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Abstract It is well known that the main approaches of the analytical solving of the elasticity mixed plane
problems for a semi-strip are based on the different representations of the equilibrium equations’ solutions: the
representations through the harmonic and by harmonic functions, through the stress function, Fadle–Papkovich
functions and so on. The main shortcoming of these approaches is connected with the fact that to obtain the
expression for the real mechanical characteristics, one should execute additional operations, not always simple
ones. The approach that is proposed in this paper allows the direct solution of the equilibrium equations.
With the help of the matrix integral transformation method applied directly to the equilibrium equations,
the initial boundary problem is reduced to a vector boundary problem in the transformation’s domain. The
use of matrix differential calculations and Green’s matrix function leads to the exact vector solution of the
problem. Green’s matrix function is constructed in the form of a bilinear representation which simplifies the
calculations. The method is demonstrated by the solving of the thermoelastic problem for the semi-strip. The
zones and conditions of the strain stress occurrence on the semi-strip’s lateral sides, important to engineering
applications, are investigated.

Mathematics Subject Classification 74B05 · 14B05

1 Introduction

The plain elasticity problems for a semi-strip have been solved by many authors, and this can be explained
by the importance of these problems as the model example for different engineering applications. Some of
the investigations, due to the obtained theoretical results, became classics, such as the works of Kolosov,
Muskchelishvili, Babeshko, Vorovich [1–3]. The methods proposed in these works are based on the use of the
complex variable functions’ theory and Koshy-type integrals. A detailed bibliography dedicated to the integral
transformation method in such problem-solving is given in [4]. The standard methods which are based on the
presentation of the solution in Papkovich–Neuber form or on the presentation of the solution in the form of
the superposition of the few harmonic functions are often used during the solving.

The importance of the elasticity problem-solving for a continuous half-strip is due to the necessity of
solving more complex problems of stress concentration around the cracks and the inclusions inside it.

In [5], the elastostatic plane problem of an infinite strip having a circular hole and containing two symmet-
rically located internal cracks perpendicular to the boundary is formulated in terms of triply coupled integral
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equations. The solution of the problem is obtained for various crack geometries and for uniaxial tension applied
to the strip away from the crack region. In [6], the three-dimensional (3-D) elastodynamic interaction between
a penny-shaped crack and a thin elastic interlayer joining two elastic half-spaces is investigated by an improved
boundary integral equation method or boundary element method.

A short review of the different approaches to the solving of the plane elasticity problems for an elastic
half-strip is given below.

In [7], the authors considered the problem on the symmetrically loaded semi-strip fixed by the short edge.
The solving is reduced to the Fredholm’s integral equation of the first kind with regard to the normal stress at
the fixed edge. As is noted in the work, this approach complicates the equation’s investigation and its numerical
solving also. With the help of the stress function, in [8,9] the problem was solved for a semi-strip with free
longitudinal sides, when the self-equilibrium loading influences the short edge. The application of the sine
transformation to the equation and a stress function reduced the problem of the semi-strip’s strain with free
longitudinal edges and fixed short edge to an infinite system of linear equations in [10]. The approach where
the problem is formulated for a stress function is used also in [11], but here Laplace’s integral transformation
is used. Often, the stress function is performed as combination of Fourier integrals and series. An analogous
approach is used in [12–15] for the problems on a semi-strip. As a result, the authors obtain an infinite system
of algebraic equations (the question of its regularity they leave without research).

In [16], the problem for a semi-strip with free lateral edges and a short edge loaded by displacements is
considered. It is supposed that the displacements have the form of polynomials. The method of orthogonal
polynomials is used to solve the problem. The variation method is used for the analogous problem in [17].
When the lateral edges of the semi-strip are free and the short edge is under the concentrated force, the
problem-solving can be based on the energetic method [18]. In [19], the authors construct a special system of
biorthogonal functions, with the help of which they solve the problem for a load on the short edge semi-strip.
In [20], the mixed elasticity problem is solved with the help of the variation Castigliano method, where the
varying parameters are expressed through the solving of an infinite system of linear algebraic equations.

Another big class of problems in the solving of the elasticity problem for a semi-strip is based on the use
of Fadle–Papkovich functions. In [21], the solution was constructed for the classical boundary valued problem
for a rectangular semi-strip with free lateral edges. The same problem was solved in [22], where the author
applies the Borel’s transformation in the class of quasi-integer functions of the exponential kind. In [23], also
the Fadle–Papkovich functions are used for the representation of the solution in the form of series by these
functions’ system.

As can be seen from the review, the two main approaches are used—the analytical approach and the
numerical analytical one. The choice between them is determined by the boundary conditions at the semi-
strip’s edge. All these approaches use the representation of the equilibrium equations’ solutions through the
harmonic, by harmonic and other functions. So to obtain the real mechanical displacements and stress requires
an additional, often not very simple, steps.

With the aim of avoiding this shortcoming in this paper the method, which was proposed by Popov [24],
is used. According to it, the integral transformations are applied directly to the equilibrium equations and
boundary conditions of a problem. In most cases, it leads to a one-dimensional boundary problem in the
transformation’s domain. The last one is formulated as a vector boundary value problem and solved with
the apparatuses of the matrix differential calculations and Green’s matrix function. It leads to the solving
of a singular integral equation. The orthogonal polynomials’ method [25], taking into consideration the real
singularities of the unknown function at the ends of the integration interval, is proposed for the equation
solving.

