summation

The fractional derivative Dα f (t) of a smooth function f (t) with f (t) = 0 for t ≤ 0 can be expressed in terms
of the limit

Dα
t f (t) = lim

�t→0

1

�tα

∞∑
k=0

gk f (t − k�t) (2)

in which the coefficients gk can be easily computed from the recursion formula (e.g., [19])

gk = 1 − α + 1

k
gk−1; g0 = 1. (3)

Note that for 0 ≤ α ≤ 1, all coefficients gk with k > 0 will be non-positive and of (slowly) decreasing
magnitude. Eq. (2) implies that a fractional derivative contains memory from the past, i.e., it is not a local
quantity such as integer order derivatives. For practical computations, the limiting process in Eq. (2) is omitted
and the summation stops at a finite upper limit m. Hereby a sufficiently small value for �t is chosen, such that
we obtain the approximation

Dα
t f (t) ≈ 1

�tα

m∑
k=0

gk f (t − k�t). (4)

The summation limit m is implicitly defined by reaching the condition t − m�t ≤ 0. For convenience, new
coefficients qk are introduced by

qk = 1

�tα
gk (5)
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Fig. 1 Grünwald–Letnikov fractional derivatives of the function f (t) = sin t

such that

Dα
t f (t) ≈

m∑
k=0

qk f (t − k�t). (6)

It should be mentioned that a very detailed discussion on numerical methods for computing fractional deriv-
atives can be found in [8]. As a demonstration example, consider the function f (t) = sin t . In Fig. 1 the
fractional derivatives of this function are shown for different numerical values of α. Herein the time step �t
was chosen such that numberm is at mostm = 1000 for t = 8π . It can be seen that apart from some initial tran-
sient phenomena, the fractional derivatives essentially introduce a phase shift into the trigonometric function.
This phase shift depends on the magnitude of α, and it accounts for damping effects in structural vibration.
Note that for the case α = 1 (i.e., the regular first derivative) the numerical result using the Grünwald–Letnikov
expansion matches the exact result cos t exactly apart from the initial jump from 0 to 1. So together with the
usual “at-rest” initial conditions, Eq. (6) is a suitable discrete representation of Caputo’s derivative.

3 Visco-elasticity

Visco-elastic behavior is fully consistent with the reality of almost all materials since they exhibit a mixture
of the two simple behaviors: purely elastic and purely viscous. A visco-elastic material does not maintain a
constant strain under constant stress, but it undergoes a strain slowly varying with time, that is, it creeps; and
if deformed at constant strain, the stress required to hold it diminishes gradually with time, that is, it relaxes.

In particular, the uniaxial, isothermal stress–strain equation for a linear visco-elastic material is ruled by
the Boltzman superposition integral

σ (t) =
t∫

0

E
(
t − t̄

) dε (
t̄
)

d t̄
d t̄ (7)

which in this form, is valid for a quiescent system at t = 0. The right-hand side of Eq. (7) is a convolution
integral in which the relaxation function E (t) plays the role of kernel of the integral. From experimental data,
it is always observed that E (t)is a decaying function and the shape of such decaying function depends on
the material. In [4,9,16], the simplest and most used model for capturing the relaxation function E (t) is the
Maxwell model (a spring in series with a dashpot, Fig. 2) whose constitutive law, the relation between the
stress σ (t) and the strain ε (t), is ruled by a differential equation of integer order of the type

σ̇ (t) + E

c
σ (t) = E ε̇ (t) , (8)
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Fig. 2 Maxwell model

Fig. 3 Springpot element

where E is Young’s modulus and c the viscosity coefficient.
This type of constitutive law leads to an exponential function decay as a relaxation function E (t) [3]

E (t) = Eexp

(
− E

c
t

)
. (9)

However, at the beginning of the twentieth century, Nutting [15] and Gemant [10] observed that, for visco-
elastic materials such as rubber, bitumen, polymers, concrete etc., the experimental data coming from the
relaxation test were well fitted by a power law decay, that is

E (t) ∝ (t)−α 0 < α < 1. (10)

Then, selecting the coefficient of proportionality in Eq. (10) in the form Cα/Γ (1 − α), where Γ (·) is the
Gamma function, Cα and α are coefficients characterizing the material at hand, that is

E (t) = Cα

Γ (1 − α)
t−α, (11)

and introducing this α power law function of E (t) into the Boltzman superposition principle Eq. (7) leads to
the constitutive law ruled by a differential equation of real order that is just α:

σ (t) = Cα

Γ (1 − α)

t∫

0

(
t − t̄

)−α dε
(
t̄
)

d t̄
d t̄ = Cα

(
Dα
t ε

)
(t) . (12)

In particular comparing Eq. (12) with Eq. (1), it is apparent that the stress σ (t) is related to the Caputo’s
fractional derivative of the strain ε (t).

