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Abstract The propagation of shear horizontal waves in a porous piezoelectric composite structure is inves-
tigated analytically in this paper. A two-layer structure comprised of perfectly bonded piezoelectric layers is
considered. The solution of mechanical displacement and electrical potential is found by solving the consti-
tutive equation for a porous piezoelectric composite structure. Then the dispersion relation is derived for the
wave propagation along the direction normal to layering and in the direction of layering. The results obtained
from the investigation show the dependence of the wave number on the thickness of the alternative layer in
piezoelectric material. Also the phase velocity has been significantly influenced by the variation of elastic con-
stant and porosity. The results provide a theoretical framework for designing and development of underwater
acoustic devices for sensing and nondestructive testing.

1 Introduction

Piezoelectric materials are a class of active materials that are used these days invariably in numerous applica-
tions.Most thrust application area includes damageable detection sensor, sonar,microphones, energyharvesting
devices, transducers [1,2]. In recent years, a new configuration of these materials has opened a broad field
ranging from undersea applications up to biomedical application areas. Two or more piezoelectric materials
can be utilized to form a new type of piezoelectric composite materials having multiple layers of materials
bonded alternatively [3]. But these composite materials suffer from drawbacks that include failure of the device
under electrical or mechanical loading. The other limitation is higher acoustic impedance that restricts the use
of the device in undersea application up to a certain depth. The acoustic impedance is an important prerequisite
in design of sonar and other underwater object detection devices. The piezoelectric response of piezoelectric
material depends upon numerous factors such as elastic constant, porosity, dielectric constant, viscosity, den-
sity [4,5]. The acoustic impedance can be controlled by the variation in porosity. By the variation in porosity
of the piezoelectric material, the mismatching of impedance and failure rate of the piezoelectric composite
device can be overcome altogether.

In the last decade, numerous works have been reported on the propagation of shear waves (SH) in a
piezoelectric composite structure. Singh and Gaur et al. [6,7] found the dispersion relation for the propagation
of shearwaves in a piezoelectricmedium. Piliospian et al. [8] discussed the shearwave propagation in a periodic
phonic/photonic piezoelectric structure and considered the effect of piezoelectricity on band gap width. SH
waves in piezoelectric composites were extensively studied theoretically and experimentally by Kieleyznki et
al. [9]. Son et al. [10] and Du et al. [11] discuss the effect of initial stress on propagation of an SH wave in
piezoelectric layers. Liu et al. [12] and Qian et al. [13] study the Love wave propagation in a piezoelectric
structure in the presence of initial stress and found that the phase velocity depends on the value of stress at the
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interface. A three-layer model was presented by Li et al. [14] and investigated the effect of an intermediate soft
layer on the propagation characteristics of Love waves. The propagation behavior of Lamb waves propagating
in a functionally graded piezoelectric–piezomagnetic (PE–PM) composite was studied by Cao et al. [15]. The
Love wave propagating in a piezoelectric composite with imperfect interface was discussed by Liu et al. [16]
and Wang et al. [17]. Daros et al. [18] have obtained a mathematical model for the propagation of Buleteen–
Gulagaev waves in non-homogeneous piezoelectric media. Soh et al. [19], Singh et al. [20] and Du et al. [21]
considered the parameters affecting the propagation of PE–PM layered structure and investigated the effect of
gradient variation on the frequency of the SH wave. A new approach was presented by Qian et al. [22] and
derived the dispersion relation for a piezoelectric composite with hard metal as an intermediate layer. Liu et
al. [23] and Pang et al. [24] found the dispersion relation of an SH wave propagating in PE–PM layers. The
scattering of shear waves in an inhomogeneous structure was studied by Du et al. [25]. Yang et al. [26] and
Chen et al. [27] investigated the shear horizontal vibration of piezoelectric plates. But only few authors have
focused on the effect of porosity on SH wave propagation in a piezoelectric multilayered structure. Vashisth
et al. [28] have analyzed the vibration of porous piezoelectric ceramic plates. Manna et al. considered the
propagation of Love waves in piezoelectric media with non-homogeneous space. Recently Sharma [29] has
analytically shown the effect of porosity on the velocity of a shear wave propagating in a poroelastic medium.
The objectives of the present study mainly deal with the following objectives:

(a) To provide a mathematical model and constitutive equations for a porous piezoelectric composite structure.
(b) To determine the effect of porosity on the phase velocity and dispersion equation.
(c) To evaluate the effect of variation in elastic constant, dielectric constant, density, and volume fraction on

the phase velocity.

The work in this paper is arranged as follows: Sect. 1 briefs the work that has been done on shear wave
propagation in a piezoelectric composite; Sect. 2 focuses on the problem formulation; the solution SH wave
propagating along and in the direction normal to the layering is found in Sect. 3; Sect. 4 outlines the determi-
nation of the dispersion relation; Sect. 5 is devoted to numerical simulation and results. Finally, the last Section
is devoted to the main findings of this study.

2 Formulation of problem and boundary constraints

Consider a composite structure having an alternative layer of piezoelectric material perfectly bonded to each
other. Let h1 and h2 be the thickness of the alternative layers of the piezoelectric composite of two different
piezoelectric materials. The piezoelectric material is considered to be polarized in z axis direction. The prop-
agation of the SH wave is taken along the direction normal to layering and along the direction of layering.
Figure 1 shows the geometrical layout of the composite under consideration.

The constitutive equation of the piezoelectric medium can be expressed as [13,30]

σi j = ci jklεkl − eki j Ek,

Dj = e jkεkl + ε jk Ek
(1)

where σi j , εkl is stress and strain tensor respectively. Dj , Ek is electric displacement and electric field intensity,
ci jkl , e jkl are elastic and piezoelectric constant of the piezoelectric media.

Fig. 1 Schematic of porous PE–PE composite layered structure
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The motion differential equation for piezoelectric media can be described as [32]

σi j, j = ρüi ,

Di, j = 0
(2)

where ui is mechanical displacement component, ρ is mass density of the medium. The dot represents the
time derivative, and comma followed by subscript indicates the space derivative.

The strain tensor εi j and electric field intensity Ek in piezoelectric media can be written as

εi j = 1
2

(
u j,i + ui, j

)
,

Ei = − ∂ϕ
∂xi

.
(3)

The constitutive equation for a porous piezoelectric medium can be represented as [31]

σi j = (ρ11)i j ü
′
j + (ρ12)i j ü

′∗
j ,

σ ∗
i = (ρ12)i j ü

′
j + (ρ22)i j ü

′∗
j ,

Di,i = 0,
D∗
i,i = 0

(4)

where (ρ11)i j , (ρ12)i j and (ρ22)i j are dynamical mass coefficients. U∗ is the mechanical displacement com-
ponent for porous media. �∗ represents the electric potential function for porous media.

The motion differential equation for a porous piezoelectric material is given by

ε′
i j = 1

2

(
u′
j,i + u′

i, j

)
,

E ′
i = − ∂ϕ′

∂xi
, E

′∗
i = − ∂ϕ

′∗
∂xi

.

(5)

From Eq. (1), the constitutive equation for piezoelectric media 1 is obtained as
⎛

⎜
⎜⎜
⎜⎜
⎝

σx
σy
σz
τzy
τzx
τxy

⎞

⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎝

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎞

⎟
⎟⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎜⎜
⎝

εx
εy
εz
2εzy
2εzx
2εxy

⎞

⎟
⎟⎟
⎟⎟
⎠

−

⎛

⎜
⎜⎜
⎜⎜
⎝

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ . (6)

Expanding Eq. (6) leads to the following equations:

σx = c11εx + c12εy + c12εz − e31Ez,

σy = c12εx + c11εy + c12εz − e31Ez,

σz = c12εx + c12εy + c11εz − e33Ez,

τzy = 2c44εzy − e15Ey,

τzx = 2c44εzx − e15Ex ,

τxy = 2c44εxy .