2 The statement of a problem

The elastic (G is the shear modulus, μ is a Poison’s coefficient) semi-strip, 0 < x < a, 0 < y < ∞ is loaded
at the edge y = 0, 0 < x < a,

σy |y=0 = −p(x), τyx |y=0 = 0, 0 < x < a, (1)

where p(x) is a known function. At the edges x = 0, 0 < y < ∞ and x = a, 0 < y < ∞, the boundary
conditions of the general type are given:

U0[ f ] = 0, U1[ f ] = 0. (2)
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Fig. 1 Geometry and coordinate system of the semi-strip

Here, Ui [ f (x)] = αi f (ai , y) + βi f ′ (ai , y) , i = 0, 1, are boundary functionals of general form (they
will be detailed later), f (x, y) = (u (x, y) , v (x, y))T is the vector of displacements, and u(x, y) =
ux (x, y) , v(x, y) = uy (x, y) are the displacements which satisfy the Lamé’s equations (Fig. 1).

The equations are written in the following form:
⎧
⎨

⎩

μ∗ ∂2u(x,y)
∂x2

+ ∂2u(x,y)
∂y2

+ μ0
∂2v(x,y)

∂x∂y + X1(x, y) = 0,
∂2v(x,y)

∂x2
+ μ∗ ∂2v(x,y)

∂y2
+ μ0

∂2u(x,y)
∂x∂y + X2(x, y) = 0,

(3)

where μ0 = 1
1−2μ, μ∗ = μ0 + 1, X1 (x, y) = Xx (x, y) , X2 (x, y) = Xy (x, y) are the components of the

volume force. There can be, for example, the corresponding derivatives of the temperature that one obtains
after solving the thermal conductivity problem for a semi-strip. After the expression of the constants μ0, μ∗
through the Muskchelishvili constant κ = 3 − 4μ, one obtains the system (3) in another form:

⎧
⎨

⎩

∂2u(x,y)
∂x2

+ κ−1
κ+1

∂2u(x,y)
∂y2

+ 2
κ+1

∂2v(x,y)
∂x∂y + κ−1

κ+1 X1(x, y) = 0,
∂2v(x,y)

∂x2
+ κ+1

κ−1
∂2v(x,y)

∂y2
− 2

κ−1
∂2u(x,y)

∂x∂y + X2(x, y) = 0.
(4)

The boundary conditions are reformulated with the terms of the displacements

2Gμ0

(
μ

∂u(x,0)
∂x + (1 − μ)

∂v(x,0)
∂y

)
= −p(x),

∂u(x,0)
∂y + ∂v(x,0)

∂x = 0.
(5)

One needs to solve the boundary value problem (2), (4), (5) to estimate the stress state of the semi-strip and to
evaluate the absolute values and conditions of the stretching stress occurrence at the lateral side of the strip.

3 The general solving scheme of the problems on the semi-strip stress state estimation

The Fourier’s transformation is applied to the system of Lamé’s equation and to the boundary conditions by
the scheme

[
uβ(x), X1β(x)
vβ(x), X2β(x)

]

=
∞∫

0

[
u(x, y), X1(x, y)
v(x, y), X2(x, y)

] [
cosβy
sin βy

]

dy (6)
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with the inverse formula

[
u(x, y), X1(x, y)
v(x, y), X2(x, y)

]

= 2

π

∞∫

0

[
uβ(x), X1β(x)
vβ(x), X2β(x)

] [
cosβy
sin βy

]

dβ. (7)

After this, the initial equations (4) have the form

⎧
⎨

⎩

d2uβ(x)
dx2 − β2(κ−1)

κ+1 uβ(x) + 2β
κ+1

dvβ(x)
dx = 3−κ

κ+1χ
′(x) − κ−1

κ+1 X1β(x),

d2vβ(x)
dx2 − β2(κ+1)

κ−1 vβ(x) − 2β
κ−1

duβ(x)
dx = −β κ+1

κ−1χ(x) − X2β(x).
(8)

Here the new unknown function χ (x) = v (x, 0) , χ ′ (x) = v′ (x, 0) is introduced. As can be seen from the
second boundary condition (5), u•(x, 0) = −χ ′(x), so the second condition is satisfied automatically.

With the aim to reduce the problem to a vector boundary problem, one must introds the vectors and

the matrixes �yβ(x) =
(
uβ (x)

vβ (x)

)

, �f (x) =
(

3−κ
κ+1χ ′ (x) − κ−1

κ+1 X1β (x)

−β κ+1
κ−1χ (x) − X2β(x)

)

, P =
(

κ−1
κ+1 0

0 κ+1
κ−1

)

, Q =
(
0 1

κ+1

− 1
κ−1 0

)

.

