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Abstract The crack deflection in transformable particle-reinforced composites is studied in the present paper.
The contribution of phase transformation on the crack tip Jk-integral (k = 1, 2) is explicitly determined by
the material configurational theory. For the crack deflection angle from its original crack path induced by the
phase transformation it can be shown that the crack initiates in the direction along which the potential energy
release rate in terms of the crack tip Jk-integral possesses a stationary (maximum) value. The influence of one
individual particle near the crack tip on the crack deflection is studied by accounting for both dilatant and shear
transformation components. Furthermore, an FEM method is developed to model the stress-induced phase
transformation on the basis of a macroscopic phenomenological constitutive model where multiple particles
are taken to be non-uniformly distributed in amatrix. Numerical simulations are performed to observe the crack
deflection by a cluster of particles. The results show a significant non-symmetric stress distribution locally at
the crack tip, causing the crack to deflect. It is found that regions in the material with a higher volume fraction
of transformable particles tend to deflect the crack growth more.

1 Introduction

It has beendiscovered that a second-phase constituent in the formof particles, ribbons, or fiberswhichundergoes
a stress-induced phase transformation can be used to toughen composites [1–8]. Particularly, particle-reinforced
composites have shown that the phase transformation from an austenitic phase to martensitic phase of particles
dispersed in the matrix can give rise to a superelastic deformation which leads to substantial enhancements
in tensile ductility and fracture toughness. A great effort has been made to explain the mechanisms of the
transformation toughening in particle-reinforced composites [9–13]. One of the successful methods is the
prediction of crack growth resistance for transformation-toughened materials in fracture terminology, for
instance, the J -integral, the stress intensity factor, or the energy release rate near the crack tip. The role of
transformation in toughening is examined within the context of the continuum theory by the extent to which
the fracture parameter near the crack tip is altered by the transformation particles dispersed in composites.
Moreover, it is of importance that the crack can be deflected from its original crack path due to the non-
homogeneous material microstructure caused by the presence of particles. It is widely accepted that crack
deflection can have a large influence on the toughness during crack growth, and the increase in fracture
toughness can be explained by the crack deflection processes [14–19].

The main purpose of this study is to deal with the toughening mechanism of crack deflection due to
the phase transformation combined of both dilatation and shear strain components for the non-homogeneous
particle-reinforced materials where particles are not symmetric with respect to the crack surface. Attempts are
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made to understand how a crack is deflected by transformable particles to the direction which is energetically
more favorable. The contribution of phase transformation on the fracture toughness can be demonstrated by
the material configurational forces associated with the Jk-integral. Recently, the configurational forces emerge
as a strong tool to deal with crack problems associated with structural deformation, damage evolution, or phase
transformation [20–22]. The significance of the material forces is indeed to deal with material inhomogeneity
such as dislocations, cracks, inclusions, cavities, and non-homogeneities, which, under suitable conditions, can
move or be displaced within the deformable material body in which they find themselves. In material space,
the material forces are of specific interest as they are valuable to assess the failure of structures in the presence
of defects. The material configurational theory seems to be an effective and reliable technique to provide an
accurate result for crack deflection toughening induced by the transformable particles. In this study, the crack
tip shielding can be estimated from the reduction in the crack tip Jk-integral compared with the remote Jk-
integral. Herein, the component of J1 is related to the driving forces as energy release rate for a crack advance
along the crack direction, while the component of J2 is the driving force for a crack deflection perpendicular to
the crack surface. Consequently, a criterion is employed to predict the angle of crack deflection by assuming
that the crack initiates in the direction along which the potential energy release rate in terms of the Jk-integral
possesses a stationary (maximum) value. The present criterion is demonstrated to be effective in predicting
the crack deflection and has a great advantage in dealing with crack deflection problems in non-homogeneous
materials.