(7)

Similarly, from Eq. (1), we have

⎛

⎝
Dx
Dy
Dz

⎞

⎠ =
⎛

⎝
0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎞

⎠

⎛

⎜⎜
⎜⎜
⎜
⎝

εx
εy
εz
2εzy
2εzx
2εxy

⎞

⎟⎟
⎟⎟
⎟
⎠

+
⎛

⎝
ε11 0 0
0 ε11 0
0 0 ε33

⎞

⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ . (8)
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Now expanding the set of equations (8) results in

Dx = 2e15εx + ε11Ex ,

Dy = 2e15εy + ε11Ey,

Dz = e31εx + e31εy + e33εz + ε33Ez .

(9)

The constitutive equation for porous piezoelectric media obtained from Eq. (4) is

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

σ ′
x

σ ′
y

σ ′
z

τ ′
zy

τ ′
zx

τ ′
xy

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

c′11 c′12 c′13 0 0 0

c′12 c′11 c′13 0 0 0

c′13 c′13 c′33 0 0 0

0 0 0 c′44 0 0

0 0 0 0 c′44 0

0 0 0 0 0 c′14

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

εx
εy
εz
2εzy
2εzx
2εxy

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

−

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 0 e′31
0 0 e′31
0 0 e′33
0 e′15 0

e′15 0 0

0 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ +

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

m11 0 0
0 m11 0
0 0 m33
0 0 0
0 0 0
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎝
ε∗
ε∗
ε∗

⎞

⎠ .

(10)

Expanding the set of equations (10), the following equations are derived:

σ ′
x = c′

11εx + c′
12εy + c13εz − e′

31Ez + m11ε
∗,

σ ′
y = c′

12εx + c′
11εy + c′

13εz − e′
31Ez + m11ε

∗,

σ ′
z = c′

13εx + c′
13εy + c′

33εz − e′
33Ez + m33ε

∗,

τ ′
zy = 2c′

44εzy − e′
15Ey,

τ ′
zx = 2c′

14εzx − e′
15Ex ,

τ ′
xy = 2c′

44εxy .

(11)

From Eq. (4), we have

⎛

⎜
⎝

D′′
x

D′′
y

D′′
z

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 0 0 e′15 0

0 0 0 e′15 0 0

e′31 e′31 e′33 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

εx
εy
εz
2εzy
2εzx
2εxy

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

ε′
11 0 0

0 ε′
11 0

0 0 ε′
33

⎞

⎟
⎟
⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ +
⎛

⎝
A11 0 0
0 A11 0
0 0 A33

⎞

⎠

⎛

⎜
⎝

E∗
x

E∗
y

E∗
z

⎞

⎟
⎠ ,

(12)

⎛

⎜⎜
⎝

D
′∗
x

D
′∗
y

D
′∗
z

⎞

⎟⎟
⎠ =

⎛

⎝
A11 0 0
0 A11 0
0 0 A33

⎞

⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ +
⎛

⎜
⎝

ε′
11 0 0

0 ε′
11 0

0 0 ε′
33

⎞

⎟
⎠

⎛

⎝
E∗
x

E∗
y

E∗
z

⎞

⎠ +
⎛

⎝
0 0 0
0 0 0
0 0 e∗

3

⎞

⎠

⎛

⎝
ε∗
ε∗
ε∗

⎞

⎠ . (13)

Adding Eqs. (12) and (13), we have

D′
x = D′′

x + D
′∗
x ,

D′
y = D′′

y + D
′∗
y ,

D′
z = D′′

z + D
′∗
z .