Further, it has to be underscored that the constitutive law in Eq. (12) interpolates the purely elastic behavior
(α = 0) and the purely viscous behavior (α = 1) and is termed in literature as springpot element depicted
in Fig. 3.

4 Finite Element formulation

4.1 Basic principles

It is well known (see e.g., [1]) that the principle of virtual work leads to a straightforward formulation of the
force–displacement relation in linear Finite Elements. In the general case, this principle states that for any
virtual element displacement vector δUe and compatible element strain field δε we have

δW = FT
e δUe −

∫

Ve

σTδεdV = 0. (13)

In this equation, the stress and strain tensors σ and ε are re-arranged into vector form. Fe is the vector of
element nodal forces, and Ve denotes the element volume.
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In a displacement-based element formulation, the strains are related to the element displacements by shape
functions Be such that

ε = BeUe, (14)

from which a compatible virtual strain field is readily found as

δε = BeδUe. (15)

In the case of a linear-elastic material, the stresses and strains are related by the elasticity tensor E (again
re-arranged into matrix form)

σ = Eε, (16)

so that from Eq. (13) we get after canceling δUe

Fe,el =
∫

Ve

BT
eEBedVUe. (17)

Hence elastic element force vectorFe,el is related to the element displacement vectorUe by the element stiffness
matrix Ke

Fe,el = KeUe (18)

and the element stiffness matrix is obtained by integration over the element volume Ve

Ke =
∫

Ve

BT
eEBedV . (19)

This relation can be exploited to look into other relations between stresses and strains as well, e.g., for
(fractional) visco-elasticity. So if the stress–strain relation is given by a fractional law with a viscosity tensor
C

σ = CDα
t ε, (20)

in which the stress tensor written as vector is

σ = [
σxx σyy σzz τxy τxz τyz

]T (21)

and the strain tensor written as vector is

ε = [
εxx εyy εzz γxy γxz γyz

]T
, (22)

then the corresponding relation between element forces and fractional derivatives of element displacements is

Fe,vis = CeD
α
t Ue. (23)

The fractional element viscosity matrix is then constructed in full analogy to the element stiffness matrix, the
only difference being that the material stiffness tensor is replaced by the material fractional damping tensor:

Ce =
∫

Ve

BT
eCBedV . (24)

For isotropic materials, the elasticity and viscosity tensors are described by at most two parameters. In the
following it is assumed for simplicity that Poisson’s ratio ν and the corresponding parameter in the viscosity
tensor have equal values. This can be formalized as

E = EN(ν); C = CN(ν), (25)
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in which E denotes the scalar modulus of elasticity, C is the scalar modulus of fractional viscoelasticity, and
N(ν) is a tensor depending only on Poisson’s ratio ν. The explicit form of the tensor N(ν) used in this paper
is—for 3D visco-elasticity—given by

N(ν) = 1

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 (1 − 2ν)/2 0 0

0 0 0 0 (1 − 2ν)/2 0

0 0 0 0 0 (1 − 2ν)/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

For 2D visco-elasticity (plain stress) with a stress tensor

σ = [
σxx σyy τxy

]
(27)

and a strain tensor

ε = [
εxx εyy γxy

]
, (28)

this reduces to

N(ν) = 1

1 − ν2

⎡
⎣
1 ν 0

ν 1 0

0 0 (1 − ν)/2

⎤
⎦ . (29)

For each type of finite element, the appropriate formulation has to be chosen. For the sake of completeness, in
the case of 1D elasticity, the tensor N reduces to a scalar unit value.

The required coding was done within the multi-purpose software package slangTNG [2]. The overall
strategy to implement fractional visco-elasticity in a Finite Element context is to assemble the global stiffness
matrix K0 with unit modulus of elasticity and fixed Poisson’s ratio ν. In the next step, the actual stiffness
matrix is generated by multiplying with the actual modulus of elasticity E , and the fractional component
matrix arising from the fractional Kelvin–Voigt material is generated by multiplying K0 with C [cf. Eq. (25)]

K = EK0; C = CK0. (30)

If the structure contains different materials with different visco-elastic characteristics, then the stiffness matrix
assembly has to be done separately for all elements within a group having the same materials (e.g., all steel
columns and all concrete floor slabs in a building).