Then, the equations in vector form will be written as the vector equation L2 �yβ (x) = �f (x), where L2 is a
differential operator of second order, L2 �yβ (x) = I �yβ ′′ (x) + 2βQ �y′

β (x) − β2P �yβ (x), and I is an identity
matrix. The integral transformations also should be applied to the boundary conditions, with the aim to
formulate the boundary functionals in the transformations’ domain. As a result, the vector boundary problem
is constructed:

L2 �yβ (x) = �f (x),
U0

[�yβ
] = 0, U1

[�yβ
] = 0. (9)

4 The solution of the vector boundary value problem

The solution of the vector boundary problem will be searched as the superposition of a homogenous vector
equation’s general solution �y0β (x) and a particular solution of the inhomogeneous one �y1β (x),

�yβ (x) = �y0β (x) + �y1β(x). (10)

These solutions will be constructed with the help of the matrix differential calculation apparatus. As has been
shown earlier [26] for the construction of the homogenous vector equation’s solution, one must first construct
the solution of a homogenous matrix equation

L2Yβ(x) = 0, 0 < x < a. (11)

Here, Yβ (x) is the matrix of order 2×2. This matrix Yβ (x) should be chosen in a form Yβ (x) = eξ x I and be
substituted into the matrix equation (11). As a result, the equality L2eξ x I = M (ξ) eξ x is obtained, where the
matrix M (ξ) has the form

M(ξ) = I ξ2 + 2βQξ − β2P =
⎛

⎝
ξ2 − β2 κ−1

κ+1
2βξ
κ+1

− 2βξ
κ−1 ξ2 − β2 κ+1

κ−1

⎞

⎠ . (12)

According to [27], the solution of the homogenous matrix equation is constructed by a formula

Y (x) = 1

2π i

∮

C

eξ x M−1(ξ)dξ, (13)

where M−1 (ξ) is the inverse matrix to M (ξ). The closed contour C covers all singularity points of the matrix
M−1 (ξ). For the estimation of these singularity points, we use the fact that the inverse matrix can be expressed
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as the ratio of a transposed matrix of the algebraic additions and a determinant of the initial matrix. So the
determinant of the matrix M (ξ) is found as

det M(ξ) = ξ4 − 2β2ξ2 + β4 = (ξ − β)2(ξ − β)2. (14)

After transposing the matrix of the algebraic additions, one can write the view of the inverse matrix:

M−1(ξ) = 1

(ξ − β)2(ξ + β)2

(
ξ2 − β2 κ+1

κ−1 − 2βξ
κ+1

2βξ
κ−1 ξ2 − β2 κ−1

κ+1

)

. (15)

After the substitution of the constructed inverse matrix (15) into the expression (13), one can find that the
expression under the contour integral has two multiple poles ξ = β, ξ = −β. With the help of the residual
theorem and after the calculation of the residuals, one obtains the following matrix system of the fundamental
matrix solutions:

Y1 (x) = eβx

2

(
κ−βx

β(κ−1) − x
κ+1

x
κ−1

κ+βx
β(κ+1)

)

, Y2 (x) = e−βx

2

(
− κ+βx

β(κ−1)
x

κ+1

− x
κ−1 − κ−βx

β(κ+1)

)

. (16)

After the substitution of the searched matrixes Y1 (x) , Y2 (x) in the formula (10), the solution of the vector
equation can be rewritten:

�yβ (x) = Y1 (x)

(
c1
c2

)

+ Y2 (x)

(
c3
c4

)

+ �y1β(x), (17)

where the constants ci , i = 1, 4 are founded from the boundary conditions.

5 The construction of the Green’s matrix function

For the obtaining of the vector boundary problem’s particular solution, one needs to construct theGreen’smatrix
function. It can be done with the help of the matrix integral transformations’ method [25]. Let’s construct the
Green’s matrix function G (x, ξ) for the vector boundary problem of the structure

{
L2 �y (x) = �f (x),
Vi

[�y (x)
] = 0, i = 0, 1,

(18)

where V0, V1 are the boundary functionals of the following form:

V0
[�y(x)] = αn

(
1 0
0 0

)

�y (0) −
(
0 0
0 1

)

�y′(0),

V1
[�y(x)] = αn

(
1 0
0 0

)

�y (a) −
(
0 0
0 1

)

�y′ (a).

(19)

The kernel of the integral transformation was taken in the form

H (x, αn) =
(
sin αnx 0
0 cosαnx

)

, αn = nπ

a
, n = 0, 1, 2 . . . (20)

The multiplication of Eq. (18) on both sides by the kernel (20) and the following integration by parts on the
segment [0; a] lead to the correspondence

�β (αn) �yn = �fn, (21)

where �yn =∫ a
0 �y (x) H (x, αn)dx, Q̃=

(
0 1

κ+1
1

κ−1 0

)

, �β (αn)=−Iα2
n−2βαn Q̃−β2P=

(−α2
n−β2 κ−1

κ+1 − 2βαn
κ+1

− 2βαn
κ−1 −α2

n − β2 κ+1
κ−1

)

.
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The solution of Eq. (21) has the form
�yn = �−1

β (αn) �fn, (22)

where

�−1
β (αn) = 1

(α2
n + β2)2

(
−α2

n(κ−1)+β2(κ+1)
κ−1

2βαn
κ+1

2βαn
κ−1 −α2

n(κ+1)+β2(κ−1)
κ+1

)

.

The inverse integral transformation is applied to the solution �yn =
(
yn1
yn2

)
. In component-wise form, it can be

written as

y1(x) = 2

a

∞∑

n=1

yn1 sin (αnx) =2

a

∞∑

n=0

′yn1 sin (αnx),

(23)

y2(x) = y02
a

+ 2

a

∞∑

n=1

yn2 cos (αnx) =2

a

∞∑

n=0

′yn2 cos (αnx).