(14)
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An SH wave propagates either in positive direction of x axis or in the positive direction of y axis. So the
displacement and electric potential component can be represented as

u = 0, υ = 0, w = w(x, y, t), ϕ = ϕ(x, y, t), ϕ∗ = ϕ∗(x, y, t). (15)

From (7) and (9), the following equations are obtained:

c44
(

∂2w1
∂x2

+ ∂2w1
∂y2

)
+ e15

(
∂2ϕ1
∂x2

+ ∂2ϕ1
∂y2

)
= ρ ∂2w1

∂t2
,

e15
(

∂2w1
∂x2

+ ∂2w1
∂y2

)
− ε11

(
∂2ϕ1
∂x2

+ ∂2ϕ1
∂y2

)
= 0.

(16)

Using Eqs. (11) and (14), the governing equations for a porous piezoelectric material can be written as

c′
44

(
∂2w2
∂x2

+ ∂2w2
∂y2

)
+ e′

15

(
∂2ϕ2
∂x2

+ ∂2ϕ2
∂y2

)
= ρP ∂2w2

∂2
,

e′
15

(
∂2w2
∂x2

+ ∂2w2
∂y2

)
− ε

′P
11

(
∂2ϕ2
∂x2

+ ∂2ϕ2
∂y2

)
= 0

(17)

where

c44 = (c11 − c12)

2
, c′

14 = (c′
11 − c′

12)

2
,

ε
′P
11 = ε11 − A2

11

ε
′∗
11

, ∇2φ∗ = − A11

ε
′∗
11

∇2φ,

ρP = (ρ11)33 − (ρ12)
2
33

(ρ22)33
.

The propagation of an SH wave in this developed mathematical model should satisfy the following boundary
conditions:

w1(0, y) = w2(0, y),
ϕ1(0, y) = ϕ2(0, y),
τzx1(0, y) = τzx2(0, y),
Dx1(0, y) = Dx2(0, y) + D∗

x2(0, y);
(18)

w1(h1, y) = w2(−h2, y),

ϕ1(h1, y) = ϕ2(−h2, y),

τzx1(h1, y) = τzx2(−h2, y),

Dx1(h1, y) = Dx2(−h2, y) + D∗
x2(−h2, y)

(19)

3 Solution of the problem

3.1 Case I: Solution of an SH wave propagating along the direction normal to the layering

Consider the SH wave propagating along the positive direction of x axis. The solution of Eq. (16) can be
assumed as

w1 (x, t) = W1 (x) eik(x−ct),

ϕ1 (x, t) = �1 (x) eik(x−ct).
(20)

Similarly, the solution of Eq. (17) can be assumed as

w2 (x, t) = W2 (x) eik(x−ct),

ϕ2 (x, t) = �2 (x) eik(x−ct) (21)
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where k is the wave number (2π/λ), λ is the wavelength, i = √−1, and c is the phase velocity. Let
W1(x)W2(x),
�1(x) and �2(x) be the unknown functions.

Now equating Eq. (20) in (16), we have

c44
(
W ′′

1 + 2ikW ′
1 − k2W1

) + e15
(
�′′

1 + 2ik�′
1 − k2�1

) = −ρk2c2W1,

e15
(
W ′′

1 + 2ikW ′
1 − k2W1

) − ε11
(
�′′

1 + 2ik�′
1 − k2�1

) = 0.
(22)

Similarly substituting Eq. (21) into (17) yields

c′
44

(
W ′′

2 + 2ikW ′
2 − k2W2

) + e′
15

(
�′′

2 + 2ik�′
2 − k2�2

) = −ρPk2c2W2,

e′
15

(
W ′′

2 + 2ikW ′
2 − k2W2

) − ε
′P
11

(
�′′

2 + 2ik�′
2 − k2�2

) = 0.
(23)

From Eq. (22), we have

W1 = M1e(−1+c/csh)ikx + N1e(−1−c/csh)ikx ,

�1 = (
M ′

1 + N ′
1x

)
e−ikx + e15

ε11

(
M1e(−1+c/csh)ikx + N1e(−1−c/csh)ikx

)
.

