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Abstract This study deals with forced vibration analysis of a microplate subjected to a moving load. The
formulation is developed based on the modified couple stress theory in conjunction with Kirchhoff–Love plate
theory. The equations of motion of the problem are derived using Lagrange’s equations. In order to obtain
the response of the microplate, the trial function for the dynamic deflection is expressed in the polynomial
form. The equations of motion are solved by using the implicit time integration Newmark-β method, and then
displacements, velocities and accelerations of the microplate at the considered point and time are determined.
Five different sets of boundary condition are considered. For this purpose, boundary conditions are satisfied
by adding some auxiliary functions to the trial functions. A parametric study is conducted to study the effects
of the material length scale parameter, plate aspect ratio, boundary conditions and the moving load velocity on
the dynamic response of the microplate. Also, in order to validate the present formulation and solution method,
some comparisons with those available in the literature are performed. Good agreement is found. The results
show that the dynamic deflections are significantly affected by the scale parameter and the load velocity.

1 Introduction

Electrostatically actuated microplates can be used as microelectromechanical systems (MEMS) in mass sens-
ing, chemical sensing and signal filtering [1,2].An electrically drivenmicroplate can be used to form capacitors.
These capacitors are used as activators in microsensors, micromirrors, pressure sensors and micropumps [3,4].
Applications ofMEMSdevices arewidely found in chemical, automotive, image processing and biotechnology
industries.
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When the thicknesses of the plates and beams are at the microscale or nanoscale, the size effect is observed,
as shown experimentally by Lam et al. [5], Chong et al. [6] and Stölken and Evans [7]. Thus, lacking an internal
material length scale parameter, classical deformation theories are not capable of calculating the mechanical
behavior of micro- and nano-systems. In order to account for scale effects observed at micro- and nanoscale,
size-dependent continuum theories have been developed. For example,Mindlin and Tiersten [8], Koiter [9] and
Toupin [10] proposed couple stress theory, and Eringen [11] proposed non-local elasticity theory that includes
twomaterial length scale parameters. Lam et al. [5] proposed strain gradient theory that includes three material
length scale parameters (i.e., l0, l1 and l2).

Determining two or three material length scale parameters is not an easy task so researchers worked to
search simpler theories. For this reason, Yang et al. [12] proposed modified couple stress theory in which the
couple stress tensor is symmetric and only one internal material length scale parameter is involved in addition
to the conventional Lamé’s constants. The modified couple stress theory is obtained by letting l0 = l1 = 0 and
l2 = l in the strain gradient theory of Lam et al. [5]. Thematerial length scale parameter can be determined from
torsion tests of slim cylinders of different diameters or bending tests of thin beams of different thickness [13]. By
usingmodified couple stress theory, many works that investigate the static and dynamic analysis of micro-sized
and nano-sized beams and plate structures have been done. Akgöz and Civalek [14] used Euler–Bernoulli beam
theory to find an analytical solution of the stability problem for axially loaded nano-sized beams based on strain
gradient elasticity and modified couple stress theories. Ke and Wang [15] investigated the dynamic stability
of microbeams made of functionally graded materials (FGMs) based on the modified couple stress theory and
Timoshenko beam theory. Park and Gao [16] developed a new model for the bending of a Bernoulli–Euler
beam using modified couple stress theory. Kahrobaiyan et al. [17] employed this model to study the resonant
frequency and sensitivity of atomic force microscope (AFM) microcantilevers, and Kong et al. [18] employed
this model to solve the dynamic problems of Bernoulli–Euler beams analytically. Ke et al. [19] and Ke and
Wang [20] used the Timoshenko beammodel to study the vibration of microtubes. Fu and Zhang [21] used this
model to study the size effect of microtubules. Xia et al. [22] studied the static bending, postbuckling and free
vibration of nonlinear microbeams. Tsiatas [23] developed a new Kirchhoff plate model to analyze the static
analysis of isotropic microplates based on amodified couple stress theory. Akgöz and Civalek [24] investigated
the free vibration of nanoplates by using the modified couple stress theory. Jomehzadeh et al. [25] applied
modified couple stress theory to analyze the vibration of microplates. Ma et al. [26] developed a plate model
based on the first-order shear deformation plate theory (FSDT) by using modified couple stress theory that can
capture size effects and is sensitive to transverse shear deformation. Roque et al. [27] studied the mechanical
behavior of a laminated Timoshenko microbeam by using the meshless method. Chen and Feng [28] compared
couple stress theory and strain gradient theory to examine the model of a microcantilever beam bending subject
to different loading forms with various material characteristics. Asghari et al. [29] used strain gradient theory
to develop a geometrically nonlinear elastic size-dependent Timoshenko beam formulation. Sharafkhani et
al. [30] worked on the mechanical behavior of a clamped circular FGM microplate under electrostatic force
andmechanical shock. Ke et al. [31] used an FSDTmicroplate model to study the free vibration of microplates.
Roque et al. [32] studied the bending of simply supported micro isotropic plates by using the first-order shear
deformation plate theory. Akgöz and Civalek [33] studied the buckling response of size-dependent functionally
graded (FG) microbeams for different boundary conditions. Tsiatas and Yiotis [34] studied the static, dynamic
and buckling behavior of an orthotropic skew microplate based on the modified couple stress theory using
the analog equation method (AEM). Kahrobaiyan et al. [35] established a beam element that recovers the
formulations of strain gradient, modified couple stress and classical Timoshenko and Euler–Bernoulli beam
elements by using strain gradient theory. Akgöz and Civalek [36] presented a new non-classical sinusoidal
plate model on the basis of modified strain gradient theory to investigate bending, buckling and vibration
behavior. In addition to the above studies, the modified couple stress theory is also used to study the behavior
of microbeams and microplates made of composite materials [37–49].