In vector form, one has �y(x) = 2
a

∑∞
n=0

′H (x, αn) �yn; here, dot denotes that the zero term should bemultiplied
by 1/2. On the other hand—�yn = ∫ a

0 H (x, αn) �y(x)dx .
After the union of these two results, the formula for the vector calculations is obtained: �y (x) =

2
a

∑∞
n=0

′H (x, αn)�−1
β (αn) �fn . Taking into consideration the formula �fn = ∫ a

0 H (ξ, αn) �f (ξ) dξ , one can
write the correspondence

�y(x) = 2

a

∞∑

n=0

′H (x, αn) �−1
β (αn)

a∫

0

H (ξ, αn) �f (ξ) dξ

=
a∫

0

[
2

a

∞∑

n=0

′H (x, αn)�−1
β (αn) H (ξ, αn)

]

�f (ξ) dξ. (24)

From the last formulae, it shows that Green’s matrix function of the boundary valued problem (16) can be
constructed in the form

G (x, ξ) = 2

a

∞∑

n=0

′H (x, αn) �−1
β (αn) H (ξ, αn). (25)

The representation (25) is the bilinear expansion for the Green’s matrix function.
One can be sure that all properties of Green’s function are executed, and in particular that the boundary

conditions in (16) are satisfied:
V0 [G (x, ξ)] = 0, V1 [G (x, ξ)] = 0. (26)

For each component of the Green’s matrix, summarizing was executed with regard to the known formulae
(1.445(1–2), [28]). The representation of the Green’s matrix function’s components is shown in Appendix A.

The solution of the inhomogeneous boundary problem is constructed in the form

�yβ (x) = Y1 (x)

(
c1
c2

)

+ Y2 (x)

(
c3
c4

)

+
a∫

0

G (x, ξ) f (ξ)vξ. (27)

The application of the inverse integral transformations’ formulae (5) to the expression (17) completes the
construction of the displacement field.

The solution of the initial problem would be finally found if one would know the unknown function χ (x)
in the right-hand part f (x) of Eq. (9). With the aim to find it, one needs to satisfy the first boundary condition
in (5) that is unsatisfied yet. That leads to a singular integral or integro-differential equation with respect to this
function. The solving method of this singular equation is the method of the orthogonal polynomials allowing
to take into account the real singularity of the solution at the ends of the integration interval [25].

Let us demonstrate the proposed solution method for the particular thermoelasticity problem for an elastic
semi-strip.
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6 The solution of the thermoelasticity problem for an elastic semi-strip

Let us solve the boundary valued problem (4), (5) for an elastic semi-strip with the following conditions (2)
on the lateral sides: The semi-strip’s edge x = 0, 0 < y < ∞ is fixed, and the edge x = a, 0 < y < ∞ is in a
smooth contact condition. Thus, the detailed conditions (2) have the form

u(0, y) = 0, v(0, y) = 0, x = 0, 0 < y < ∞,

u(a, y) = 0, τxy(a, y) = 0 x = a, 0 < y < ∞, (28)

or, with the help of the boundary functionals, one can write

U0

(
u (x, y)
v (x, y)

)

=
(
1 0
0 1

)(
u (0, y)
v(0, y)

)

=
(
0
0

)

, U1

(
u (x, y)
v (x, y)

)

=
(
1 0
0 1

)(
u (a, y)
v′(a, y)

)

=
(
0
0

)

. (29)

The temperature T (x, y) is taken as the volume force. It was found from the thermal conductivity problem for
a semi-strip

∂2T
∂x2

+ ∂2T
∂y2

= 0, 0 < x < a, 0 < y < ∞,

T (x, 0) = f (x) , 0 < x < a,

∂T
∂x (0, y) = 0, ∂T

∂x (a, y) = 0, 0 < y < ∞.

(30)

The solution of this problem was constructed earlier in the form [29]

T (x, y) =
⎧
⎨

⎩

e− 2πy
a

2a

∫ a
0 f (ξ)

[
δ+ (y, x, ξ) + δ− (y, x, ξ)

]
dξ, 0 ≤ x ≤ a, 0 < y < ∞,

1
a

∫ a
0 f (ξ) dξ + ∑∞

k=1
2
a

∫ a
0 f (ξ) cos πkξ

a dξ cos πkx
a , 0 ≤ x ≤ a, y = 0,

where δ± (y, x, ξ) = 1

1+e− 2πy
a −2e− πy

a cos π(x±ξ)
a

.

The right-hand part of the Lamé’s equations will be transformed taking into consideration the view of the
volume force and will be written in the transformation domain in the form

d2uβ(x)
dx2 − β2(κ−1)

κ+1 uβ(x) + 2β
κ+1

dvβ(x)
dx = 3−κ

κ+1χ
′(x) + ρ̃

κ+1
dTβ

vx (x),

d2vβ(x)
dx2 − β2(κ+1)

κ−1 vβ(x) − 2β
κ−1

duβ(x)
dx = −β κ+1

κ−1χ(x) − βρ
κ−1Tβ (x).

Here, Tβ (x) = ∫ ∞
0 T (x, y) cosβydy, ρ̃ = ρ κ−1

κ+1 , ρ = 2 μ+1
1−2μαt , and αt is a linear expansion coefficient.