The present paper is organized as follows. First, thematerial configurational theory is constructed to analyze
the crack deflection toughness by phase transformation in explicit form. The contribution of phase transforma-
tion has to be considered to evaluate the Jk-integral, and it leads to the conclusion that the crack tip Jk-integral
is a more effective governing parameter than the remote Jk-integral. Second, we obtain the explicit solutions of
the crack deflection by one individual particle embedded in amatrix with an edge crack. The increment of crack
tip toughness associated with both dilatant and shear strains is also analyzed. Finally, numerical calculations
are performed to observe the crack deflection behavior due to the stress-induced phase transformation which
develops around the crack tip for the case of multiple particles. The finite element approach is employed based
on the continuum constitutive model of the transformable bodies. Accurate constitutive models describing the
toughening mechanism of the phase transformation have been well established [23–25]. In the simulations, a
wake of fully transformed zone is considered near the crack tip leaving behind the crack when the stationary
crack advances. In particular, we study the effect of clustered particles located in a specific local region on
the crack deflection toughening in non-homogeneous composites by controlling the volume fraction of the
transformation phase.

2 Fundamental solutions of crack deflection by phase transformation

The toughening mechanism due to the phase transformation accounting for both dilatation and shear strain
can be investigated by the reduction in the fracture governing parameter, i.e., the Jk-integral near the crack tip.
The present theoretical work is to extend the material configurational theory to obtain the contribution of the
phase transformation to the Jk-integral in an explicit form.

A two-order material configurational stress tensor b ji is introduced [26–29],

b ji = Wδ j i − σ jkuk,i . (1)

Meanwhile, thematerial configurational forces are referred to by the term gi , which originates from thematerial
inhomogeneity:

gi = −
(

∂W

∂xi

)
expl

. (2)

In Eqs. (1) and (2),W denotes the strain energy density of the elasticity system; δ j i is theKronecker delta whose
value is 1 if the indices are equal, and 0 otherwise; σ jk is the Cauchy stress tensor; uk,i are the first derivatives
of the displacement; (∂W/∂xi )expl denotes the explicit dependence of W on xi . The physical interpretation
of the configurational forces b ji (i, j = 1, 2) can be explained as the change in the total energy density at a
point of an elastic continuum due to a material unit translation in x j -direction of a unit surface with normal in
xi -direction [29].

An equilibrium equation between the configurational stresses b ji and the configurational forces gi can be
established referring to Noether’s theorem of certain conservation or balance laws, that is,

b ji, j + gi = 0. (3)
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Fig. 1 Crack tip Jk -integral over the path �ε only enclosing the crack tip; the remote Jk -integral over the path � enclosing all
inhomogeneities including the phase transformable one and the crack tip; α is the deflection angle from its original crack path

The well-known Jk-integral in fracture mechanics can be formulated by the material configurational stresses
Eq. (1) integrating over a path enclosing the crack tip [30–32],

J = J1 =
∮
�

b j1n jds =
∮
�

(Wn1 − σ jkuk,1n j )ds, (4)

J2 =
∮
�

b j2n jds =
∮
�

(Wn2 − σ jkuk,2n j )ds, (5)

where � is an integral contour beginning at the lower crack surface and ending at the upper surface and n j
refers to the outside normal of the contour �, as shown in Fig. 1.

For a single plane crack at the absence of phase transformation within the frame of linear elastic fracture
mechanics, the Jk-integral has been related to potential energy releases associated with crack extension along
the xk-direction. It can be concluded that the path independence of the Jk-integral rigorously holds in such
homogeneousmaterials. Additionally, one can conclude that the formulation of the Jk-integral calculated along
the remote path � can be expressed in terms of the remote stress intensity factors [33]

J1∞ = (K 2
I∞ + K 2

II∞)

E ′ , J2∞ = −2KI∞KII∞
E ′ (6)

with E ′ = E for plane stress and E ′ = E/(1− ν2) for plane strain, where E is the Young’s modulus and ν is
Poisson’s ratio; the mode I and II stress intensity factors KI∞ and KII∞ depend on the remote loading and the
geometric configuration [34].