Moving load problems of beams and plates, which are encountered in many applications (e.g., bridges,
guideways and railroads), is one of the major topics of structural engineering. As it is well known, structural
members under the action of moving loads produce larger deflections and stresses than they are subjected to
an equivalent static load. Due to the importance of this problem, many papers have appeared in the literature.
Compared with the problem of beams subjected to moving loads (see [50–68]), the number of studies related
to the vibration of plates due to moving loads is rather limited. Gbadeyan and Oni [69] developed a theory
related to the response of Rayleigh beams and plates under an arbitrary number of moving masses. Shadnam
et al. [70] introduced a new method to compute the transient response of a plate excited by a traveling mass
on the surface of a rectangular plate. Kim and McCullough [71] investigated the dynamic displacement and
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stress response of a plate on a viscous Winkler foundation under moving in tandem (i.e., axle loads). Lee
and Yhim [72] carried out a dynamic analysis of single- and two-span continuous composite plate structures
subjected to multi-moving loads. Kim [73] studied the dynamic displacement response of a plate on an elastic
foundation. In his study, the system is subjected to in-plane static compressive forces and a moving load with
either constant or harmonic amplitude variations. Kim [74] investigated the effect of the horizontal resistance
at the plate bottom on the dynamic displacement response of the plate on an elastic foundation when the
system is subjected to a moving load with either constant or harmonic amplitude variations. Au andWang [75]
worked on the vibrations of rectangular orthotropic thin plates with general boundary conditions traversed
by moving loads. Gbadeyan and Dada [76] analyzed the influence of uniform partially distributed moving
loads for Mindlin elastic plates. Wu [77] investigated the dynamic behavior of the inclined plates subjected
to moving loads by using the theory for a moving mass element. Malekzadeh et al. [78] studied the dynamic
response of cross-ply laminated thick plates subjected to a moving load. Malekzadeh et al. [79] studied the
dynamic response of thick laminated annular sector plates with simply supported radial edges subjected to a
radially distributed line load. Ghafoori and Asghari [80] studied the dynamic response of angle-ply laminated
composite plates due to a moving force. Martinez-Rodrigo and Museros [81] studied the dynamic behavior
of orthotropic plates which are simply supported on two opposite sides under the action of moving loads.
Vosoughi et al. [82] investigated the dynamic response of moderately thick antisymmetric cross-ply laminated
rectangular plates. Malekzadeh and Monajjemzadeh [83] studied the effect of thermal environment on the
dynamic response of functionally graded plates under moving loads. Nikkhoo et al. [84] investigated the
elastodynamic response of an undamped Kirchhoff plate excited by multiple moving inertial loads.

The above literature review shows that the dynamic analysis of microplates under the action of moving
load has not been reported yet. This forms the motivation for the present study. In this paper, a mathematical
model is presented for the forced vibration of a microplate under the action of a moving load by using the
non-classical Kirchhoff–Love plate theory. An approximate solution is obtained for the considered problem
with the help of an energy-based method. The trial function for the dynamic deflection of the microplate is
expressed in the polynomial form. The equations of motion are solved by using the implicit time integration
Newmark-β method, and then displacements, velocities and accelerations of the microplate at the considered
point and time are determined. In the study, five different sets of boundary condition are considered. For this
purpose, boundary conditions are satisfied by using the auxiliary functions together with the trial function. The
implicit time integration method of Newmark is used to obtain responses in time domain. The influences of
the material length scale parameter, aspect ratio, end conditions and the moving load velocity on the dynamic
responses of the microplate are examined. Some comparison studies are done to check the validity of the
present formulation and solution method. Good agreement is achieved.

