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Abstract In existing literature, it remains an unexplored question whether any inclusion shape can achieve a
uniform internal strain field in an elastic half-plane under either given uniform remote loadings or given uniform
eigenstrains imposed on the inclusion. This paper examines the existence and construction of such single or
multiple non-elliptical inclusions that achieve prescribed uniform internal strain fields in an elastic half-plane
under given uniform anti-plane shear eigenstrains imposed on the inclusions. Such non-elliptical inclusion
shapes in a half-plane can be determined by solving the original problem of an unknown holomorphic function
in a multiply connected half-plane, which is transferred to an equivalent problem of an unknown holomorphic
function in a multiply connected whole plane based on analytic continuation techniques. Extensive numerical
examples are shown for single inclusion, multiple inclusions and two geometrically symmetrical inclusions,
respectively. It is found that the inclusion shapeswhich achieve uniform internal strainfields dependon the given
uniform eigenstrains, and the inclusion shapes that achieve uniform internal strain fields for arbitrarily given
uniform eigenstrains do not exist. Moreover, specific conditions are derived on the given uniform eigenstrains
and prescribed uniform internal strain fields for the existence of two geometrically symmetrical inclusions that
achieve uniform internal strain fields.

1 Introduction

In themicromechanical analysis of composites, inclusions of special shapes that achieve uniform internal stress
fields have receivedmuch attention due to practical significance that uniform internal stress fields do not induce
stress peaks within the inclusions. On the other hand, the emerging 3D printing (or additive manufacturing)
technique greatly simplifies themanufacture of the composites containing these special inclusions (especially of
complicated shapes), and thusmakes the design of such special inclusionsmuchmoremeaningful. Historically,
Eshelby [1] showed that an elliptical inclusion within an elastic whole plane can achieve a uniform internal
stress field under uniform remote loadings or uniform eigenstrains imposed on the inclusion. Based on the
complex variables method, Sendeckyj [2] and Ru and Schiavone [3] proved that elliptical shape is the only
inclusion shape that achieves a uniform internal stress field inside the inclusion embedded in an elastic whole
plane. On the other hand, for an elastic half-plane with a traction-free surface, it is known that even a circular
inclusion [4,5] or an elliptical inclusion [6,7] can no longer achieve a uniform internal stress field under
uniform remote loadings or uniform eigenstrains imposed on the inclusion. In addition, none of the common
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non-elliptical inclusions defined by simple polynomial conformal mappings (such as hypotrochoidal and
polygonal inclusions [7]) can achieve uniform internal stress fields in a half-plane. In spite of this, however, it
remains an unanswered questionwhether a non-elliptical inclusion does exist which achieves a uniform internal
stress field in an elastic half-plane under either given uniform remote loadings or given uniform eigenstrains
imposed on the inclusion.

For anti-plane shear, the answer for the above question is “yes.” Actually, the symmetrical inclusion pairs
obtained in recent works (see Figure 1 of [8], Figure 3.1 of [9], Figures 2, 3 and 7 of [10], Figures 2a,c and 5d
of [11]), which achieve uniform internal stress fields in an elastic whole plane under uniform remote anti-plane
shear or uniform anti-plane shear eigenstrains, imply the existence of a single non-elliptical inclusion that
achieves a uniform internal stress field in an elastic half-plane with a free surface. In particular, the shape of
such inclusion is even not unique, depending on the specific uniform internal stress field inside the inclusion
and the distance between the inclusion and the free surface.

The present work aims to investigate this issue more systematically, and particularly to examine the exis-
tence of multiple inclusions that achieve individually prescribed uniform internal strain fields in an elastic
half-plane under given uniform anti-plane shear eigenstrains imposed on the inclusions. Basic formulation of
the present problem is given in Sect. 2. In Sect. 3, based on the existence condition of the complex potential
defined in a half-plane, the unknown shapes of the multiple inclusions are determined on using analytic contin-
uation techniques, Cauchy’s integral formula, Faber series and Newton–Raphson method. In Sect. 4, extensive
numerical examples are shown for a single inclusion, multiple inclusions and symmetrical inclusions which
achieve various prescribed uniform internal strain fields, with an emphasis on the dependence of the inclusion
shapes on the uniform eigenstrains imposed on the inclusions. Finally, the main results are summarized in
Sect. 5.

2 Basic equations and problem description

2.1 Basic equations

In a Cartesian coordinate system (x1, x2, x3), consider an isotropic elastic material under anti-plane shear
deformation determined by the out-of-plane displacement along the x3-axis, and then the anti-plane shear
stresses (σ13, σ23) and the out-of-plane displacement w can be expressed by a complex potential f (z)(z =
x1 + I x2) as [10]

σ23 + Iσ13 = G f ′(z), w = Im [ f (z)] , (1)

where G represents the shear modulus, and the capital I is used to denote the imaginary unit in order to save
the symbol i as a subscript. Additionally, the shear traction σn3 on a directed curve from point A to B in the
z-plane can be written in terms of f (z) as [10]

∫ B

A
σn3ds = −GRe [ f (z)]

∣∣B
A (2)

where ds is an element of arc length of the curve along its tangent.