In contrast to the Jk-integral in homogenous materials, we can conclude that the crack tip Jk-integral will
lead to a set of quite different and intriguing features from those of the remote Jk-integral, i.e., an unexpected
path dependence due to the contribution of material inhomogeneity such as transformable particles. Here, we
define a fracture parameter, the Jktip-integral, computed around the crack tip along a vanishing small contour
�ε as shown in Fig. 1. Applying the divergence theorem for the contour � − �ε completely surrounding the
region A and using the balance law of material configurational stresses in Eq. (3), one obtains

Jktip = lim
ε→0

∫
�ε

bk j n jds =
∫

�

bk j n jds −
∫
A
bk j, jdA

=
∫

�

(
Wδk j − σi j ui,k

)
n jds︸ ︷︷ ︸

Jk∞

+
∫
A
gkdA︸ ︷︷ ︸
Gk

(7)

= Jk∞ + Gk,
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where Jk∞ denotes the remote Jk-integral in terms of the remote stress intensity factors as shown in Eq. (6);
the configurational force gk is defined as in Eq. (2); dA is the differential element of inhomogeneity; and
Gk (k = 1, 2) denotes the total component of configurational forces given by integration of incremental value
over the area of transformation zone A.

From Eq. (7), the term of configurational force in addition to the remote Jk-integral will contribute to the
crack tip Jk-integral. In other words, there is a remarkable discrepancy between the crack tip Jk-integral and
the remote Jk-integral and then the path dependence of the Jk-integral will appear attributing to the significant
material configurational forces of the phase transformation. This path dependence of the Jk-integral as well as
the contribution of phase transformation on the crack tip toughness suggests that the crack tip Jk-integral(Jktip)
for a contour �ε approaching zero radius around the crack tip is a more effective parameter to governing crack
growth rather than the remote Jk-integral (Jk∞). From Eq. (7), one can also conclude that the magnitude of the
Jktip-integral can be evaluated from the remote Jk-integral available in Eq. (6) and the configurational force
gk defined in Eq. (2) which can be analytically derived for some of specific problems as discussed in the next
section.

Additionally, it is worth to note that the configurational force is related to the reduction in the crack tip
Jktip-integral compared with the remote Jk∞-integral from Eq. (7), that is,

Gk = 	Jk = Jktip − Jk∞. (8)

Thus, the configurational forces can be used to characterize the magnitude of transformation toughening due
to the contribution of phase transformation. It should be mentioned that a negative value of configurational
force denotes that the crack tip Jktip-integral due to the presence of transformation is relaxed compared with
the remote applied Jk∞. Therefore, the phase transformation plays a role of the crack tip shielding. In contrast,
a positive value of configurational forces denotes that the Jktip-integral is enhanced comparing with Jk∞, and
hence, there is a crack tip anti-shielding effect due to phase transformation.

Moreover, the contribution of phase transformation can lead to the phenomenon that the crack propagation
will be deflected from its original path due to a non-symmetric material structure with respect to the crack
plane. Herein, a criterion to predict the crack deflection can be proposed according to the physical interpretation
of the crack tip Jk-integral. The J1tip-integral is identical to crack extension forces, and it has been given as
the rate of total potential energy release per unit crack tip advance parallel to the crack direction. Analogously,
the J2tip-integral has been given a precise and clear physical significance as the rate of total energy release by
postulating that the crack will skew and the tip advances perpendicular to the crack surface. Claiming that if
the crack has advanced under an angle α with respect to its plane as depicted in Fig. 1, the energy release rate
will be given by

G(α) = J1tip cosα + J2tip sin α. (9)

Therefore, the direction of crack deflection can be claimed such that the crack initiates in the direction along
which the potential energy release G(α) possesses a stationary (maximum) value, i.e.,

∂G(α)

∂α

∣∣∣∣
α=α0

= 0 ,
∂2G(α)

∂α2

∣∣∣∣
α=α0

< 0. (10)

It is well known that for a pure mode I crack in homogenous material where a negligible value of J2 prevails,
the crack will advance along the crack direction. In contrast, the introduction of phase transformation in the
present study will result in the remarkable magnitude of J2 near the crack tip. A mixed mode fracture can be
characterized by the J1- and J2-integrals, and crack deflection will happen even under pure mode I loading.
The theoretical framework given in this paper could provide a useful tool to deal with problems associated
with the toughening and crack deflection mechanism of composites reinforced by transformable particles.