According to the constructed solution (27), the displacements’ formulae will be the following:

uβ(x) = Y 11
1 (x) c1 + Y 12

1 (x) c2 + Y 11
2 (x) c3 + Y 12

2 (x) c4

+3 − κ

κ + 1

a∫

0

G11 (x, ξ) χ ′ (ξ) dξ + ρ̃

a∫

0

G11 (x, ξ)
dTβ

dξ
(ξ) dξ

−β
κ + 1

κ − 1

a∫

0

G12 (x, ξ) χ (ξ) dξ − βρ

a∫

0

G12 (x, ξ) Tβ (ξ) dξ,

vβ(x) = Y 21
1 (x) c1 + Y 22

1 (x) c2 + Y 21
2 (x) c3 + Y 22

2 (x) c4

+3 − κ

κ + 1

a∫

0

G21 (x, ξ) χ ′ (ξ) dξ + ρ̃

a∫

0

G21 (x, ξ)
dTβ

dξ
(ξ) dξ

−β
κ + 1

κ − 1

a∫

0

G22 (x, ξ) χ (ξ) dξ − βρ

a∫

0

G22 (x, ξ) Tβ (ξ) dξ,

where Gi, j (x, ξ) is the Green’s matrix function element in row i and column j . The integrals with the
derivatives of the function T (ξ) and the function χ (ξ) are calculated by parts. During the calculation, the
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facts that G11 (x, a) = G11 (x, 0) = G21 (x, a) = G21 (x, 0) = 0 are taken into consideration, so the
expressions for the displacements are modified:

uβ(x) = Y 11
1 (x) c1 + Y 12

1 (x) c2 + Y 11
2 (x) c3 + Y 12

2 (x) c4,

vβ(x) = Y 21
1 (x) c1 + Y 22

1 (x) c2 + Y 21
2 (x) c3 + Y 22

2 (x) c4

+ 3 − κ

κ + 1

a∫

0

G21 (x, ξ) χ ′ (ξ) dξ − ρ̃

a∫

0

∂G21 (x, ξ)

∂ξ
Tβ (ξ) dξ

+ β
κ + 1

κ − 1

a∫

0

�22 (x, ξ) χ ′ (ξ) dξ − βρ

a∫

0

G22 (x, ξ) Tβ (ξ) dξ,

where �22 (x, ξ) = ∫
G22 (x, ξ) dξ .

The unknown constants ci , i = 1, 4, are found from the boundary conditions (28) and are shown in
Appendix B. These formulae would be the final ones if the unknown function χ ′ (ξ) is known. For its finding
with, one must satisfy the boundary condition (5), which is unsatisfied yet. With this aim, the inverse integral
transformations’ formulae should be applied to the displacements’ transformations (7):

u (x, y) =
a∫

0

⎡

⎣χ ′ (ξ)

∞∫

0

f1 (x, ξ, β) cos (βy) dβ

+
∞∫

0

T (ξ, η)

∞∫

0

f2 (x, ξ, β)
(cosβ (y + η) + cosβ (y − η))

2
dβdη

⎤

⎦ dξ, (31)

v (x, y) =
a∫

0

⎡

⎣χ ′ (ξ)

∞∫

0

g1 (x, ξ, β) sin (βy) dβ ,

+
∞∫

0

T (ξ, η)

∞∫

0

g2 (x, ξ, β)
(sin β (y + η) + sin β (y − η))

2
dβdη

⎤

⎦ dξ, (32)

where fi (x, ξ, β) , gi (x, ξ, β), i = 1, 2 are shown in Appendix C.
It should be taken into consideration that integrals in these correspondences are conditionally convergent

integrals. So, before differentiating the displacements’ expressions, at first one must extract the weakly conver-
gence parts of these integrals. With this aim, the following method is proposed. An conditionally convergent
integral

∫ ∞
0 a (x) dx is divided on two summands

∫ ∞
0 a (x) dx = ∫ A

0 a (x) dx + ∫ ∞
A a (x) dx . In the second

summand, the functions under the integral sign is substituted by its asymptotic expression ã (x)when x → ∞.
Then, the summand

∫ A
0 ã (x) dx is added and subtracted. Instead of initial integral, one obtains the expres-

sion
∫ ∞
0 a (x) dx = ∫ ∞

0 ã (x) dx +
(∫ A

0 a (x) dx − ∫ A
0 ã (x) dx

)
. The first integral in this expression is the

table integral and is calculated with the formulae (3.941(1), 3.944(11–12)) [28]. After this procedure, one
can differentiate the displacements’ expression and satisfy the condition (5). It leads to the singular integral
equation

a∫

0

χ ′ (ξ)

[
1

ξ − x
+ f (ξ, x)

]

dξ = r (x) −
a∫

0

∞∫

0

T (ξ, η) g (ξ, η, x) dηdξ, 0 < x < a.