2 The modified couple stress theory

Based on the modified couple stress theory, the strain energy of a deformed isotropic linear elastic body can
be expressed as [12]

Us = 1

2

∫

V

(
σi jεi j + mi jχi j

)
dV, i, j = x, y, z (1)

where Us is the strain energy, σi j are the components of the classical stress tensor, εi j are the components
of the strain tensor, mi j are the components of the deviatoric part of the couple stress tensor, and χi j are the
components of the symmetric curvature tensor. The components of the strain and curvature tensors can be
written as

εi j = 1

2

(
ui, j + u j,i

)
, (2)

χi j = 1

2

(
θi, j + θ j,i

)
, (3)

in which ui are the components of the displacement vector and θi are the components of the rotation vector.
The rotation vector is given by

θi = 1

2
eijk uk, j. (4)
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Here, ei jk denotes the permutation tensor. The constitutive relations for an isotropic linear elastic material can
be formulated as

σi j (x, y, z) = λεkkδi j + 2μεi j , (5)

mi j (x, y, z) = 2μl2χi j (6)

where δi j is the Kronecker delta, l is the material length scale parameter, and λ and μ are Lamé’s constants
known as

λ = Eν

(1 + ν) (1 − 2ν)
, μ = E

2 (1 + ν)
(7)

where ν is Poisson’s ratio and μ is the shear modulus. It should be noted here that Park and Gao [16] obtained
l = 17.6μm for epoxy beams by letting bh = 17.6μm, ν = 0.38, l0 = l1 = 0 and l2 = l in Eq. (682) of
Lam et al. [5]. Here, bh is the higher-order bending parameter which characterizes the thickness dependence
of beam bending.

3 Non-classical Kirchhoff–Love plate model

Amicroplate of length a, width b and thickness h is shown Fig. 1. The plate is subjected to a moving load P(t)
which moves along the x axis with the constant speed vP . The following assumptions are made in this study:
(i) the microplate is initially at rest, namely the initial conditions are zero; (ii) the velocity of the moving load
is constant and the moving load is in contact with the microplate during the excitation; (iii) the inertial effects
of the moving harmonic load are negligible; and (iv) the load moves on the x axis.

The displacement components of an initially straight microplate on the basis of Kirchhoff–Lovemicroplate
theory can be written as

ux (x, y, z, t) = −z
∂w0 (x, y, t)

∂x
, (8)

uy (x, y, z, t) = −z
∂w0 (x, y, t)

∂y
, (9)

uz (x, y, z, t) = w0 (x, y, t) (10)

where ux , uy and uz are the displacements in x, y and z directions at any material point in the (x, y, z)
plane, respectively, w0 is the transverse displacement, and t denotes time. The kinematic relations produce the
following strains:

εxx = −z
∂2w0

∂x2
, εyy = −z

∂2w0

∂y2
, εxy = −z

∂2w0

∂x∂y
(11)

where εxx and εyy are the normal strain and εxy is the shear strain. By using Eqs. (4), (8–10), the rotation
components are found as

θx = ∂w0

∂y
, θy = −∂w0

∂x
, θz = 0. (12)

Y

X

Xp
P(t)

a

b

O

h

Fig. 1 Microplate subjected to a moving load
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If Eq. (12) is put into Eq. (3), the nonzero curvature components can be obtained as

χxx =
(

∂2w0

∂x∂y

)
, χyy =

(
−∂2w0

∂x∂y

)
, χxy = 1

2

(
∂2w0

∂y2
− ∂2w0

∂x2

)
, χxz = χyz = χzz = 0. (13)

In this study, the equation of motion is derived with the help of Lagrange’s equations. Therefore, we need the
energy expressions of the microplate. Firstly, the strain energy of the microplate assuming plane stress in the
Cartesian coordinates is given by

Uint = 1

2

∫

V

(
σxxεxx + σyyεyy + 2σxyεxy + mxxχxx + myyχyy + 2mxyχxy

)
dV . (14)

The stress–strain relations for a linear isotropic linear elastic material may be written as⎧⎨
⎩

σxx
σyy
σxy

⎫⎬
⎭ = E

1 − v2

⎡
⎣1 v 0

v 1 0
0 0 1−v

2

⎤
⎦

⎧⎨
⎩

εxx
εyy
2εxy

⎫⎬
⎭ , (15)

mi j = El2

(1 + v)
χi j . (16)

With the help of Eqs. (11) and (13–16), the strain energy of the microplate in terms of displacement can be
expressed as

Uint = 1

2

∫ +a/2

−a/2

∫ +b/2

−b/2

[
(D + S)

(
∂2w0

∂x2

)2

+ (D + S)

(
∂2w0

∂y2

)2

+ 2(νD − S)
∂2w0

∂x2
∂2w0

∂y2

+ (2D(1 − ν) + 4S)

(
∂2w0

∂x∂y

)2
]
dx dy (17)

where

D = Eh3

12
(
1 − ν2

) , S = Ehl2

(1 + ν)
. (18)