2.2 Problem description

Shown in Fig. 1 is an infinite elastic half-plane (of shear modulusG)with n elastic inclusions (also of the same
shear modulus G) bounded by the curves Li (i = 1. . .n), which undergo given uniform anti-plane stress-free
shear eigenstrains ε

∗(i)
13 and ε

∗(i)
23 (i = 1. . .n), respectively. In particular, we assume that no anti-plane shear

loadings are applied at infinity and on the free surface of the half-plane. Let Si (i = 1. . .n) and SL denote the
regions occupied by the inclusions and the remnant multiply connected half-plane, respectively. For a single
inclusion in a whole plane, elliptical shape is the only possible inclusion shape that guarantees a uniform
internal strain field, and the actual uniform internal strain field can be arbitrary within a certain admissible
range determined by the aspect ratio and orientation of the elliptical inclusion.Here, since the shapes ofmultiple
inclusions in the half-plane which achieve uniform internal strain fields are unknown, the internal uniform
strain fields within the multiple inclusions could be prescribed only within a certain admissible range, and thus
the problem is reduced to the determination of the unknown inclusion shapes. Particularly, we assume that the
uniform internal strain field inside each of the inclusions can be different from those inside other inclusions.
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Fig. 1 Multiple inclusions in an elastic (lower) half-plane

Therefore, the complex potentials fi (z) (i = 1. . .n) of the inclusions in Si (i = 1. . .n) have the form of

fi (z) = �i z + Ci , i = 1. . .n (3)

where �i are some given complex constants and the prescribed uniform internal strain fields (given by �i/2)
could be restricted within a certain admissible range to ensure the existence of a solution, and Ci are some
complex unknown constants to be determined. For the complex potential f (z) of the multiply connected
half-plane SL , since no anti-plane shear loadings are applied at infinity, we can stipulate lim|z|→+∞ f (z) = 0.

The continuity conditions of the shear traction and out-of-plane displacement on the interfaces Li (i =
1. . .n) are described, according to Eqs. (1) and (2), as

Re [ f (t)] = Re [ fi (t)] , t ∈ Li (i = 1. . .n), (4)

Im [ f (t)] = Im
[
fi (t) + 2�∗

i t
]
, t ∈ Li (i = 1. . .n), (5)

which are equivalent to
f (t) = fi (t) + �∗

i t − �
∗
i t, t ∈ Li (i = 1. . .n), (6)

with
�∗
i = ε

∗(i)
23 + Iε∗(i)

13 , i = 1. . .n. (7)

Here the arbitrary real parts of the complex constants Ci (i = 1. . .n) defined in Eq. (3) are chosen uniquely
so that the continuity condition of shear traction (2) can be simplified into (4). Consequently, the real parts of
complex constants Ci (i = 1. . .n) will be determined uniquely. Substituting Eq. (3) into Eq. (6) leads to

f (t) = Ai t + Bi t + Ci , t ∈ Li (i = 1. . .n),

Ai = �i + �∗
i , Bi = −�

∗
i (8)

where, according to the statement after Eq. (3), Ai and Bi (i = 1. . .n) are known constants determined by
the given uniform anti-plane shear eigenstrains and the individually prescribed uniform internal strain fields,
while Ci (i = 1. . .n) will be determined as part of the solution.

In what follows, we will determine the unknown shapes of the inclusions based on the condition for the
existence of such a holomorphic function f (z) in the multiply connected lower half-plane SL which meets the
boundary conditions (8) on the interfaces Li (i = 1. . .n).

3 Solution procedure

3.1 Analytic continuation of the complex potential f (z)

In Fig. 2, SU denotes the multiply connected upper half-plane with n holes bounded by the curves Li (i =
n + 1. . .2n) which are symmetrical to the curves Li (i = 1. . .n) about the x1-axis, respectively. Introduce a
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function defined in the two multiply connected half-planes SL and SU , separately,

g(z) =
{
f (z), z ∈ SL
− f (z), z ∈ SU

, (9)

which is holomorphic in SL and SU , respectively. Since there is no anti-plane shear traction applied on the free
surface of the half-plane SL , one has

σ23 = G
[
f ′(z) + f ′(z)

]/
2 = 0, x2 = 0−, (10)

which leads to

g′(−)(z) − g′(+)(z) = f ′(−)(z) + f ′(+)
(z) = 0, x2 = 0−, (11)

and thus the derivative of g(z) defined by Eq. (9) is continuous across the x1-axis, so g(z) is holomorphic in
the whole plane with 2n holes bounded by the curves Li (i = 1. . .2n). Then the existence of the holomorphic
function f (z) in the multiply connected lower half-plane SL which meets the boundary conditions (8) is
determined by the existence of the holomorphic function g(z) in the multiply connected whole plane with 2n
holes bounded by the curves Li (i = 1. . .2n) which meets the following boundary conditions:

g(t) = Ai t + Bi t + Ci , t ∈ Li (i = 1. . .n),

g(t) = −Ai t − Bi t − Ci , t ∈ Li+n(i = 1. . .n). (12)

3.2 Existence of the complex potential g(z)

In order to ensure the existence of the function g(z) holomorphic in the multiply connected whole plane
with 2n holes bounded by the curves Li (i = 1. . .2n) (see Fig. 2), its boundary value g(t) (see (12)) on the
boundaries Li (i = 1. . .2n), according to Sokhotski–Plemelj theorem, should satisfy the following necessary
and sufficient condition [12]:

1

2π I

2n∑
j=1

∮
L j

g(t)

t − z
dt = 0, ∀z ∈ Si (i = 1. . .2n). (13)
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Substituting Eq. (12) into Eq. (13) and then using Cauchy’s integral formula, one has

Ai z + 1

2π I

n∑
j=1

(
Bj

∮
L j

t

t − z
dt − B j

∮
L j+n

t

t − z
dt

)
= −Ci ,

∀z ∈ Si (i = 1. . .n), (14)

−Ai z + 1

2π I

n∑
j=1

(
Bj

∮
L j

t

t − z
dt − B j

∮
L j+n

t

t − z
dt

)
= Ci ,

∀z ∈ Si+n(i = 1. . .n). (15)

Since the boundaries L j and L j+n ( j = 1. . .n) are symmetrical about the x1-axis, one can easily verify

∮
L j

t

t − z
dt = −

∮
L j+n

t

t − z
dt, j = 1. . .n,

∮
L j+n

t

t − z
dt = −

∮
L j

t

t − z
dt, j = 1. . .n. (16)

According to Eq. (16), it is shown that the conjugate of the condition (14) is exactly equivalent to (15), so,
in what follows, we will use only the condition (14) instead of simultaneous conditions (14) and (15).

Note that each of the integral expressions ( j = 1. . .n) on the left side of condition (14) can be regarded as
a holomorphic function of the argument z in the simply connected region Si , and thus it can be expanded into
a Faber series of the region Si as [13,14]

1

2π I

∮
L j

t

t − z
dt =

+∞∑
k=0

bi jk Pik(z − z0i ), z ∈ Si (i = 1. . .n), (17)

1

2π I

∮
L j+n

t

t − z
dt =

+∞∑
k=0

di jk Pik(z − z0i ), z ∈ Si (i = 1. . .n), (18)

where z0i is a specific point in the region Si (see mapping (19)) and Pik(z − z0i ) is the kth-order Faber
polynomial defined in the region Si particularly with Pi0(z − z0i ) = 1, while bi jk and di jk are the coefficients
of the related Faber series. Here, each of the undetermined simply connected regions Si (i = 1. . .n) can be
defined by a conformal mapping which maps the exterior of the boundary Li of the region Si in the z-plane to
the exterior of the unit circle (denoted by σi = eIθ ) in the ξi -plane [12],

z − z0i = ωi (ξi ) = Ri

(
ξi +

+∞∑
l=1

ailξ
−l
i

)
, i = 1. . .n (19)

where the known complex constant z0i and the known real constant Ri characterize the location and size of the
i-th inclusion in the z-plane, while all the unknown complex coefficients ail determine the actual shape of the
inclusion. Here, it follows from the definition of mapping (19) that the derivative of ωi (ξi ) is required to have
no zeros outside the unit circle in the ξi -plane. Particularly, the argument z on the curves L j+n ( j = 1. . .n)
can be expressed, according to the symmetry of the curves L j and L j+n about the x1-axis, by

t = z0 j + ω j (σ j ) = z0 j + ω j (σ
−1
j ), t ∈ L j+n( j = 1. . .n). (20)

Then based on the definition of Faber series [14,15] and the mapping (19), the coefficients bi jk in Eq. (17) and
di jk in Eq. (18) are given by

j = i : bijk = 1

2π I

∮

|σi |=1

(z0i + ωi (σi ))σ
−k−1
i dσi =

{
z0i , k = 0
Riaik, k ≥ 1 , (21)
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j 	= i : bi jk = −1

4π2

∮

|σi |=1

∮

|σ j |=1

(
z0 j + ω j (σ j )

)
ω′

j (σ j )σ
−k−1
i

z0 j + ω j (σ j ) − z0i − ωi (σi )
dσ j · dσi

= −1

4π2

∮

|σi |=1

∮

|σ j |=1

ω j (σ j )ω
′
j (σ j )σ

−k−1
i

z0 j + ω j (σ j ) − z0i − ωi (σi )
dσ j · dσi , k ≥ 0, (22)

di jk = −1

4π2

∮

|σi |=1

∮

|σ j |=1

(
z0 j + ω j (σ j )

)
ω

′
j (σ

−1
j )σ−2

j σ−k−1
i

z0 j + ω j (σ
−1
j ) − z0i − ωi (σi )

dσ j · dσi

= −1

4π2

∮

|σi |=1

∮

|σ j |=1

ω j (σ j )ω
′
j (σ

−1
j )σ−2

j σ−k−1
i

z0 j + ω j (σ
−1
j ) − z0i − ωi (σi )

dσ j · dσi , k ≥ 0. (23)

Then substituting Eqs. (17) and (18) into Eq. (14) and using the formula Pi0(z − z0i ) = 1 and Pi1(z − z0i ) =
(z − z0i )/Ri [13,14], we obtain

Ai Ri Pi1(z − z0i ) +
+∞∑
k=1

⎛
⎝ n∑

j=1

(
Bjbi jk − B jdi jk

)
⎞
⎠ Pik(z − z0i )