Here, r (x) , f (ξ, x) , g (ξ, η, x) are the known regular functions.
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7 The solution of the singular integral equation

The change in the variables ξ = ξ∗
a , x = x∗

a is done for switching to the integration interval [0; 1]. As a result,
the integral equation is transformed to the form

1∫

0

χ̃ (ξ)

[
1

ξ − x
+ a f (aξ, ax)

]

dξ = r (ax)

−a

1∫

0

∞∫

0

T (aξ, η) g (aξ, η, ax) dηdξ, 0 < x < 1, (33)

where χ̃ (ξ) = χ ′ (aξ). The integral equation is solved approximately by the orthogonal polynomials’ method
[25]. This method allows taking into consideration the real singularities of the solution at the ends of the
integration interval. The order of singularities is found from the known solution for an edge with the opening
angle π /2 [4]. With regard to this, the function χ̃ (ξ) is expanded into the series of the Jacobi polynomials

χ̃ (ξ) =
∞∑

n=0

c̃nξ
α (1 − ξ)β Pα,β

n (1 − 2ξ) , (34)

where Pα,β
n (x) is a Jacobi polynomial, α = −0.31, β = 0 [4]. This expression is substituted into the integral

equation (33), and the standard scheme of the orthogonal polynomials’ method is realized. The spectral
correspondence [30]

1

π

1∫

0

yα (1 − y)β Pα,β
n (1 − 2y) dy

y − x
= ctg (πα) xα (1 − x)β Pα,β

n (1 − 2x) , 0 < x < 1

is used. As a result, the infinite system of linear algebraic equations related to the unknown coefficients
c̃i , i = 0, 1, 2..., is obtained:

c̃m +
∞∑

n=0

c̃ndmn = fm,m = 0, 1, 2... (35)

The system (35) is solved by the reduction method (its applicability is proved by the scheme proposing in
[25]). The substitution of the constants in the formula (34) and then using the formulae (31) completes the
construction of the problem’s solution.

8 The results of the numerical analyses

The calculations were done for an elastic half-strip (G = 82.03125 · 109 Pa, μ = 0.28) with the side a = 10.
Figures 2, 3 and 4 show the values of the stress σx and σy on the lateral sides, the edge and inside the semi-strip
under the mechanical and temperature influences. The changes in the stress field were investigated depending
on the changes in the temperature loading by the given mechanical loading and vice versa—by the changing
in the mechanical loading by the given temperature loading influence on a semi-strip.

To keep the accuracy of the calculations below 10−4, it was enough to save 15 equations in the reduced
system of the linear algebraic equation (35). The integrals of the type (31) were calculated using the Gauss
quadrature formulas with 35 nodes. The accuracy of the problem boundary conditions’ executing was inves-
tigated for the validation of the numerical calculations. This test showed that the numerical error in satisfying
the boundary conditions is 10−4.

From Fig. 2, one can admit that the values of the normal stress σy at the lateral side x = 0 are substantially
higher than those at the lateral side x = 10, and the absolute values of the stress increase with the temperature
loading increasing. A similar effect of temperature influence is observed during the analysis of the stress



4168 N. Vaysfel’d, Z. Zhuravlova

Fig. 2 Stress’ distribution of σy (x, y) at the strip’s points {[x, y] :x = 0, 0 ≤ y ≤ 10} (a) and {[x, y] : x = 10, 0 ≤ y ≤ 10} (b)

Fig. 3 Stress’ distribution of σx (x, y) at the strip’s points {[x, y] : x = 0, 0 ≤ y ≤ 10} (a) and {[x, y] : x = 10, 0 ≤ y ≤ 10} (b)

Fig. 4 Stress’ distribution of σy (x, y) at the strip’s points {[x, y] : 0 ≤ x ≤ 10, y = 1} (a) and {[x, y] : 0 ≤ x ≤ 10, y = 4} (b)

σx (Fig. 3). On the fixed lateral side, the occurrence of the tensile stresses is observed. No tensile stresses
are admitted on the lateral side, where the conditions of the slide contact are given. With increasing applied
temperature, the absolute values of the stresses on both surfaces also increase.
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During the analysis of the stresses within the semi-strip, one can note the decrease in the normal stress’
absolute values with increasing distance from the location of the applied loads (Fig. 4). An increase in the
applied temperature loading leads to increased stress values within the semi-strip.

After the analysis of the numerical calculations it was estimated that the effect of the temperature change
hasmore influence on the stress state than the change of themechanical loading. The increase in the temperature
results in significantly higher absolute values of the stresses. At the same time, on the fixed edge of the strip
the occurrence of tensile stresses is admitted, which increases with the increasing temperature effect in the
applied loading.

9 The conclusions

1. The proposed method allows to solve mixed plane elasticity problems for a semi-strip with different
conditions on its lateral sides. Due to the method, integral transformations are applied directly to Lamé’s
equations, and one does not need to use the known different representations of their solutions.

2. The method allows the reduction in the problems for a semi-strip to singular integral equations, which can
be solved approximately with the help of the orthogonal polynomials’ method, taking into consideration
the singularity’s order of the unknown function at the ends of the integration interval.