3 Crack deflection by one individual particle

The above analysis shows that the contribution of phase transformation on the crack deflection toughening
can be analyzed in terms of the crack tip Jk-integral. In the following study, the explicit contribution of one
individual transformable particle on the fracture toughening and crack deflection will be derived using an
analytical method.

One individual, circular, transformable particle of radius R is assumed to locate at (r, θ) near the crack
tip for a plane crack in brittle materials. Herein, the phase transformation strain is specialized as eTi j , where
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both dilatation and shear components are taken into account. The particle is assumed to be fully transformed,
and the stress distribution inside the particle is uniform. The principle of linear superposition is adopted to
determine the configurational forces due to the phase transformation [35,36].

The change in strain energy associated with the phase transformation can be given by

dW = σi j e
T
i jdA, (11)

where σi j is the stress field near the crack tip in the absence of transformed particles under mixed mode I/II
loadings, given by Westergaard [37]:

⎧⎪⎪⎨
⎪⎪⎩

σ11 = KI√
2πr

cos θ
2

(
1 − sin θ

2 sin
3θ
2

)− KII√
2πr

sin θ
2

(
2 + cos θ

2 cos
3θ
2

)
σ22 = KI√

2πr
cos θ

2

(
1 + sin θ

2 sin
3θ
2

)+ KII√
2πr

sin θ
2 cos

θ
2 cos

3θ
2

σ12 = σ21 = KI√
2πr

sin θ
2 cos

θ
2 cos

3θ
2 + KII√

2πr
cos θ

2

(
1 − sin θ

2 sin
3θ
2

) (12)

According to Eqs. (2), (11), and (12), the total components of configurational forces over the particle can be
computed by

Gx = 	J1 =
∫
A
gxdA

= πR2 × r−3/2

4
√
2π

⎧⎨
⎩
[
eT11

(
2 cos 3θ

2 − 3 sin θ sin 5θ
2

)
+ eT22

(
2 cos 3θ

2 + 3 sin θ sin 5θ
2

)
+ 6eT12 sin θ cos 5θ

2

]
KI−[

eT11

(
4 sin 3θ

2 + 3 sin θ cos 5θ
2

)
− 3eT22 sin θ cos 5θ

2 + eT12

(
6 sin θ sin 5θ

2 − 4 cos 3θ
2

)]
KI I

⎫⎬
⎭ ,

Gy = 	J2 =
∫
A
gydA

= πR2 × r−3/2

4
√
2π

⎧⎨
⎩
[
eT11

(
2 sin 3θ

2 + sin 7θ
2 + cos θ sin 5θ

2

)
+ eT22

(
sin 3θ

2 + cos θ sin 5θ
2

)
− 2eT12

(
cos θ cos 5θ

2 + cos 7θ
2

)]
KI+[

eT11

(
4 cos 3θ

2 + cos 7θ
2 + cos θ cos 5θ

2

)
− eT22

(
cos 7θ

2 + cos θ cos 5θ
2

)
+ eT12

(
4 sin 3θ

2 + 2 sin 7θ
2 + 2 cos θ sin 5θ

2

)]
KI I

⎫⎬
⎭ .

(13)

Herein, one generally considers the phase transformation which involves a dilatation strain and a shear strain
[17,18], that is,

eT11 = eT22 = eT ; eT12 = λeT , (14)

where eT denotes the dilatation strain and λ is the ratio between the transformation shear strain and dilatation
strain.