=
n∑
j=1

(
B jdi j0 − Bjbi j0

) − Ai z0i − Ci , ∀z ∈ Si (i = 1. . .n). (24)

In order to satisfy Eq. (24) for any given z in the region Si (i = 1. . .n), clearly the sufficient and necessary
conditions are

Ai Ri +
n∑
j=1

(
Bjbi j1 − B jdi j1

) = 0,

n∑
j=1

(
Bjbi jk − B jdi jk

) = 0 (k ≥ 2), i = 1. . .n, (25)

n∑
j=1

(
B jdi j0 − Bjbi j0

) − Ai z0i − Ci = 0, i = 1. . .n. (26)

Here in Eqs. (25) and (26), the loading parameters Ai and Bi (i = 1. . .n) defined in (8), determined by the
given uniform eigenstrains and the prescribed uniform internal strain fields, and the geometry parameters z0i
and Ri (i = 1. . .n) are all known, and the unknowns are the coefficients ail (i = 1. . .n, l = 1. . . + ∞)
introduced in the mapping (19) which determine the actual shapes of the inclusions.

Generally speaking, the conformalmappings for the unknown inclusion shapes that achieve uniform internal
strain fields could be given by infinite series and cannot be exactly expressed by a finite polynomial, but in a
practical sense, the truncation of infinite series to a finite polynomial usually offers good approximations to the
conformal mappings. Therefore, in what follows, the infinite series form of the conformal mapping (19) of each
region Si will be truncated into an Ni -order polynomial of Ni unknown coefficients ail (i = 1. . .n, l = 1. . .Ni ),
and thus the infinite number of nonlinear equations (25) (for i = 1. . .n, and k ≥ 2) is truncated into a finite
number of nonlinear equations (25) with k = 2. . .Ni (i = 1. . .n), respectively. Numerical methods will
be employed to obtain these

∑n
i=1 Ni coefficients by solving the

∑n
i=1 Ni Eq. (25). Once the shapes of the

multiple inclusions are obtained by solving the
∑n

i=1 Ni , Eq. (25), the unknown constants Ci (i = 1. . .n)
introduced in Eq. (3) can be determined uniquely from Eq. (26).

3.3 Newton–Raphson iteration

By defining two vectors α andF(α) on the real and imaginary parts of the truncated coefficients ail (i = 1. . .n,
l = 1. . .Ni ),
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α =

⎡
⎢⎢⎢⎢⎣

Re(a11)
Im(a11)

...
Re(anNn )
Im(anNn )

⎤
⎥⎥⎥⎥⎦ , F(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re (A1R1)
Im (A1R1)

0
0
...

Re (AnRn)
Im (AnRn)

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

Re
(
Bjb1 j1 − B jd1 j1

)
n∑
j=1

Im
(
Bjb1 j1 − B jd1 j1

)
...

n∑
j=1

Re
(
Bjbnj Nn − B jdnj Nn

)
n∑
j=1

Im
(
Bjbnj Nn − B jdnj Nn

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

the truncated real form of Eq. (25) can be rewritten as

F(α) = 0, (28)

and the related Jacobian matrix [∂F(α)/∂α] can be easily obtained based on the corresponding mapping (19)
and the expressions (21)–(23). The iterative process is then given by

α(p+1) = α(p) −
[

∂F(α)

∂α

∣∣∣∣
α=α(p)

]−1

F(α(p)), p = 0, 1, . . . (29)

where the superscript “−1” indicates the inverse of the Jacobian matrix, and α(p) represents the value of the
vector α after the p-th iteration.

To guarantee convergence of the iterative process (29), here, the initial value α(0) with the known geometry
parameters z0i and Ri (i = 1. . .n) will be given by, say, n disjoint ellipses (or circles) in the z-plane. It is
expected that all of the inclusions would be elliptical (or circular) if the effects of the free surface on the
inclusions and interaction between the inclusions are ignored, so here n disjoint ellipses (or circles) are given
as the initial value to outline the rough shapes of the inclusions, and the iterative process describes how these
rough inclusion shapes change to the final required inclusion shapes under the effects of the free surface
on the inclusions and interaction between the inclusions. If the iterative process (29) does not converge for
any reasonable initial value α(0), it implies that the prescribed uniform internal strain fields cannot actually
be achieved under the given uniform eigenstrains and geometry conditions. In addition, even a convergent
solution will be considered inadmissible if either the corresponding boundaries Li (i = 1. . .n) intersect in the
z-plane or the derivative of any of the corresponding mappings (19) has zero(s) outside the unit circle in the
ξi -plane.

For the present general problem of multiple inclusions, we have not achieved a simple sufficient and
necessary condition imposed on the given uniform eigenstrains, geometry conditions and prescribed uniform
internal strain fields, which guarantees the existence and uniqueness of the required inclusion shapes. However,
for given uniform eigenstrains, geometry conditions and prescribed uniform internal strain fields, our numerical
results indicated that the solution is unique because the iteration process always converges to the same inclusion
shapes for different reasonable initial values.

4 Numerical examples

Our extensive numerical examples (including all examples described below) confirmed that moderately large
numbers Ni (7 ≤ Ni ≤ 12)(i = 1. . .n) are sufficient to achieve a reasonably accurate convergent solution with
relative errors less than 1%.