3. For the thermoelasticity problem of a semi-strip, the zones and conditions of the strain stress occurrence
on the semi-strip’s lateral sides, important to engineering applications, are investigated.
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Appendix A: The Green’s matrix function’s components

G11 (x, ξ) = κch (β (ξ − a + x)) − κch (β (a − |ξ − x |))
2βsh (aβ) (κ − 1)

− 1

2 (sh (aβ))2 (κ − 1)
[sh (aβ) (ξsh (β (ξ − a + x)) + xsh (β (ξ − a + x))

− ash (β (ξ − a + x)) − (a − |ξ − x |) ash (β (a − |ξ − x |)))
− ach (aβ) (ch (β (ξ − a + x)) − ch (β (a − |ξ − x |)))]

G12 (x, ξ) = 1

2sh (aβ) (κ + 1)

[

− ach (aβ)
(
(ch (aβ))2 − 1

)
(κ + 1)

(sh (β (ξ − a + x))

− sgn (x − ξ) sh (β (a − |ξ − x |)))

+ (ch (β (ξ − a + x)) (ξ − a + x) − sgn (x − ξ) ch (β (a − |ξ − x |)) (a − |ξ − x |))
]

G21 (x, ξ) = 1

2sh (aβ) (κ − 1)

[

− ach (aβ)
(
(ch (aβ))2 − 1

)
(κ − 1)

(sh (β (ξ − a + x))

+ sgn (x − ξ) sh (β (a − |ξ − x |)))

+ (ch (β (ξ − a + x)) (ξ − a + x) + sgn (x − ξ) ch (β (a − |ξ − x |)) (a − |ξ − x |))
]

G22 (x, ξ) = −ch (β (ξ − a + x)) + ch (β (a − |ξ − x |))
2βsh (aβ)

+ 1

2β (sh (aβ))2 (κ + 1)
[sh (aβ) (ch (β (ξ − a + x)) + ch (β (a − |ξ − x |))

+β ((a − x − ξ) sh (β (ξ − a + x)) − (a − |ξ − x |) sh (β (a − |ξ − x |)))
+ aβch (aβ) (ch (β (ξ − a + x)) + ch (β (a − |ξ − x |)))]
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Appendix B: The constants ci , i = 1, 4

c1 = {
2β

[(
aκe−aβ − aκeaβ

)
T4 + (

κ + 2aβ + κe−2aβ + κ2e−2aβ + κ2 + 2aβκ
)
T1

+ (
aβe−aβ − κe−aβ − κ2eaβ − κ2e−aβ − aβκeaβ − κeaβ

)
T3

+ (−2aβ − 2aβκ) T2] (κ − 1)} /
{
κ (1 + κ)

(
4aβ + κe−2aβ − κe2aβ

)} ;
c2 = {

2T4
(
κ2e−aβ − κ2eaβ + aβκeaβ + aβκe−aβ)

+ 2T2
(
2aβ2 − βκ − βκ2 + βκ2e−2aβ + βκe−2aβ + 2aβ2κ

)

+ 2T3
(
βκeaβ − βκe−aβ + aβ2κeaβ + aβ2κe−aβ)

− 2T1
(
2aβ2 + 2aβ2κ

)}
/
{
κ
(
4aβ + κe−2aβ − κe2aβ

)} ;
c3 = {

2β
[(
aκeaβ − aκe−aβ) T4 + (

κeaβ + κe−aβ + κ2e−aβ + aβκeaβ − aβκe−aβ) T3

+ (
2aβ − κe2aβ − κ2e2aβ − κ2 + 2aβκ

)
T1

+ (2aβ + 2aβκ) T2] (κ − 1)} /
{
κ (1 + κ)

(
4aβ + κe−2aβ − κe2aβ

)} ;
c4 = {

2T4
(
κ2e−aβ − κ2eaβ + aβκeaβ + aβκe−aβ)

− 2T2
(
2aβ2 + βκ + βκ2 − βκ2e2aβ − βκe2aβ + 2aβ2κ

)

+ 2T3
(
βκeaβ − βκe−aβ + aβ2κeaβ + aβ2κe−aβ)

− 2T1
(
2aβ2 + 2aβ2κ

)}
/
{
κ
(
4aβ + κe−2aβ − κe2aβ

)}

Here, T1 = −u1β (0) , T2 = −v1β (0) , T3 = −u1β (a) , T4 = −v1β ′ (a).

Appendix C: The formulae for the fi (x, ξ, β) , gi (x, ξ, β) , i = 1, 2 functions from the displacements’
final formulae

f1 (x, ξ, β)

= − 2

πκ
(
κe−4aβ − κ + 4aβe−2aβ

)
{
2β

[ 1

(κ + 1)
(
e−2aβ − 1

)
[
κ (a − ξ)

(
x
(
eβ(ξ−6a+x)− e−β(ξ+x)

− e−β(2a−ξ+x) + e−β(4a+ξ−x)
)

− (2a − x)
(
−e−β(2a+ξ+x) + eβ(ξ−4a+x) − e−β(2a+ξ−x)

+ e−β(4a−ξ+x)
))]

− 1

(κ + 1)
(
e−2aβ − 1

)2

[
aκ

(
x
(
eβ(ξ−6a+x)+e−β(ξ+x)−e−β(2a−ξ+x)−e−β(4a+ξ−x)

)

+ (2a − x)
(
e−β(2a+ξ+x) − e−β(4a−ξ+x) + eβ(ξ−4a+x) − e−β(2a+ξ−x)

)) (
e−2aβ + 1

)]]

− κ

e−2aβ − 1

[
x
(
eβ(ξ−6a+x) + e−β(ξ+x) − e−β(2a−ξ+x) − e−β(4a+ξ−x)

)
+ (2a − x)

(
e−β(2a+ξ+x)

−e−β(4a−ξ+x) + eβ(ξ−4a+x) − e−β(2a+ξ−x)
) ]}

f2 (x, ξ, β)