The moving load can be expressed as

P(x, y, t) = Pδ(x − xP)δ(y − yP), (19)

xp = vP t − a

2
, −a

2
≤ xp(t) ≤ a

2
, 0 ≤ t ≤ a

vP
, yP = 0 (20)

where δ(·) is the Dirac delta function and vP is the velocity of the moving load. Also, note that yP = 0 since
the load moves on the x axis. Thus, the potential energy of the moving load can be written as

Uext = −
∫ a/2

−a/2

∫ b/2

−b/2
P(t)w0(x, y, t)dx dy. (21)

By neglecting the rotary inertia, the kinetic energy of the microplate is given as

Ke = 1

2

∫ +a/2

−a/2

∫ +b/2

−b/2
ρh

[
∂w0(x, y, t)

∂t

]2
dx dy (22)

where ρ is the mass density. It is known that Hamilton’s principle can be expressed as Lagrange equations
when the functions of infinite dimensions can be expressed in terms of generalized coordinates. Therefore, for
applying the Lagrange equations, the displacement functionw0(x, t) is approximated by a series of admissible
function that must satisfy the essential (geometric) boundary conditions as follows:

w0(x, y, z, t) =
N∑

m=1

N∑
n=1

Amn(t)G(x, y)xm−1yn−1 (23)
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Fig. 2 Microplates with various boundary conditions. S simple edge, C clamped edge, F free edge

Table 1 Different values of the boundary exponents for different plate models

Boundary conditions p q r s

SSSS 1 1 1 1
CCCC 2 2 2 2
CCSS 2 2 1 1
CCFF 2 2 0 0
SSFF 1 1 0 0

where Amn(t) are the unknown coefficients to be determined and G(x, y) is an auxiliary function which is
used to satisfy the geometric boundary conditions. The auxiliary function can be written in the following form:

G(x, y) =
(
x + a

2

)p (
x − a

2

)q (
y + b

2

)r (
y − b

2

)s

(24)

where p, q, r and s are the boundary exponents that are related to the boundary conditions. It should be noted
that as seen from Fig. 2, five plate models with various boundary conditions are considered in this study. The
specific values of the boundary exponents are given for the considered plate models in Table 1.

The equations of motion are derived by using Lagrange’s equations which are given as

d

dt

(
∂Ke

∂ Ȧkl

)
+ ∂Uint

∂Akl
+ ∂Uext

∂Akl
= 0 k, l = 1, 2, 3, . . . , N . (25)

Using Lagrange’s equations yields the following system of equations of motion:

[K] {A(t)} + [M] { Ä(t)
} = {F(t)} (26)

where [K] is the stiffness matrix, {F(t)} is the time-dependent generalized load vector generated by the
concentrated moving load, and [M] is the mass matrix. The equations of motion are solved by using the
implicit time integration method of Newmark-β [85], and then the displacements, velocities and accelerations
of the microplate at the considered point and time are determined for any time t between 0 ≤ t ≤ a/vP .

4 Numerical results

In the numerical results, vibration of the microplate made of epoxy due to the moving load is investigated. A
comprehensive parametric study is conducted to study the effects of the material length scale parameter, aspect
ratio (a/b), boundary conditions and themoving load velocity on the dynamic responses of themicroplate. The
following parameters are used in the parametric results [39]: E = 1.44GPa, v = 0.38, ρ = 1220 kg/m3, h =
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88μm, b = 10h. In order to examine the size effect, the plate thickness is kept constant, and thematerial length
scale parameter is computed from various values of l/h ratio, which can be also named as the dimensionless
length scale parameter. In the study, five different boundary conditions are considered, such as SSSS, CCCC,
CCSS, CCFF and SSFF microplates. In this notation, S, C and F represent the simple, clamped and free
edges, respectively. The dynamic deflections are normalized by the static deflection of a square plate under a
point load P at the midpoint as given below [86]:

wst = 0.1265
Pb2

Eh3
. (27)

The effect of the moving load velocity is reflected by the following dimensionless speed parameter (α)

α = vP

vcr
, (28)

vcr = ω11a

π
, (29)

ω11 = π2
(

1

a2
+ 1

b2

)√
D̄

ρh
(30)

where ω11 is the fundamental vibration frequency of the microplate and D̄ = D + S/2. The dimensionless
time t∗ is defined by

t∗ = xP
a

= vP t

a
− 1

2
. (31)

It is seen from Eq. (31) that when t∗ = −0.5 the moving load is at the left edge of the microplate (xP = −a/2),
whereas when t∗ = 0.5 the load is at the right edge of the microplate (xP = a/2). In the numerical analysis,
to see the effect of boundary conditions, as given in Table 1, five models with different boundary conditions
are considered.