The inertia effects are considered in terms of the kinetic energy T which can be expressed by the shape
functions such that within one finite element we have the kinetic energy

Te = 1

2

∫

Ve

ρu̇2dVe = 1

2

∫

Ve

ρu̇Tu̇dVe. (31)

The displacement field u(x, y, z) within the element is expressed as

u = HeUe, (32)

in which He denotes the matrix of displacement shape functions for this element. From this, the velocity field
u̇ within the element can be written as

u̇ = HeU̇e. (33)

Following Lagrange’s method, the kinetic energy must be first derived with respect to all components of the
generalized velocity vector and then with respect to time, which results in the expression

d

dt

∂Te
∂U̇e

=
∫

Ve

ρHTHÜedVe = MeÜe. (34)

Note that the derivative with respect to a vector means derivation with respect to all components of this vector.
The matrix
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Me =
∫

Ve

ρHTHÜedVe (35)

is the elementmassmatrix. Togetherwith the generalizedvisco-elastic forces as derived above and the externally
applied loads Pe(t), this leads to the element equations of motion

MeÜe + CeD
α
t Ue + KeUe = Pe(t). (36)

Standard assembly of the element equations and introducing the appropriate boundary conditions finally leads
to the equation of motion for the finite element assembly [1]

MÜ + CDα
t U + KU = P(t). (37)

4.2 Newmark method

The Newmark method (e.g., [1]) is an implicit direct integration method, i.e., for a known displacement vector

U(t) and velocity vector U̇(t), and it satisfies the equations of motion (dynamic equilibrium) at time t + �t .
For the special case of the constant average acceleration method, the kinematic assumptions are

U̇(t + �t) = U̇(t) + �t

2

[
Ü(t) + Ü(t + �t)

]
,

U(t + �t) = U(t) + �tU̇(t) + �t2

4

[
Ü(t) + Ü(t + �t)

]
.

(38)

These two equations together with the equation of motion at time t + �t

MÜ(t + �t) + CDα
t U(t + �t) + KU(t + �t) = P(t + �t) (39)

define the integration scheme. Re-arranging these equations and using the Grünwald–Letnikov sum for repre-
senting the fractional derivative Dα

t , we obtain the recursion scheme
(

4

�t2
M + q0C + K

)
U(t + �t) = P(t + �t) + M

[
4

�t2
U(t) + 4

�t
U̇(t) + Ü(t)

]

−C
m∑

k=1

qkU(t + �t − k�t). (40)

It should be noted that in the summation up tom in the last term of the previous equation is it implicitly assumed
that the displacements are zero for t < 0. So effectively the number of terms to be actually considered will
increase with increasing time. For updating the acceleration, the second of Eq. (38) is re-arranged into

Ü(t + �t) = 4

�t2
[U(t + �t) − U(t)] − 4

�t
U̇(t) − Ü(t). (41)

For updating the velocity, the first of Eq. (38) can then be directly used.
While strictly speaking the time step for the Grünwald–Letnikov series does not have to match the time

step used for the Newmark scheme, it is computationally advantageous to use the same time step �t (cf. [20]).

5 Numerical examples

5.1 Creep response of a Timoshenko Beam

As a reference example to check the validity of the numerical procedure consider the simple Timoshenko beam
previously analyzed in [17]. A sketch of this beam is shown in Fig. 4. For the numerical analysis, the values
L = 2, b = 0.2, q = 106 are chosen. The material is characterized by fractional viscosity with Cα = 1011 and
α = 0.25. Inertia effects are neglected in this example. The midspan deflection of the beam is computed using
20 finite Timoshenko beam elements (after [18]). The time resolution for the Newmark scheme is �t = 0.1.
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Fig. 4 Simple Timoshenko beam and constitutive model

Fig. 5 Midspan deflection of Timoshenko beam. Analytical result taken from [17].

Fig. 6 Euler–Bernoulli beam under moving load

The results are shown in Fig. 5. In this figure, the numerical solution according to [17] is shown as well. The
match is very good which indicates that the Newmark procedure as described works extremely well.