(24)

Equation (23) yields the following:

W2 = M2e(−1+c/c′
sh)ikx + N2e(−1−c/c′

sh)ikx ,

�2 = (
M ′

2 + N ′
2x

)
e−ikx + e′

15

ε
′P
11

(
M2e(−1+c/c′

sh)ikx + N2e(−1−c/c′
sh)ikx

) (25)

where csh and c′
sh represent the bulk shear velocity in piezoelectric and porous piezoelectricmedia, respectively,

csh =
√(

ε11c44 + e215
)
/ρε11, c

′
sh =

√(
ε

′P
11 c

′
44 + e

′2
15

)
/ρPε

′P
11 .

Substituting Eq. (24) into (20) results in

w1(x, t) = [
M1e(−1+c/csh)ikx + N1e(−1−c/csh)ikx

]
eik(x−ct),

ϕ1(x, t) =
[(
M ′

1 + N ′
1x

)
e−ikx + e15

ε11

(
M1e(−1+c/csh)ikx + N1e(−1−c/csh)ikx

)]
.

eik(x−ct)

(26)

Substituting Eq. (25) into (21), we have

w2 (x, t) =
[
M2e(−1+c/c′

sh)ikx + N2e(−1−c/c′
sh)ikx

]
eik(x−ct),

ϕ2 (x, t) =
[(

M ′
2 + N ′

2x
)
e−ikx + e′

15

ε
′P
11

(
M2e(−1+c/c′

sh)ikx + N2e(−1−c/c′
sh)ikx

)]
.

eik(x−ct)

(27)

3.2 Case II: Solution of SH wave propagation along the direction of the layering

In this case, we consider the SH wave propagating in the positive direction of y axis. Mechanical displacement
and electrical potential component can be represented as

u = 0, v = 0, w = w(x, y, t), ϕ = ϕ(x, y, t).

The solution of Eq. (16) is expressed as

w1 (x, y, t) = W1 (x) eik(y−ct),

ϕ1 (x, y, t) = �1 (x) eik(y−ct).
(28)

The solution of Eq. (17) is written as

w2 (x, y, t) = W2 (x) eik(y−ct),

ϕ2 (x, y, t) = �2 (x) eik(y−ct).
(29)



Dispersion relations for SH waves propagation 4023

The earlier procedure is followed to obtain the following set of equations as

w1(x, y, t) = [
M1e−ib1x + N1eib1x

]
eik(y−ct),

ϕ1(x, y, t) =
[
M ′

1e
−kx + N ′

1e
kx + e15

ε11

(
M1e−ib1x + N1eib1x

)]
eik(y−ct); (30)

w2 (x, y, t) = [
M2e−b2x + N2eb2x

]
eik(y−ct),

ϕ2 (x, y, t) =
[(

M ′
2e

−kx + N ′
2e

kx
) + e′

15

ε
′P
11

(
M2e−b2x + N2eb2x

)]
eik(y−ct) (31)

where

b1 = k

√
c2

c2sh
− 1, b2 = k

√
1 − c2

c
′2
sh

.

4 Dispersion equations

4.1 Case I: SH wave propagation along the direction normal to the layering

Substituting Eqs. (26) and (27) into (7), (9), (11), and (14), we obtain the stress and electrical displacement
components as

τzx1 =
[
e15N ′

1e
−ikx + ikcP

csh

(
M1e(−1+c/csh)ikx − N1e(−1−c/csh)ikx

)]
eik(x−ct),

Dx1 = [−ε11N ′
1e

−ikx
]
eik(x−ct);

(32)

τzx2 =
[
e′
15N

′
2e

−ikx + ikcP1
c′
sh

(
M2e(−1+c/c′

sh)ikx − N2e(−1−c/c′
sh)ikx

)]
eik(x−ct),

Dx2 =
[
ikc
c′
sh
e′
15

(
1 − l11

ε
′P
11

)(
M2e(−1+c/c′

sh)ikx − N2e(−1−c/c′
sh)ikx

)
− N ′

2l11e
−ikx

]
eik(x−ct),

D∗
x2 =

[
− ikc

c′
sh

l12e′
15

ε
′P
11

(
M2e(−1+c/c′

sh)ikx − N2e(−1−c/c′
sh)ikx

)
− N ′

2l12e
−ikx

]
eik(x−ct)

(33)

where

P = ε11c44 + e215
ε11

, P1 = ε
′P
11 c

′
44 + e

′2
15

ε
′P
11

.