In order to check the present formulation and the numerical results, some comparison effort is presented
in this section. In the first example, the deflections of square plates with SSSS, CCCC and SCSC boundary
conditions and under the uniformly distributed load are calculated and compared with the available published
results. Note that in these calculations the effect of the couple stress is not taken into account for the comparison.
For this purpose, the deflection values at the midpoint of the plate by using the present solution technique
together with the results of Timoshenko and Woinowsky-Krieger [86] are given in Tables 2, 3 and 4. It is seen
from the tables that an excellent agreement is obtained for all boundary conditions.

In order to verify the couple stress formulation, themaximumnormalized deflections of an SSSSmicroplate
under sinusoidal load predicted by the present method are compared with the results of Tsiatas [23,43]. By
using the numerical data in Refs. [23,43], the deflections at the midpoint of the microplate are calculated for
various values of the dimensionless length scale parameter (or l/h ratio) (i.e., l/h = 0, 0.2, 0.4, 0.6, 0.8, 1).
The comparison given in Table 5 shows that the present results are in good agreementwith the results of [23,43].

Table 2 Static deflections at the midpoint of the SSSS plate under uniform load

b/a Normalized static deflection, w̄ = 10wEh3

q0a4

Ref. [86] Present

1 0.4430 0.4436
1.1 0.5300 0.5316
1.2 0.6160 0.6170
1.3 0.6970 0.6979
1.4 0.7700 0.7734
1.5 0.8430 0.8431
1.6 0.9060 0.9067
1.7 0.9640 0.9644
1.8 1.0170 1.0163
1.9 1.0640 1.0629
2 1.1060 1.1045
3 1.3360 1.3280
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Table 3 Static deflections at the midpoint of the CCCC plate under uniform load

b/a Normalized static deflection, w̄ = 10wEh3

q0a4

Ref. [86] Present

1 0.1380 0.1381
1.1 0.1640 0.1646
1.2 0.1880 0.1882
1.3 0.2090 0.2085
1.4 0.2260 0.2254
1.5 0.2400 0.2392
1.6 0.2510 0.2501
1.7 0.2600 0.2587
1.8 0.2670 0.2651
1.9 0.2720 0.2699
2 0.2770 0.2733

Table 4 Static deflections at the midpoint of the SSCC plate under uniform load

b/a Normalized static deflection, w̄ = 10wEh3

q0a4

Ref. [86] Present

1 0.2090 0.2094
1.1 0.2740 0.2760
1.2 0.3400 0.3488
1.3 0.4240 0.4253
1.4 0.5020 0.5034
1.5 0.5820 0.5810
1.6 0.6580 0.6566
1.7 0.7300 0.7289
1.8 0.7990 0.7969
1.9 0.8630 0.8602
2 0.9870 0.9184
3 1.2760 1.2537

Table 5 Comparison of the normalized static deflections at the midpoint of the square microplate

l/h Normalized static deflection, w̄ = 10wEh3

q0a4

Ref. [23] Ref. [43] Present

0 0.2804 0.2803 0.2802
0.2 0.2401 0.2399 0.2399
0.4 0.1677 0.1676 0.1676
0.6 0.1116 0.1116 0.1115
0.8 0.0760 0.0760 0.0759
1 0.0539 0.0539 0.0538

Table 6 Convergence study for the dimensionless dynamic deflection for a/b = 1, b = 10h, h = 88μm

Number of term N × N l/h SSSS microplate CCCC microplate

α = 0.1 α = 0.5 α = 0.1 α = 0.5

4 × 4 0 0.9881 1.5321 0.4397 0.6046
6 × 6 1.0383 1.5739 0.4597 0.6239
8 × 8 1.0564 1.5759 0.4682 0.6331
10 × 10 1.0637 1.5751 0.4727 0.6379
4 × 4 0.5 0.4805 0.7236 0.2166 0.2671
6 × 6 0.5071 0.7499 0.2266 0.2770
8 × 8 0.5166 0.7568 0.2309 0.2809
10 × 10 0.5209 0.7579 0.2331 0.2830
4 × 4 1 0.1837 0.2759 0.0848 0.0966
6 × 6 0.1934 0.2859 0.0888 0.1001
8 × 8 0.1964 0.2897 0.0904 0.1014
10 × 10 0.1976 0.2911 0.0913 0.1020
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Fig. 3 Variation of the maximum normalized dynamic deflections of an SSSS microplate with l/h ratio for various velocity
parameters (α), a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 4 Variation of the maximum normalized dynamic deflections of a CCCC microplate with l/h ratio for various velocity
parameters (α), a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 5 Variation of the maximum normalized dynamic deflections of a CCSS microplate with l/h ratio for various velocity
parameters (α), a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Before the numerical results, it will be necessary to perform the convergence analysis for the dynamic
deflection of the microplate. The convergence study is made for only SSSS and CCCC microplates since the
other type of plates gives similar results. For this purpose, the convergence is tested in Table 6 by taking the
number of term N × N , where N is taken as 4, 6, 8 and 10. Thus, the size of the corresponding matrices
becomes N 2 ×N 2 (16×16, 36×36, 64×64, 100×100). Also, it should be noted that the number of the time
step is taken as 250 for satisfactory results in the Newmark’s procedure. As known, the equations of motion
are solved at each time step in the procedure. Thus, the time required for obtaining the solution essentially
depends on the number of the term N × N and time step. For this reason, in order to keep the computational
effort reasonable, the number of the terms is taken as 8 × 8 in the subsequent calculations.