As a variation, now consider an Euler–Bernoulli beam under a traveling load F(t) = 105 (cf. Fig. 6). It is
assumed that this load moves with constant velocity v = 0.2 from the left support to the right support. The
beam has a square cross section of size b = 0.2. Its fractional viscosity modulus is Cα = 105, and the fractional
order is chosen as α = 0.75 and α = 0.25. Again, inertia effects are neglected in this example. For this case, the
midspan deflection as a function of time is shown in Fig. 7. The results are compared to analytical solutions
obtained by modal superposition according to the procedure reported in Sect. 4, having considered only the
first three modes [17]. Again, the agreement between the results of the two methods is excellent.

5.2 Dynamic response of an Euler–Bernoulli beam

A simply supported beam (cf. Fig. 8) of length L = 5 with a cross section defined in terms of cross-sectional
area A and moment of inertia I under a static concentrated load F0 = 10 kN at position xF = 2 is considered
[6]. This load is suddenly applied at time t = 0. The ensuing free vibration response is computed assuming
fractional visco-elastic behavior of the Kelvin–Voigt type characterized by a modulus of elasticity E and a
springpot with a coefficient Cα and an order α. The mass density is ρ. Numerical values are A = 1 m2, I =
8.226×10−6 m4, E = 21 GPa, c = 965 MPa, ρ = 7850 kg/m3. The coefficient Cα is computed according to
Cα = E

( c
E

)α . Figure 9 shows the displacement response at the location xD = 2.35 m.
It can be seen that the Finite Element results agree extremely well with the analytical result based on modal

superposition as reported in [6].
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Fig. 7 Midspan deflection of Euler–Bernoulli beam under moving load for two different values of the fractional order α

Fig. 8 Simple Euler–Bernoulli beam and constitutive model

5.3 Earthquake response of a multi-storey building

This somewhat more complex example demonstrates the application of the procedure as outlined to a structural
model with a larger number of degrees of freedom (378 DOF). A sketch of this 7-storey structure is shown in
Fig. 10. Themodel consists of columns, shearwalls and floor slabs. The columns aremodeled by beamelements
with quadratic cross sections (30× 30cm), the shear walls and the floor slabs are modeled by triangular plate
elements with a thickness of 20 cm. The material properties are chosen close to reinforces concrete (mass
density ρ = 2500 kg/m3, modulus of elasticity E = 30GPa). All elements are assumed to have the same
fractional visco-elasticity with a coefficient Cα = 1.5GPa (s/m)α , and α is varied in the analysis.

The dynamic response to the well-known El Centro (NS) acceleration acting in x-direction is computed.
Due to the lack of symmetry of the building plan, considerable torsional motion is introduced. The horizontal
displacements ux and uy of the top front corner node (cf. Fig. 10) in x- and y-directions are shown in Fig. 11
for different values of the fractional order α.

From a structural engineering perspective, internal forces such as bending moments or shear forces are
more relevant for structural design as compared to displacements. Figure 12 compares the bending moments
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Fig. 9 Dynamic response of beam under suddenly applied concentrated load for different values of α. Modal superposition results
taken from [6]

8 8

8
8

4

x

y

ux
uy

A

Fig. 10 Frame structure under earthquake loading
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Fig. 11 Dynamic displacement response of frame structure under earthquake loading
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Fig. 12 Dynamic bending moment response of frame structure under earthquake loading
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Mx and My about the x- and y-axes, respectively, in support point A (cf. Fig. 10) for different values of the
fractional order α.

The bending moments exhibit a similarly decreasing trend with increasing α as the displacements. The fre-
quency content, however, is quite different in the sense that substantially more high-frequency components are
present in the bendingmoments. This is not too surprising, as themoments are obtained from the displacements
by taking second spatial derivatives.

6 Concluding remarks

A straightforward Finite Element formulation for the numerical treatment of fractional viscoelasticity has been
presented. This formulation has the advantage of being non-intrusive with respect to the material formulations
used in the FE code. Hence, a largely code-independent algorithm could be developed. This algorithm is
based on the standard Newmark implicit time-stepping scheme in conjunction with a discrete version of the
Grünwald–Letnikov representation of Caputo’s fractional derivative.

The algorithm has been applied to several test cases. The numerical results show excellent agreement
to results previously obtained using alternative method based on modal superposition. Due to the memory
inherent in the fractional viscoelasticity and the discrete Grünwald–Letnikov formulation, it is necessary to
store the past displacement history for all degrees of freedom. This requires some amount of storage which,
however, is not significant in relation to storage requirements related to the system matrices, in particular the
factorized stiffness matrix.

Since all operations involved are carried out at the level of system matrices and vectors (and not at material
point level), it is very easy and straightforward to implement the solution procedure into any general-purpose
Finite Element code.
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