Substituting (14) into Eq. (13), the crack tip Jk-integral disturbed by one transformable particle can be
calculated by

Gx = 	J1 = πR2eT × r−3/2

2
√
2π

{[
2 cos

3θ

2
+ 3λ sin θ cos

5θ

2

]
KI

−
[
2 sin

3θ

2
λ +

(
3 sin θ sin

5θ

2
− 2 cos

3θ

2

)]
KI I

}
,

Gy = 	J2 = πR2eT × r−3/2

2
√
2π

{[
2 sin

3θ

2
− λ

(
cos θ cos

5θ

2
+ cos

7θ

2

)]
KI

+
[
2 cos

3θ

2
+ λ

(
2 sin

3θ

2
+ sin

7θ

2
+ cos θ sin

5θ

2

)]
KI I

}
. (15)

Meanwhile, the crack deflection angle can be formulated by the criterion of maximum energy release rate in
Eqs. (9) and (10) by using Eqs. (6), (7) and (15), that is,
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Fig. 2 Variable tendency of 	Jk against the location angle of one individual particle near the crack tip accounting for both shear
strain and dilatation transformation strain. a �J1, b �J2

α = arctan

(
Gy + J2∞
Gx + J1∞

)

= arctan

⎛
⎜⎜⎜⎜⎜⎜⎝

E ′πR2eT × r−3/2

⎧⎨
⎩
(
2 sin 3θ

2 − λ cos 7θ
2 − λ cos θ cos 5θ

2

)
KI∞+(

2λ sin 3θ
2 + 2 cos 3θ

2 + λ sin 7θ
2 + λ cos θ sin 5θ

2

)
KI I∞

⎫⎬
⎭− KI∞KI I∞4

√
2π

E ′πR2eT × r−3/2

⎡
⎣
(
2 cos 3θ

2 + 3λ sin θ cos 5θ
2

)
KI∞−(

2 sin 3θ
2 − 2λ cos 3θ

2 + 3λ sin θ sin 5θ
2

)
KI I∞

⎤
⎦+ (K 2

I∞ + K 2
II∞)2

√
2π

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(16)

In order to clearly present the crack toughening by one transformable particle, numerical results of 	Jk
representing the reduction in the crack tip Jk-integral compared with the remote Jk-integral are calculated
from Eq. (15). The tendency of 	Jk normalized by r−3/2

0 eT
√

πR2KI against the variable location of particle
is shown in Fig. 2where the ratio of eT12/e

T changes from0 to 5.0 and the specimen is subjected to the puremode
I loading. It becomes evident that the true Jktip(k = 1)-integral is an important fracture parameter governing
the crack growth which is related to the released potential energy corresponding to the unit translation of crack
tip along the crack direction. It can be concluded from Eq. (15) that the crack tip shielding or anti-shielding
effect (i.e., the sign of 	J ) will be dependent on the location angle of particle with respect to the crack face,
and the ratio between the transformation shear and dilation strain, that is, 	J1 ∝ 2 cos 3θ

2 + 3λ sin θ cos 5θ
2 .

Particularly, the shielding or anti-shielding effectwill be controlled by a function of cos 3θ
2 for the pure dilatation
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Fig. 3 Variable tendency of crack deflection angle from its original crack path against the location angle of one individual particle
near the crack tip accounting for both shear strain and dilatation transformation strain

transformation and sin θ cos 5θ
2 for the pure shear transformation. Figure 2a shows that there are some critical

angles of crack tip shielding or anti-shielding by one single transformation particle undergoing a pure remote
KI loading at which the effect of transformed particle changes from the anti-shielding effect to shielding and
vice versa. For instance, it can be shown that the particle has a shielding effect on the fracture toughness when
the location angle of particle in the extent of (40◦, 110◦) for one zirconia (ZrO2) particle with a shear strain
of about 16% and a dilatation of 4% dispersed in composites as in Fig. 2a (λ= 4.0) [38].

In addition, Fig. 2b shows that a remarkable value of J2 prevails for the crack at the presence of a trans-
formable particle. This means that the crack will not advance along the crack direction. Crack deflection
will happen due to the fact that the introduction of one particle results in the non-symmetric crack problem.
The magnitude of crack deflection angle from its original crack path can be calculated by Eq. (16) under the
remote mode I loading condition. It can be found from Eq. (16) that the value of the deflection angle is mainly
determined by the relative value of configurational forces in the remote Jk-integral. A parametric study of Gk
shows that its value depends on the size of the particle R, the location of the particle (r, θ) and the magnitude
of the transformation strain (eT , λ). Consequently, the amplitudes of the deviations from the original crack
path will greatly depend on such parameters. Variable tendencies of crack deflection against the location of
the transformable particle accounting for both dilatant and shear strain components are depicted in Fig. 3. It is
seen that the deviation from the initial path is obvious which corresponds to an antisymmetric distribution of
transformable phase relative to the crack surface. An obvious crack deflection can be found with the maximum
magnitude of about 5.6◦ in the present analysis. The phenomenon can be useful to provide a theoretical ref-
erence for the investigation of crack deflection mechanism due to a stress-induced phase transformation with
both dilatation and shear strain components.