4.1 A single inclusion in a half-plane

In the present method, when all of the inclusions are far away from the free surface of the half-plane, all of
the coefficients di jk defined by (23) tend to be zero and the present solution for the half-plane converges to
that for a whole plane studied in [11]. Particularly, letting all of the coefficients di jk in (25) be zero, and then
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substituting (21) into (25), we obtain the solution for a single inclusion (n = 1) that achieves a uniform internal
strain field in a whole plane, as given by

a11 = −A1/B1, a1l = 0, l = 2, 3, . . . (30)

where the condition |a11| < 1 must be met for a correct conformal mapping (19). Equation (30) indicates that
a single inclusion with a uniform internal strain field in a whole plane must be elliptical, and, on the other
hand, it gives the admissible range of the uniform internal strain field inside a single elliptical inclusion in a
whole plane by

A1/B1 = g1, |g1| < 1 (31)

which, according to Eq. (8), can be expressed in a detailed form as

�1 = −�∗
1 − g1�

∗
1, |g1| < 1. (32)

Therefore, for given uniform eigenstrains (determined by�∗
1) imposed on a single elliptical inclusion in awhole

plane, the uniform internal strain field (determined by �1) inside the elliptical inclusion may vary within a
certain admissible range defined by the above arbitrary complex constant g1 of absolute value less than unity
which depends on the aspect ratio and orientation of the elliptical inclusion.

For a single inclusion in a half-plane, we shall still use the complex parameter g1 = A1/B1 to define the
prescribed uniform internal strain field in a similar way as formula (32). More precisely, for given uniform
eigenstrains imposed on the inclusion, the complex parameter �1, which determines the uniform internal
strain field inside the inclusion, is now determined by the complex parameter g1. Unlike the single-inclusion
problem for a whole plane in which only an elliptical inclusion can achieve a uniform internal strain field, our
results show that a single inclusion that achieves a uniform internal strain field in a half-plane is certainly non-
elliptical. Shown in Fig. 3 are a few examples of a single inclusion with different given uniform eigenstrains
in a half-plane which achieves a prescribed uniform internal strain field.

It can be readily seen that the non-elliptical shapes of a single inclusion in a half-plane shown in Fig. 3a–c
are essentially equivalent to those of two symmetrical inclusions in a whole plane shown in Figure 1 of [8],
Figure 3.1 of [9] and Figures 2, 3 and 7a of [10], respectively. Actually, for example, for a symmetrical inclusion
pair that is symmetrical about the x1-axis in a whole plane with symmetrical uniform eigenstrains ε

∗(1)
13 = ε

∗(2)
13

and ε
∗(1)
23 = −ε

∗(2)
23 (equivalently �∗

1 = −�
∗
2), the shear stress σ23 will vanish along the entire midline which

is thus equivalent to the free surface of a half-plane. Therefore, a symmetrical inclusion pair in a whole plane
is equivalent to a single inclusion in a half-plane. Note that the problem studied by Liu [8] is a standard
eigenstrain problem, while the problems studied by Kang et al. [9] and Wang [10], which considered the
remote anti-plane shear loadings without eigenstrains, can be transformed into standard eigenstrain problems.
However, in all the eigenstrain (or transformed eigenstrain) problems studied by Liu [8], Kang et al. [9] and
Wang [10], the nonzero uniform eigenstrains imposed on any two inclusions in a whole plane are limited to
either ε

∗(1)
13 = ε

∗(2)
13 and ε

∗(1)
23 = ε

∗(2)
23 (equivalently �∗

1 = �∗
2) or ε

∗(1)
13 	= ε

∗(2)
13 and ε

∗(1)
23 	= ε

∗(2)
23 (equivalently

Im(�∗
1) 	= Im(�∗

2) and Re(�∗
1) 	= Re(�∗

2)). Therefore, when the uniform eigenstrains imposed on a single

inclusion in a half-plane are given as ε
∗(1)
13 	= 0 and ε

∗(1)
23 	= 0 (equivalently Im(�∗

1) 	= 0 and Re(�∗
1) 	= 0), the

required inclusion shape of the present problem (such as the shape shown in Fig. 3d) cannot be derived from
the solutions of two symmetrical inclusions in a whole plane studied by Liu [8], Kang et al. [9], and Wang
[10].

It is expected that the shape of a single inclusion in a half-plane which achieves a uniform internal strain
field will be impacted by the distance between the inclusion and the free surface of the half-plane, so it is of
particular interest to study the dependence of the inclusion shape on the distance between the inclusion and
the free surface. Figure 4 shows a few examples of a single inclusion which achieves a uniform internal strain
field in a half-plane when the distance between the inclusion and the free surface is extremely small, while
Fig. 5 shows the convergence of a single inclusion shape which achieves a uniform internal strain field in a
half-plane with increasing distance between the inclusion and the free surface.