In Figs. 3, 4, 5, 6, and 7, the variation of themaximumnormalized deflections of themicroplates is presented
for different values of the speed parameter (α = 0.1, 0.2, 0.4, 0.8). Here, the maximum normalized deflections
are calculated at the midpoint of the plates during the traveling of the moving load. Two different aspect ratio
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Fig. 6 Variation of the maximum normalized dynamic deflections of a CCFF microplate with l/h ratio for various velocity
parameters (α), a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 7 Variation of the maximum normalized dynamic deflections of an SSFF microplate with l/h ratio for various velocity
parameters (α), a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 8 Variation of the maximum normalized dynamic deflections of an SSSS microplate with the speed parameter for various
l/h ratios, a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

values (a/b = 1, 2) are considered here. It is seen that while the l/h ratio is increasing, the dimensionless
displacements are decreasing. This is because the couple stress is to increase the stiffness of the plate. When
the scale parameter is taken zero, namely l/h = 0, the results found are the same as the results found with
classical plate theory. It can be concluded that the displacements found by the modified couple stress theory
are always smaller than the displacements found by the classical theory. As an expected result, the normalized
displacements are minimum for a CCCC microplate, whereas they are maximum for an SSFF microplate.

Figures 8, 9, 10, 11 and 12 show the maximum normalized deflections of the microplates versus speed
parameter (α) for various values l/h ratio (i.e., l/h = 0, 0.2, 0.4, 0.6, 0.8, 1). Also, the same aspect ratio
values (a/b = 1, 2) are considered here. While establishing these figures, firstly, the maximum deflection
at the midpoint of the microplate is determined during the travel of the moving load for each value of the
speed parameter. Afterward, the maximum deflections, which are obtained in a similar manner, are plotted
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Fig. 9 Variation of the maximum normalized dynamic deflections of a CCCC microplate with the speed parameter for various
l/h ratios, a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 10 Variation of the maximum normalized dynamic deflections of a CCSS microplate with the speed parameter for various
l/h ratios, a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 11 Variation of the maximum normalized dynamic deflections of a CCFF microplate with the speed parameter for various
l/h ratios, a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)

Fig. 12 Variation of the maximum normalized dynamic deflections of an SSFF microplate with the speed parameter for various
l/h ratios, a a/b = 1, b a/b = 2 (b = 10h, h = 88μm)
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Table 7 Maximum non-dimensional dynamic deflections SSSS plate and the corresponding critical velocities for various values
of l/h ratio and the aspect ratio, a/b = 1, b = 10h, h = 88μm

l/h a/b Maximum midpoint deflection,
Max. (w(0, 0, t)/wst)

Critical speed
parameter, αcr

0 1 1.57664 0.51000
0.2 1.34988 0.53000
0.4 0.94297 0.57000
0.6 0.62765 0.61000
0.8 0.42750 0.64000
1 0.30319 0.66000
0 2 2.12077 0.64000
0.2 1.81617 0.66000
0.4 1.26857 0.72000
0.6 0.84418 0.78000
0.8 0.57512 0.82000
1 0.40786 0.84000

Table 8 Maximum non-dimensional dynamic deflections CCCC plate and the corresponding critical velocities for various values
of l/h ratio and the aspect ratio, a/b = 1, b = 10h, h = 88μm

l/h a/b Maximum midpoint deflection,
Max. (w(0, 0, t)/wst)

Critical speed
parameter, αcr

0 1 0.70826 0.78000
0.2 0.60639 0.81000
0.4 0.42358 0.87000
0.6 0.28193 0.93000
0.8 0.19204 0.98000
1 0.13620 1.01000
0 2 1.02657 0.83000
0.2 0.87889 0.87000
0.4 0.61399 0.93000
0.6 0.40868 1.00000
0.8 0.27836 1.05000
1 0.19742 1.08000

Table 9 Maximum non-dimensional dynamic deflections CCSS plate and the corresponding critical velocities for various values
of l/h ratio and the aspect ratio, a/b = 1, b = 10h, h = 88μm

l/h a/b Maximum midpoint deflection,
Max. (w(0, 0, t)/wst)