4 Crack deflection by multiple particles

The above analysis presents the theoretical treatment of the influence of one transformable particle on the
fracture toughening and crack deflection. The next study aims to investigate the crack deflection where the
multiple particles are non-uniformly distributed in the matrix while a cluster of particles is aggregated in the
local region. It has been reported that the stress-induced transformation in tetragonal zirconia can improve
the toughness considerably due to the fact that the transformable particles are clustered in a duplex material
consisting of a non-transformable alumina (Al2O3) matrix containing non-transformable tetragonal zirconia
(t-ZrO2) particles [14,15]. In the present study, a finite element approach is developed to obtain the stress and
strain fields of a crack problem in particle-reinforced materials where the stress-induced phase transformation
near the crack tip and the interaction between multiple particles are considered. Numerical results of the crack
deflection from the original crack path are calculated, and the influence of non-homogeneous distribution of
particles on the crack deflection is investigated.
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Referring to the relevant finite element analysis, the material constitutive model by Auricchio [23–25] is
proposed for stress-induced solid phase transformations. This constitutive model makes it possible to describe
and interpret the various phenomena assuming that the particles undergo a phase transformation through
austenite to martensite partially and then attain a steady state with the controlling of stress. Obviously, if the
steady-state body is bearing a large enough loading, the dispersed particles whose parent phase is austenite
would cause phase transformation.

Two of the phase transformations are considered here: austenite (A) → martensite (S) and S → A. Two
internal variables, the martensite fraction (ξS) and the austenite fraction (ξA), are introduced. One of them is
a dependent variable, and they are assumed to satisfy the relation

ξS + ξA = 1. (17)

The independent internal variable chosen here is ξS.
Assuming that the material behavior to be isotropic, the pressure dependency of the phase transformation

F is modeled by introducing the Drucker–Prager loading function, as follows:

F = q + 3βp,

q =
√
3

2
S × S,

S = σ − p1, (18)

p = 1

3
σ × 1,

where 1 is the identity tensor, q , S denote the deviator stresses, p is the hydrostatic pressure, and β is the
material parameter.

The evolution of the martensite fraction ξS is then defined as follows:

ξ̇s =
⎧⎨
⎩

−HAS (1 − ξS)
Ḟ

F−RAS
f

A → S transformation,

HSAξS
Ḟ

F−RSA
f

S → A transformation,
(19)

where {
RAS

f = σAS
f (1 + β) ,

RSA
f = σ SA

f (1 + β) ,
(20)

where σAS
f and σ SA

f denote the final stress value for the forward phase transformation and the final stress value

for the reverse phase transformation, respectively. And the value of HAS and HSA can be defined as follows:

HAS =
⎧⎨
⎩
1 if

{
RAS
S < F < RAS

f
Ḟ > 0

0 otherwise
(21)

HSA =
⎧⎨
⎩
1 if

{
RSA

f < F < RSA
S

Ḟ < 0
0 otherwise

(22)

where {
RAS
S = σAS

S (1 + β) ,

RSA
S = σ SA

S (1 + β) .
(23)

Then, the constitutive model is employed as

σ = E × (ε − εtr ) ,

ε̇tr = ξ̇SεL
∂F

∂σ
, (24)

where E is the elastic stiffness tensor, ε is the total strain, εtr is the transformation strain tensor, and εL is the
maximum residual strain.
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Table 1 Material properties of transformable particles in numerical calculation [39]