Substituting the boundary conditions (18) into (26), (27), (32) and (33), we obtain the following set of homo-
geneous linear equations:

M1 + N1 − M2 − N2 = 0,

M ′
1 + e15

ε11
M1 + e15

ε11
N1 − e′

15

ε
′P
11

M2 − e′
15

ε
′P
11

N2 − M ′
2 = 0,

M1 − N1 + e15csh
ikcP N ′

1 − e′
15csh
ikcP N ′

2 − QM2 + QN2 = 0,

−ε11N ′
1 − ikcl13

c′
sh

M2 + ikcl13
c′
sh

N2 + lN ′
2 = 0,

eiαM1 + e−iαN1 − ei(kh−β)M2 − ei(kh+β)N2 = 0,

M ′
1+h1N ′

1+ e15
ε11

eiαM1+ e15
ε11

e−iαN1−eikhM ′
2+h2eikh N ′

2− e′
15

ε
′P
11

ei(kh−β)M2− e′
15

ε
′P
11

ei(kh+β)N2 = 0,

e15csh
ikcP N ′

1 + eiαM1 − e−iαN1 − e′
15csh
ikcP eikh N ′

2 − Qei(kh−β)M2 + Qei(kh+β)N2 = 0,

−ε11N ′
1 − ikcl13

c′
sh

M2ei(kh−β) + ikcl13
c′
sh

N2ei(kh+β) + leikh N ′
2 = 0

(34)
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where

l13 = 1 − l11
ε

′P
11

− l12
ε

′P
11

, l = l11 + l12, l11 = ε′
11 − A2

11

ε
′∗
11

Cv, l12 = A11(1 − Cv),

Cv = C2
φ∗

C2
φ

, l15 = 1

l14
, l14 = l PC ′

sh

l13e15Csh
, l19 = e15l

e′
15e11

.

α = ckh1
csh

, β = ckh2
c′
sh

, Q = P1csh
Pc′

sh
, w = kc.

For obtaining the non-trivial solution, the determinant of equations (34) must be equated to zero, and then we
obtain the dispersion equation as

cos(hk) = cosα cosβ − (1 + Q2)

2Q
sin α sin β − l15

Q
cos(hk) + l15

2Q
(l19 − 1)(cosα + cosβ)

+ l15
2Q

(1 + l19)(cosα + cosβ) + l15
2

(
1 + l19 + l19l15

Q

)
sin α sin β − l15

2Q
(l19 − 1). (35)

The above equation is reduced by equating l15 = 0, and now the dispersion equation expressed as

sin(α) sin(β) + 2Q cos(hk) − 2Q cos(α) cos(β) + Q2 sin(α) sin(β) = 0. (36)

Rearranging Eq. (36), the equation can be written as [13,32]

cos(hk) − cos

(
ckh1
csh

)
cos

(
ckh2
c′
sh

)
+

(
1 + Q2

)

2Q
sin

(
ckh1
csh

)
sin

(
ckh2
c′
sh

)
= 0 (37)

where

h = (h1 + h2).