Critical speed
parameter, αcr

0 1 0.89608 0.60000
0.2 0.76721 0.62000
0.4 0.53595 0.67000
0.6 0.35674 0.72000
0.8 0.24298 0.75000
1 0.17233 0.78000
0 2 1.92528 0.40000
0.2 1.64817 0.41000
0.4 1.15132 0.45000
0.6 0.76634 0.48000
0.8 0.52205 0.50000
1 0.37019 0.52000

as a function of the corresponding speed parameters. The speed parameter (α) is taken into account in the
range of 0.1 ≤ α ≤ 1.5 with 0.01 increment. As seen from the figures, the maximum normalized deflection
increases with the speed parameter until a specific speed parameter; after reaching a peak value, the deflections
decrease. The speed parameter corresponding to the peak point of the deflections is named as the critical speed
parameter (or critical velocity). In Tables 7, 8, 9, 10 and 11, the maximum value of the maximum normalized
deflections and the related critical speed parameters are listed for different values of l/h and aspect ratios. The
figures and the tables reveal that the critical speed parameter takes different values depending on the boundary
condition. One of the significant results is that for all boundary conditions, while the l/h ratio increases, the
critical speed parameter that gives the maximum displacement is increasing. This means that the critical speed
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Table 10 Maximum non-dimensional dynamic deflections CCFF plate and the corresponding critical velocities for various values
of l/h ratio and the aspect ratio, a/b = 1, b = 10h, h = 88μm

l/h a/b Maximum midpoint deflection,
Max. (w(0, 0, t)/wst)

Critical speed
parameter, αcr

0 1 0.84591 0.40000
0.2 0.74545 0.42000
0.4 0.54512 0.47000
0.6 0.37511 0.51000
0.8 0.26095 0.54000
1 0.18757 0.56000
0 2 5.91078 0.20000
0.2 5.08379 0.21000
0.4 3.74297 0.23000
0.6 2.67094 0.25000
0.8 1.92374 0.26000
1 1.41958 0.26000

Table 11 Maximum non-dimensional dynamic deflections SSFF plate and the corresponding critical velocities for various values
of l/h ratio and the aspect ratio, a/b = 1, b = 10h, h = 88μm

l/h a/b Maximum midpoint deflection,
Max. (w(0, 0, t)/wst)

Critical speed
parameter, αcr

0 1 3.14207 0.25000
0.2 2.73194 0.27000
0.4 2.06166 0.30000
0.6 1.49874 0.33000
0.8 1.09227 0.34000
1 0.81291 0.34000
0 2 25.74524 0.12000
0.2 21.27855 0.13000
0.4 15.86938 0.13000
0.6 12.31088 0.13000
0.8 9.76586 0.13000
1 7.82100 0.13000

Fig. 13 Time history of the normalized dynamic deflections under the moving load for l/h = 0.25, a/b = 1, b = 10h, h =
88μm, a α = 0.1, b α = 0.5, c α = 1
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parameter increases with the increase in the rigidity of the system. In a similar manner, a CCCC plate, which
is the most rigid microplate, has the biggest critical speed parameter. On the other hand, an SSFF plate, which
is the least rigid microplate, has the smallest critical speed parameter. It can be generalized from the above
results that if the rigidity of the microplate is increased, the critical speed parameter is also increased. It should
be noted that regardless of the boundary conditions, while the aspect ratio (a/b) increases, the dimensionless
displacements are also increasing.

Figure 13 displays the time history of the dimensionless dynamic deflections of the consideredmicroplates.
Here, the dimensionless length scale parameter and the aspect ratio keep constant as l/h = 0.25 and a/b = 1,
respectively, since the other parameters give also similar figures. One can observe from Fig. 13c that for the
high value of the speed parameter (i.e., α = 1) the dimensionless dynamic deflections under the moving load
become smaller than unity. This means that the dynamic deflections are smaller than the static deflections.
When the speed parameter increases, the peak point of the deflections shifts toward to the right side of the
microplate.

5 Conclusions

In this study, forced vibration of a microplate is investigated within the framework of the size-dependent
Kirchhoff–Love plate theory. The Lagrange’s equations are applied to obtain the equations of motion. The
trial function for the dynamic deflection of the microplate is expressed in polynomial form. The boundary
conditions are satisfied by using the auxiliary functions together with the trial function. The implicit time
integration method of Newmark is used to obtain responses in time domain. The influences of the material
length scale parameter, aspect ratio, support conditions, and themoving load velocity on the dynamic responses
of the microplate are examined. Some comparison studies are performed to validate the present results. The
comparisons indicate that using the auxiliary functions is a very simple and useful way to satisfy the different
combination of end conditions. It is found that the dynamic deflection is very sensitive to the scale parameter
and the moving load speed, and the boundary conditions have an important role on the critical speed parameter.
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45. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory
and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)
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3822 M. Şimşek et al.