E (GPa) ν σAS
s (MPa) σAS

f (MPa) σ SA
s (MPa) σ SA

f (MPa) εL β

60 0.3 346 365 83 57 0.063 0.09
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Fig. 4 Stress–strain relationship of phase transformation by FEM analysis

The material parameter β characterizes the material response in tension and compression. If tensile and
compressive behaviors are the same, then β = 0. For a uniaxial tension–compression test, β can be related
to the initial value of austenite to martensite phase transformation in tension and compression (σ SA

t and σ SA
c ,

respectively) as

β = σAS
c − σAS

t

σAS
c + σAS

t
. (25)

The material properties of transformable particle required for the present FEM analysis are determined from
Favier et al. [39] and listed in Table 1. The matrix material is defined as an isotropic elastic material whose
Young modulus Em = 29GPa and the Possion’s ratio ν = 0.33. By FEM analysis, a typical stress–strain
behavior for phase transformation is depicted in Fig. 4 in excess of the transformation stress.

To propose the present crack model for multiple transformable particles dispersed near the crack tip, it is
essential to consider the notion of fully transformed zone. As is known, the phase transformation is triggered
around the crack tip in the area where the local stress is assumed to be higher than the transformation critical
values. The stress-induced transformable region can be subdivided into two parts due to the asymptotic stress
distribution along the crack propagation direction [40]. One consists of a fully transformed zone and the other
consists of a partially transformed zone, as depicted in Fig. 5a. The shape and size of the fully transformed
zone can be determined approximately by the crack tip stress. The boundary of the fully transformed zone can
be determined following Evans [1] and Yi and Gao [41]. The shape of the fully transformed zone is a long
transformed wake which results from the steady-advanced propagation of the crack. As the crack advances
under steady-state conditions, the transformation occurs along a curve in front of the crack tip leaving behind
a semi-infinite wake of height 2H . Thus, the boundary of the fully transformed zone for steady-advanced
cracked material can be determined following Yi and Gao [41] as

r (θ) =

⎧⎪⎨
⎪⎩

H × cos2 θ
2

[
1+3 sin2 θ

2

]

cos2 θ̂
2

[
1+3 sin2 θ̂

2

]
sin θ̂

0 ≤ |θ | ≤ θ̂ ,

H
sin(θ)

θ̂ ≤ |θ | ≤ π,

(26)

where
�

θ = 82◦ and

H = 2

π
×
[

KI

σ c
e (T, ξ)

]2
× cos2

θ̂

2

(
1 + 3 sin2

θ̂

2

)
sin θ̂ . (27)
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Fig. 5 Transformable particle-reinforced composites with full and partial phase transformation zone, and a cluster of transformed
particles near the crack tip. a Schematic representation, b finite element mesh

In Eq. (27), σ c
e is a parameter which depends on temperature T , chemical composition ξ , andmaterial constants

a, b, and g, and it is given by Sun and Hwang [42,43] and Fischer et al. [44] as

σ c
e (T, ξ) =

√
3

g
[(a + bξ) (T − Ms)] , (28)

where Ms is the temperature of martensite start.
Considering the fully transformed zone and the partially transformed zone, Fig. 5b shows the finite element

mesh where a cluster of particles is aggregated in a specific local zone and the distribution of transformed
particles is non-symmetric with respect to the crack plane. The crack deflection angle is estimated by Eqs. (9)
and (10), where the crack tip Jk-integral is numerically calculated by an equivalent domain integral method
[45,46] in the fully transformed zone where the matrix is assumed to be homogenous, elastic. The integral
contour to calculate the Jk-integral is only enclosing the crack tip without any particles to ensure the path-
independence of the Jk-integral. The final results of the crack tip Jk-integral are obtained by an average over
ten groups of random distributions for each case of volume fraction to reduce the errors from the specific
random operation in numerical procedure. Figure 6 shows the numerically predicted crack deflection angle
against the volume fraction of clustered particles near the crack tip where the tensile loading is large enough
to ensure the transformation of most particles, especially in the clustered zone. The overall volume fraction of
transformable particles is 5.0%, while the local volume fracture of clustered zone changes from 25 to 50%.