It should be noted that the specific elliptical inclusion shown in Figs. 4 and 5 is constructed to achieve
the uniform internal strain field (in a whole plane, not in a half-plane) defined by the same parameter g1
and the same uniform eigenstrains (see formula (32)). It can be seen from Fig. 4 that for real parameters g1
and uniform eigenstrains satisfying ε

∗(1)
13 	= 0 with ε

∗(1)
23 = 0 (equivalently Im(�∗

1) 	= 0 with Re(�∗
1) = 0),

the single inclusion that achieves a uniform internal strain field in a half-plane does not converge to a half-
elliptical shape when the distance between the inclusion and the free surface of the half-plane reduces to zero.
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Fig. 3 A single inclusion that achieves a uniform internal strain field in a half-plane

Therefore, the results shown in Fig. 4 indicate that a single non-elliptical inclusion that achieves a uniform
internal strain field in a half-plane will not converge to a half of a single elliptical inclusion in a whole plane
which achieves the same uniform internal strain field under the same uniform eigenstrains when the distance
between the inclusion and the free surface of the half-plane reduces to zero. It is shown from Fig. 5 that a
single non-elliptical inclusion that achieves a uniform internal strain field in a half-plane will converge to a
single elliptical inclusion in a whole plane (with relative error less than 5%) which achieves the same uniform
internal strain field under the same uniform eigenstrains when the distance between the non-elliptical inclusion
and the free surface of the half-plane is at least a few times (say, three times) the size of the non-elliptical
inclusion.

It is of great interest to see whether the uniform internal strain field for a single inclusion in a half-plane
could be beyond or entirely limited to the admissible range of the uniform internal strain field defined by
|g1| < 1 for a single elliptical inclusion in a whole plane. Actually, Figs. 3, 4 and 5 already give a few
examples of a single inclusion in a half-plane which achieves prescribed uniform internal strain fields defined
by some |g1| < 1 (see formula (32)). Here, shown in Fig. 6 are some additional examples of a single inclusion
in a half-plane which achieves prescribed uniform internal strain fields defined by several other |g1| < 1 (see
formula (32)).
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Fig. 4 A single inclusion that achieves a uniform internal strain field in a half-plane when the distance between the inclusion and
the free surface of the half-plane is extremely small

Our results shown in Figs. 3, 4, 5 and 6 indicate that any admissible uniform internal strain field with
|g1| < 1 for a single elliptical inclusion in a whole plane is achievable by a single non-elliptical inclusion in a
half-plane. However, our extensive numerical examples also indicated that it is almost impossible to construct
a single non-elliptical inclusion in a half-plane which achieves a uniform internal strain field (with |g1| > 1)
beyond the admissible range |g1| < 1 for a single elliptical inclusion in a whole plane. Thus, the present work
suggested that the admissible range of the uniform internal strain field for a single inclusion in a half-plane is
almost identical to the admissible range of the uniform internal strain field for a single elliptical inclusion in a
whole plane.

4.2 Multiple inclusions in a half-plane

For multiple inclusions in a half-plane, we shall also use the complex parameters gi = Ai/Bi (i = 1. . .n)
to define their prescribed uniform internal strain fields in a similar way as formula (32). Clearly, for given
uniform eigenstrains (determined by �∗

i , i = 1. . .n) imposed on each of the multiple inclusions, the prescribed
uniform internal strain field inside each of the multiple inclusions is given by

�i = −�∗
i − gi�

∗
i , i = 1. . .n. (33)
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Fig. 5 Convergence of the shape of a single inclusion that achieves a uniform internal strain field in a half-plane with increasing
distance between the inclusion and the free surface of the half-plane

As the first example, Fig. 7 gives a comparison between the previous results of multiple inclusions that achieve
uniform internal strain fields in a whole plane (see [11]) and our present results of multiple inclusions that
achieve uniform internal strain fields in a half-plane when the distance between the multiple inclusions and
the free surface of the half-plane increases.

It should be pointed out that although the problem studied in [11] considers only the remote shear loadings
without eigenstrains, it can be transformed equivalently into a standard eigenstrain problem in which the
uniform eigenstrains imposed on each inclusion are determined by the remote loading and the elastic constants
of the inclusion and matrix. It is shown in Fig. 7 that a inclusion pair which achieves uniform internal strain
fields in a half-plane converges to that which achieves the same uniform internal strain fields in a whole plane
(with relative errors less than 5%) when the distance between the inclusion pair and the free surface of the
half-plane is a few times (say, three times) the size of the inclusion pair.

It is concluded in Sect. 4.1 that any admissible uniform internal strain field defined by |g1| < 1 for a
single elliptical inclusion in a whole plane is achievable by a single inclusion in a half-plane. Therefore, it is
of particular interest to see whether this conclusion for a single inclusion in a half-plane could still hold for
multiple inclusions (n ≥ 2) in a half-plane. Fig. 8 shows multiple inclusions with various uniform eigenstrains
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Fig. 6 A single inclusion in a half-plane which achieves various uniform internal strain fields within the admissible range of the
uniform internal strain field for a single elliptical inclusion in a whole plane

in a half-planewhich achieve various prescribed uniform internal strain fields (with |gi | < 1) that are admissible
for a single elliptical inclusion in a whole plane.

Our results shown in Fig. 8 indicate that any admissible uniform internal field (defined by |g1| < 1) for a
single elliptical inclusion in a whole plane is achievable for multiple inclusions in a half-plane.