51. Lee, H.P.: Dynamic response of a beamwith intermediate point constraints subject to a moving load. J. Sound Vib. 171, 361–
368 (1994)

52. Wang, R.T.: Vibration of multi-span Timoshenko beams to a moving force. J. Sound Vib. 207, 731–742 (1997)
53. Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform beams under moving loads by

using modified beam vibration functions. J. Sound Vib. 212, 455–467 (1998)
54. Zhu, X.Q., Law, S.S.: Moving force identification on multi-span continuous bridge. J. Sound Vib. 228, 377–396 (1999)
55. Abu-Hilal, M., Mohsen, M.: Vibration of beams with general boundary conditions due to moving harmonic load. J. Sound

Vib. 232, 703–717 (2000)
56. Michaltsos, G.T.: Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds. J. Sound

Vib. 258, 359–372 (2002)
57. Dugush, Y.A., Eisenberger, M.: Vibrations of non-uniform continuous beams under moving loads. J. Sound Vib. 254, 911–

926 (2002)
58. Abu-Hilal, M.: Vibration of beams with general boundary conditions due to a moving random load. Arch. Appl.

Mech. 72, 637–650 (2003)
59. Garinei, A.: Vibrations of simple beam-like modelled bridge under harmonic moving loads. Int. J. Eng. Sci. 44, 778–

787 (2006)
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68. Şimşek, M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple

stress theory. Int. J. Eng. Sci. 48, 1721–1732 (2010)
69. Gbadeyan, J.A., Oni, S.T.: Dynamic behaviour of beams and rectangular plates under moving loads. J. Sound Vib. 182, 677–

695 (1995)
70. Shadnam, M.R., Mofid, M., Akin, J.E.: On the dynamic response of rectangular plate, with moving mass. Thin-Walled

Struct. 39, 797–806 (2001)
71. Kim, S.M., McCullough, B.F.: Dynamic response of plate on viscous Winkler foundation to moving loads of varying

amplitude. Eng. Struct. 25, 1179–1188 (2003)
72. Lee, S.-Y., Yhim, S.-S.: Dynamic analysis of composite plates subjected to multi-moving loads based on a third order

theory. Int. J. Solids Struct. 41, 4457–4472 (2004)
73. Kim, S.M.: Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads. Int.

J. Solids Struct. 41, 5647–5661 (2004)
74. Kim, S.M.: Influence of horizontal resistance at plate bottom on vibration of plates on elastic foundation under moving

loads. Eng. Struct. 26, 519–529 (2004)
75. Au, F.T.K., Wang, M.F.: Sound radiation from forced vibration of rectangular orthotropic plates under moving loads. J.

Sound Vib. 281, 1057–1075 (2005)
76. Gbadeyan, J.A., Dada, M.S.: Dynamic response of a Mindlin elastic rectangular plate under a distributed moving mass. Int.

J. Mech. Sci. 48, 323–340 (2006)
77. Wu, J.-J.: Vibration analyses of an inclined flat plate subjected to moving loads. J. Sound Vib. 299, 373–387 (2007)
78. Malekzadeh, P., Fiouz, A.R., Razi, H.: Three-dimensional dynamic analysis of laminated composite plates subjected to

moving load. Compos. Struct. 90, 105–114 (2009)
79. Malekzadeh, P., Haghighi, M.R.G., Gholami, M.: Dynamic response of thick laminated annular sector plates subjected to

moving load. Compos. Struct. 92, 155–163 (2010)
80. Ghafoori, E., Asghari, M.: Dynamic analysis of laminated composite plates traversed by amovingmass based on a first-order

theory. Compos. Struct. 92, 1865–1876 (2010)
81. Martinez-Rodrigo, M.D., Museros, P.: Optimal design of passive viscous dampers for controlling the resonant response of

orthotropic plates under high-speed moving loads. J. Sound Vib. 330, 1328–1351 (2011)
82. Vosoughi, A.R., Malekzadeh, P., Razi, H.: Response of moderately thick laminated composite plates on elastic foundation

subjected to moving load. Compos. Struct. 97, 286–295 (2013)
83. Malekzadeh, P., Monajjemzadeh, S.M.: Dynamic response of functionally graded plates in thermal environment under

moving load. Compos. Part B 45, 1521–1533 (2013)
84. Nikkhoo, A., Hassanabadi, M.E., Azam, S.E., Amiri, J.V.: Vibration of a thin rectangular plate subjected to series of moving

inertial loads. Mech. Res. Commun. 55, 105–113 (2014)
85. Newmark, N.M.: A method of computation for structural dynamics. ASCE Eng. Mech. Div. 85, 67–94 (1959)
86. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill Company, New York (1959)


	Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory
	Abstract
	1 Introduction
	2 The modified couple stress theory
	3 Non-classical Kirchhoff--Love plate model
	4 Numerical results
	5 Conclusions
	Acknowledgments
	References