= − βρ (κ − 1)

(κ + 1)
(
e−2aβ − 1

)
π

(
κe−4aβ − κ + 4aβe−2aβ

)
[
x
(
eβ(ξ−6a+x) − e−β(ξ+x) − e−β(2a−ξ+x)

+ e−β(4a+ξ−x)
)

+
(
eβ(ξ−4a+x) − e−β(2a+ξ+x) + e−β(2a+ξ−x) − e−β(4a−ξ+x)

)
(2a − x)

]

g1 (x, ξ, β)

= 2

π

{ 1

κ
(
κe−4aβ − κ + 4aβe−2aβ

)

{

κ

[
1

e−2aβ − 1

[
2a

(
e−β(2a+ξ+x) − eβ(ξ−4a+x) + e−β(2a+ξ−x)

− e−β(4a−ξ+x)
)

− x
(
e−β(2a+ξ+x) − eβ(ξ−4a+x) + eβ(ξ−6a+x) − e−β(ξ+x) + e−β(2a+ξ−x) + e−β(2a−ξ+x)
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−e−β(4a+ξ−x) − e−β(4a−ξ+x)
)

+ 2κ (a − ξ)

κ + 1

(
e−β(2a+ξ+x) − eβ(ξ−4a+x) + eβ(ξ−6a+x) − e−β(ξ+x)

−e−β(2a+ξ−x) − e−β(2a−ξ+x) + e−β(4a+ξ−x) + e−β(4a−ξ+x)
)]

+ 1

(κ + 1)
(
e−2aβ − 1

)2

[
2aκ

(
e−2aβ + 1

) (
e−β(2a+ξ+x) + eβ(ξ−4a+x) − eβ(ξ−6a+x)

− e−β(ξ+x) − e−β(2a+ξ−x) + e−β(2a−ξ+x) + e−β(4a+ξ−x) − e−β(4a−ξ+x)
)]]

+2βκ

[
1

(κ + 1)
(
e−2aβ − 1

)
[(

(2a − x)
(
e−β(2a+ξ+x) + eβ(ξ−4a+x) + e−β(2a+ξ−x) + e−β(4a−ξ+x)

)

+ x
(
eβ(ξ−6a+x) + e−β(ξ+x) + e−β(2a−ξ+x) + e−β(4a+ξ−x)

))
(a − ξ)

]

− 1

(κ + 1)
(
e−2aβ − 1

)2

[
a
(
x
(
eβ(ξ−6a+x) − eβ(ξ+x) + e−β(2a−ξ+x) − e−β(4a+ξ−x)

)

− (2a − x)
(
e−β(2a+ξ+x) − eβ(ξ−4a+x) + e−β(2a+ξ−x) − e−β(4a+ξ+x)

)) (
e−2aβ + 1

)]]}

+ 1

β
(
e−2aβ − 1

)
[
0.5eβ(ξ−2a+x) − 0.5e−β(ξ+x) + 0.5sign (x − ξ)

(
e−β|x−ξ | − e−β(2a−|x−ξ |))

+ κ

κe−4aβ − κ + 4aβe−2aβ

(
e−β(2a+ξ+x) + eβ(ξ−4a+x) − eβ(ξ−6a+x) − e−β(ξ+x) − e−β(2a+ξ−x)

+ e−β(2a−ξ+x) + e−β(4a+ξ−x) − e−β(4a−ξ+x)
)]

+
(
eβ(ξ−2a+x) + e−β(ξ+x)

)
(ξ − a + x) + (

e−β|x−ξ | + e−β(2a−|x−ξ |)) (ξ − x + sign (x − ξ) a)

(κ + 1)
(
e−2aβ − 1

)

+ a

2κ − 2

⎡

⎣
1

(
e−2aβ − 1

)2 − κ − 2

(κ + 1)
(
4e−2aβ − (

e−2aβ + 1
)2

)

⎤

⎦
(
e−2aβ + 1

) [
eβ(ξ−2a+x) − e−β(ξ+x)

+ sign (x − ξ)
(
e−β|x−ξ | − e−β(2a−|x−ξ |))]}

g2 (x, ξ, β)

= ρ

π

{ κ − 1

(2κ + 2)
(
e−2aβ − 1

)2

[
e−β|x−ξ | + eβ(ξ−2a+x) − e−β(2a+ξ+x) − eβ(ξ−4a+x) + e−β(ξ+x)

+ e−β(2a−|x−ξ |) − e−β(2a+|x−ξ |) − e−β(4a−|x−ξ |)]

− κ − 1

(κ + 1)
(
e−2aβ − 1

) (
κe−4aβ − κ + 4aβe−2aβ

)
[
κ
(
e−β(ξ+x) + eβ(ξ−4a+x) − eβ(ξ−6a+x)

+ e−β(2a−ξ+x) − e−β(4a−ξ+x) + e−β(2a+ξ−x) − e−β(4a+ξ−x) − e−β(2a+ξ+x)
)

− β
(
x
(
eβ(ξ−6a+x)

+ e−β(ξ+x) + e−β(2a−ξ+x) + e−β(4a+ξ−x)
)

+
(
e−β(2a+ξ+x) + eβ(ξ−4a+x) + e−β(2a+ξ−x)

+ e−β(4a−ξ+x)
)

(2a − x)
)]}
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