It is suggested in Sect. 4.1 that the uniform internal strain field for a single inclusion in a half-plane can
be hardly beyond the admissible range of the uniform internal strain field (defined by |g1| < 1) for a single
elliptical inclusion in a whole plane. However, our results will show that this conclusion for a single inclusion
in a half-plane will be no longer valid for multiple inclusions (n ≥ 2) in a half-plane. Shown in Fig. 9 are
some examples of multiple inclusions subjected to various uniform eigenstrains in a half-plane, some of which
achieve(s) prescribed uniform internal strain fields with |gi | > 1 that are slightly outside the admissible range
defined by |g1| < 1 for a single elliptical inclusion in a whole plane.

Our extensive numerical examples showed that it seems almost impossible to construct such multiple
inclusions in a half-plane that all of the inclusions achieve uniform internal strain fields with |gi | > 1 simulta-
neously. Our numerical examples also indicated that when the norm of one prescribed parameter gi is relatively
large (such as |gi | > 2), it is very difficult to construct an inclusion in a half-plane which achieves such a
uniform internal strain field much beyond the admissible range |gi | < 1 for a single elliptical inclusion in a
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whole plane. Thus, the present work suggested that only some of multiple inclusions in a half-plane could
simultaneously achieve uniform internal strain fields which are moderately beyond the admissible range of the
uniform internal strain field for a single elliptical inclusion in a whole plane.

4.3 Two symmetrical inclusions in a half-plane

In the z-plane, consider two closed curves L1 and L2 which are symmetrical to each other about a certain line
parallel to the x2-axis. For any two symmetrical points z1 and z2 about the line of symmetry, one can verify that

1

2π I

∮
L1

t

t − z1
dt = constant − 1

2π I

∮
L2

t

t − z2
dt, ∀z1 ∈ S1, (34)

1

2π I

∮
L1

t

t − z1
dt = − 1

2π I

∮
L2

t

t − z2
dt, ∀z1 /∈ S1 (35)

where S1 denotes the finite region bounded by the curve L1. Using Eqs. (34) and (35), we can derive the con-
dition on the uniform eigenstrains and prescribed uniform internal strain fields which guarantees the existence
of even-number symmetrical inclusions in a half-plane that are symmetrical about a line parallel to the x2-axis.

Here,we give an example of two such symmetrical inclusions in a half-planewhich achieve uniform internal
strain fields. For two symmetrical inclusions bounded by the curves L1 and L2 in a half-plane which are sym-
metrical about a certain line parallel to the x2-axis, the related curves L3 and L4 in Eq. (14) (n = 2) are also sym-
metrical about the line, and then conjugating the two sides of Eq. (14) (n = 2) and using Eqs. (34) and (35), one
gets

− A1z − B2

2π I

∮
L1

t

t − z
dt − B1

2π I

∮
L2

t

t − z
dt

+ B2

2π I

∮
L3

t

t − z
dt + B1

2π I

∮
L4

t

t − z
dt = −D1, ∀z ∈ S2,

− A2z − B2

2π I

∮
L1

t

t − z
dt − B1

2π I

∮
L2

t

t − z
dt

+ B2

2π I

∮
L3

t

t − z
dt + B1

2π I

∮
L4

t

t − z
dt = −D2, ∀z ∈ S1 (36)
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Fig. 8 Multiple inclusions in a half-plane which achieve various uniform internal strain fields within the admissible range of the
uniform internal strain field for a single elliptical inclusion in a whole plane

where D1 and D2 are two new unknown constants. Considering that Eq. (36) has to be equivalent to Eq. (14)
(n = 2), we require

B1

B2
= B2

B1
,
A1

B1
= A2

B2
. (37)

Furthermore, based on the condition (37) with detailed relations in Eq. (8), the parameters�∗
i (i = 1, 2), which

determine the uniform eigenstrains imposed on the two symmetrical inclusions, and the complex parameters
gi = Ai/Bi (i = 1, 2) should satisfy

�∗
2 = ±�

∗
1, g2 = g1. (38)

Shown in Figs. 10 and 11 are a series of two symmetrical inclusions with prescribed uniform internal strain
fields in a half-plane based on the condition (38).

Since the condition �∗
2 = �

∗
1 (or equivalently ε

∗(1)
13 = −ε

∗(2)
13 and ε

∗(1)
23 = ε

∗(2)
23 ) indicates that the

uniform eigenstrains imposed on two certain inclusions are symmetrical about a midline parallel to the x2-
axis, it is expected that the two inclusions which achieve uniform internal strain fields will be symmetrical
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Fig. 9 Multiple inclusions in a half-plane which achieve uniform internal strain fields moderately beyond the admissible range
of the uniform internal strain field for a single elliptical inclusion in a whole plane

about the midline (see Fig. 10). However, as shown in Fig. 11, when the uniform eigenstrains (satisfying
�∗
2 = −�

∗
1 or equivalently ε

∗(1)
13 = ε

∗(2)
13 and ε

∗(1)
23 = −ε

∗(2)
23 ) imposed on two certain inclusions are anti-

symmetrical about a midline parallel to the x2-axis, the two inclusions that achieve uniform internal strain
fields could also be geometrically symmetrical about the midline. In particular, for symmetrical uniform
eigenstrains, such symmetrical inclusionpairs (seeFig. 10) offer interesting examples of non-elliptical inclusion
shapes that achieve uniform internal strain fields in a quarter plane with two mutually perpendicular free
surfaces.