4.2 Case II: SH wave propagation along the direction of the layering

Substituting Eqs. (30) and (31) into (11) and (14), we obtain the following equations:

τzx1 = [
ib1P

(−M1e−ib1x + N1eib1x
) + e15k

(−M ′
1e

−kx + N ′
1e

kx
)]
eik(y−ct),

Dx1 = [−ε11k
(−M ′

1e−kx + N ′
1ekx

)]
eik(y−ct); (38)

τzx2 = [
b2P1

(−M2e−b2x + N2eb2x
) + e′

15k
(−M ′

2e
−kx + N ′

2e
kx

)]
eik(y−ct),

Dx2 =
[(

b2e′
15 − b2e′

15l11

ε
′P
11

) (−M2e−b2x + N2eb2x
) − l11k

(−M ′
2e

−kx + N ′
2e

kx
)]

eik(y−ct),

D∗x2 =
[
−l12k

(−M ′
2e

−kx + N ′
2e

kx
) − b2e′

15l12

ε
′P11

(−M2e−b2x + N2eb2x
)]

eik(y−ct).

(39)
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Substituting the boundary conditions (19) into (30), (31), (38) and (39) results in a set of linear algebraic
homogeneous equations,

M1 + N1 − M2 − N2 = 0,

e15
ε11

M1 + e15
ε11

N1 + M ′
1 + N ′

1 − M ′
2 − N ′

2 − e′
15

ε
′P
11

M2 − e′
15

ε
′P
11

N2 = 0,

−ib1PM1 + ib1PN1 − e15kM ′
1 + e15kN ′

1 + b2P1M2 − b2P1N2 + e′
15kM

′
2 − e′

15kN
′
2 = 0,

ε11kM ′
1 − ε11kN ′

1 − lkM ′
2 + lkN ′

2 + l13M2 − l13N2 = 0,

e−ib1h1M1 + eib1h1N1 − eb2h2M2 − e−b2h2N2 = 0,

e15
ε11

e−ib1h1M1 + e15
ε11

eib1h1N1 + e−kh1M ′
1 + ekh1N ′

1 − ekh2M ′
2 − e−kh2N ′

2

− e′
15

ε
′P
11

eb2h2M2 − e′
15

ε
′P
11

e−b2h2N2 = 0,

−ib1Pe−ib1h1M1 + ib1Peib1h1N1 − e15ke−kh1M ′
1 + e15kekh1N ′

1 + b2P1eb2h2M2

−b2P1e−b2h2N2 + e′
15ke

kh2M ′
2 − e′

15ke
−kh2N ′

2 = 0,

ε11ke−kh1M ′
1 − ε11kekh1N ′

1 + b2l13eb2h2M2 − b2l13e−b2h2N2 − klekh2M ′
2 + kle−kh2N ′

2 = 0.

(40)

For obtaining the non-trivial solution, the determinant of Eq. (40) must be equated to zero, i.e.,

(k2 exp(b1h1(−i) − b2h2 − h1k − h2k)
∗(e15 4ε′

11k
2l2 − ε11

3e15e
′
15

3k2 + P2b21ε11
4ε′

11 + P2
1 b

2
2ε11

4ε′
11

+ Pb1ε11
4e

′
15

2k(−i) − P1b2ε11
4e

′2
15k − P2b21ε11

4ε′
11 exp(b1h1(2i) + 2b2h2)

+ P2
1 b

2
2ε11

4ε′
11 exp(b1h1 ∗ (2 ∗ i) + 2b2h2) + P2b21ε11

4ε′
11 exp(2b2h2 + 2h1k)

+ P2
1 b

2
2ε11

4ε′
11 exp(2b2h2 + 2h1k) − P2b21ε11

4ε′
11 exp(b1h1(2i)) + · · · = 0. (41)

5 Numerical simulation and results

We have obtained the analytical solution in the previous Section. For numerical simulation, PZT-5H and
polyvinylidene fluoride (PVDF) are considered as two piezoelectric materials as alternative layers of the com-
posite. The material coefficients (piezoelectric constant, density, elastic constant, porosity) for both materials
are given in Tables 1 and 2 [31].