Despite the pure mode I loading, it should be reminded that a mixed mode fracture can be characterized
by the J1- and J2-integrals for such a non-symmetric distribution of multiple particles around the propagating
crack tip and thus crack deflection will happen. A magnitude of deflection angle about 5.1◦–7.6◦ is expected
as shown in Fig. 6. It can also be concluded that the present non-uniform distribution of the transformable
phase leads to a positive deflection angle which means that the crack deflects upward from the original
crack path. It means that crack meandering occurs around the crack face due to the fact that the region with
higher transformable fraction seems to attract the crack. It is interesting to note that, as the volume fraction



Crack deflection by the transformable particles dispersed in composites 753

25 30 35 40 45 50

5

6

7

8

C
ra

ck
 d

ef
le

ct
io

n 
an

gl
e 

Volume fraction of cluster (%)

Fig. 6 Numerically predicted crack deflection angle against the volume fraction of clustered particles dispersed near the crack
tip

of transformation increases, the deviation from the original crack path increases and the effect of attraction
becomes stronger.

The phenomenon of crack deflection due to the transformation of dispersed particles can also be predicted
and explained by the non-symmetric stress distribution around the crack tip. The equivalent stress distribution
near the crack tip is calculated by the FEM approach as shown in Fig. 7. A strong non-symmetric stress
distribution with respect to the crack surface is found in Fig. 7 as the transformable particle around the crack
tip is non-symmetric with respect to the crack plane by a cluster of particles in non-homogeneous composites.
In fact, we can derive the consistent conclusion by predicting the crack deflection according to the alternative
method of the equivalent stress gradient criterion proposed by Zuo and Feng [47]. They assumed that the initial
crack growth takes place in the direction along which the gradient of equivalent stress possesses a maximum
value. From the stress distribution in Fig. 7, one can find an obvious non-symmetric gradient of equivalent
stress which results in the crack deflection as predicted by the present maximum energy release in terms of
the crack tip Jk-integral. The previous work by Zuo and Feng [47] predicted the crack growth by the gradient
of equivalent stress. In contrast, the present failure criterion of potential energy release is associated with the
Jk-integrals, which describes material’s failure state from the view of energy. The failure criterion associated
with the Jk-integral is the energetic treatment while the gradient of equivalent stress is the stress parameter
approach. In other words, the present study is in the view of energy to get some indication of how crack deflects
as the crack may find a path which is energetically more favorable.

5 Conclusions

Crack deflection is one of the most well-known toughening mechanisms in particle-reinforced transformable
composites. The effect of transformable particles on the crack deflection is analyzed where both dilatation
and shear transformation strain components are taken into account. The main conclusions are summarized as
follows:

1. A general theory by the concept of material configurational forces is proposed to provide an effective
method for investigating the fracture toughening and crack deflection occurring in the transformable
material. The difference between the crack tip J1-integral and the remote J1-integral is used to estimate
the crack shielding effect of phase transformation and the maximum energy release rate in terms of the
crack tip Jk-integral to predict the crack deflection from its original crack path.

2. The contribution of one individual transformable particle on the crack deflection toughening is obtained
in an explicit form. The most important conclusion from the analysis is that the crack tip shielding effect
is mainly determined by the location angle of the particle with respect to the crack tip as well as the
ratio between the shear and dilatation transformation strain components. Moreover, the crack deflection
phenomenon is strongly dependent on the magnitude of shear and dilatation transformation strain, the
location of the particle including the location angle, and the distance to the crack tip.
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Fig. 7 Non-symmetric stress contour (a) and stress isohypses (b) with respect to the crack surface by a cluster of particles in
non-homogeneous composites

3. A finite element approach is performed to solve the problem of multiple particles with non-uniform
distribution embedded in composites. The crack deflection caused by a cluster of transformable particles
has been discussed. It can be seen that the higher volume fraction of the cluster would cause a larger
deflection anglewith respect to the crack plane. The present theoretical and numerical study could be useful
for dealing with problems which are focused on crack deflection influenced by the phase transformation
in non-homogeneous composites.
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