4.4 Dependence of the inclusion shapes on the given eigenstrains

Unlike the single-inclusion problem in a whole plane in which an arbitrary elliptical inclusion always enjoys
a uniform internal strain field for any arbitrary uniform eigenstrains imposed on the inclusion, it is most
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likely that the shapes of the inclusions in a half-plane shown in Sects. 4.1–4.3 (specially see Fig. 3) depend
on specific given uniform eigenstrains imposed on the inclusions, and their internal strain fields may be
no longer uniform for other different uniform eigenstrains. Therefore, it is of particular interest to see if
any possible inclusion shapes exist which can always achieve uniform internal strain fields for arbitrary
uniform eigenstrains imposed on the inclusions. Note that the inclusion shapes determined by Eq. (25) can be
rewritten as

Ai

Bi
Ri +

n∑
j=1

(
Bj

Bi
bi j1 − B j

Bi
di j1

)
= 0,

n∑
j=1

(
Bj

Bi
bi jk − B j

Bi
di jk

)
= 0 (k ≥ 2), i = 1. . .n. (39)
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Fig. 11 Two symmetrical inclusions with various uniform internal strain fields in a half-plane under the condition �∗
2 = −�

∗
1

If the prescribed uniform internal strain fields are given in such way that all ratios Ai/Bi , Bj/Bi and B j/Bi
(i, j = 1. . .n) in Eq. (39) (or equivalently all ratios Ai/Bi , Bj/Bi and B j/Bj ) are independent of the uniform
eigenstrains imposed on the inclusions, then the corresponding inclusion shapes will be independent of the
uniform eigenstrains.

According to Eq. (8), one can get

Bj/Bi = �∗
j /�

∗
i ; i, j = 1. . .n, (40)

B j/Bj = �∗
j /�

∗
j , j = 1 . . . n (41)

where, clearly, the ratios Bj/Bi and B j/Bj (i, j = 1. . .n) are certainly dependent on the uniform eigenstrains
determined by �∗

j ( j = 1. . .n), and also the uniform eigenstrains will be determined uniquely by given ratios

Bj/Bi and B j/Bj (i, j = 1. . .n). Therefore, it is concluded that there exist no single or multiple inclusion
shapes that can achieve a uniform internal strain field in a half-plane for arbitrarily given uniform eigenstrains
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imposed on the inclusions. More precisely, for example, the inclusions shown in all of previous figures (see
Sects. 4.1–4.3) are only based on specific given uniform eigenstrains, and they will no longer achieve uniform
internal strain fields when the eigenstrains imposed on at least one of the inclusions are changed. In addition,
note that when all of the parameters di jk in (39) tend to be zero, the present solution for a half-plane converges
to that for a whole plane, and it follows from (40) that there indeed exist multiple inclusions in a whole plane
which achieve uniform internal strain fields for varying uniform eigenstrains provided that the ratios between
the uniform eigenstrains imposed on all inclusions keep unchanged.

5 Conclusions

The present work aims to answer an unexplored question whether any inclusion shape can achieve a uniform
internal strain field in an elastic half-plane under either given uniform remote loadings or given uniform
eigenstrains imposed on the inclusion. Such non-elliptical inclusions with given uniform anti-plane shear
eigenstrains which achieve prescribed uniform internal strain fields in a half-plane are constructed by solving
the original problem of an unknown holomorphic function in a multiply connected half-plane which, based
on an analytic continuation, is transferred to an equivalent problem of an unknown holomorphic function in
a multiply connected whole plane. Numerical examples are given to verify the validity and accuracy of the
present method, and the dependence of the inclusion shapes on the given uniform eigenstrains is examined.
Among others, some conclusions can be drawn as follows:

(i) Single or multiple non-elliptical inclusion shapes exist which achieve uniform internal strain fields in an
elastic half-plane under given uniform anti-plane eigenstrains imposed on the inclusions. However, such
inclusion shapes depend on the given uniform eigenstrains, and the inclusion shapes in a half-plane which
achieve uniform internal strain fields for arbitrarily given uniform eigenstrains do not exist.

(ii) The effect of the free surface on the inclusion shapes that achieve uniform internal strain fields is almost
ignorable, and thus the half-plane can be treated approximately as a whole plane when the distance between
the inclusions and the free surface increases up to more than three times the size of the inclusions.

(iii) Two symmetrical inclusions in a half-plane, which are geometrically symmetrical about a midline perpen-
dicular to the free surface of the half-plane, can be constructed to achieve uniform internal strain fields if the
given uniform eigenstrains imposed on the two inclusions are symmetrical or anti-symmetrical about the
midline. In particular, for symmetrical uniform eigenstrains, such symmetrical inclusion pairs offer inter-
esting examples of non-elliptical inclusion shapes that achieve uniform internal strain fields in a quarter
plane with two mutually perpendicular free surfaces.

Finally, it should be mentioned that the present method and results are limited to anti-plane shear. A similar
problem in plane stress or plane strain about the existence of non-elliptical inclusions that achieve uniform
internal stress fields in an elastic half-plane is a real challenge for further study.
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