For numerical computation, we consider a relationship ω = kc, where ω is circular frequency, k is non-
dimensional wave number and c is Phase velocity. Firstly, we have considered for given wave velocity the
variation in circular frequency with respect to the thickness of both layers. Next, we studied the variation in
wave number with respect to the variation in the thickness of layers. Figure 2a, b shows the variation in circular
frequency ω in response to the variation in the thickness of alternative layers h1 and h2. Figure 3 illustrates the
variation in circular frequency ω with total thickness h. For an SH wave propagating in the direction normal to
layering, the circular frequency ω tends to decrease as the thickness of successive layers increases. The results
obtained were similar to those of earlier investigations [6,28].

Figure 4a, b shows the variation in wave number k with respect to the variation in the thickness of layers
h2 and h1. Figure 5 shows the variation in wave number when the thickness of both the layers becomes equal.
It is observed from the curves that as the thickness of the successive layer increases, the wave number k
decreases [4,32].

In order to show the wave filter effect, a new factor volume fraction is introduced as ζ = h1/(h1 + h2). In
dispersion Eq. (38), two variables have been defined as ωh2/c′

sh and kh2. By taking into consideration these
variables, the dispersion relation for the direction normal to layering is changed to a dimensionless equation.
The wave filter effect is shown in Fig. 6a–d for different values of volume fraction. It is observed from the
curves that as the wave number kh2 increases, the non-dimensional frequency also increases [13]. For the
increase in the value of volume fraction, the number of stop band increases.

The variation in phase velocity c versus volume fraction is shown in Fig. 7 for different values of ω ranging
from 500–2000Hz. It is clearly indicated from the curves that circular frequency has a significant effect on
the phase velocity c (m/s). As the volume fraction increases, a sharp fall in the value of phase velocity was
observed for the different circular frequencies ω.
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Table 1 Material coefficients of PVDF

Piezoelectric constant (C/m2) Dielectric constant (E-10F/m) Elastic constant (E10N/m2) Mass density (E3 kg/m3)

e15 = −0.16 ε11 = 1.062 c44 = 0.91 ρ = 1.78

Table 2 Material coefficients of PZT-5H

Piezoelectric constant (C/m2) Dielectric constant (E-10F/m) Elastic constant (E10 N/m2) Mass density (E3kg/m3)

e′
15 = 17 ε′

11 = 277 c′
44 = 2.30 (ρ11)33 = 4950

ε
′∗
11 = 299 (ρ12)33 = −1125
A11 = 112 (ρ22)33 = 4800

Fig. 2 Variation in ω versus individual layer thickness for a h1 = 0.1 and b h2 = 0.1

Fig. 3 Variation in ω versus layer thickness for h1 = h2 = h

Fig. 4 Variation in wave number versus individual layer thickness for a h1 = 0.1 and b h2 = 0.1
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Fig. 5 Variation in wave number versus layer thickness for h1 = h2 = h

Fig. 6 Stop band effect for different values of volume fraction ζ . a 1, b 3, c 5 and d 7

Fig. 7 Variation in phase velocity c (m/s) versus volume fraction for circular frequency. a 500–1000Hz and b 1500–2000Hz
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6 Concluding remarks

The propagation of an SH wave is considered in a porous piezoelectric–piezoelectric composite structure. The
propagation behavior of an SHwave is discussed along the direction normal to the layering and in the direction
of the layering. Dispersion equation and numerical simulation are carried out for two different piezoelectric
materials PVDF and PZT. The effect of material constant such as density, elastic constant, porosity, dielectric
constant on SHwave propagation is investigated also. It can be concluded from this study that the wave number
is influenced by the thickness of the individual layer in the composite. As the value of α increases, the number
of stop band also increases followed by the successive decrease in the width of individual stop band. The
phase velocity has been significantly influenced by the variation in elastic constant and porosity. Numerically,
simulation shows the dependence of phase velocity on volume fraction and indicates the increase in the value
of volume fraction with decreases in phase velocity. The work presented in this paper outlines the theoretical
and numerical computation for design and development of underwater acoustic sensors and transducers.
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