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Abstract A numerical approach is presented for the evaluation of Green’s function for a multi-layered half-
space. The formulation is unconditionally stable and has the computational simplicity with only the algebraic
calculations involved. It imposes no limit to the thickness of the layeredmediumand themagnitudeof frequency.
In the analysis, the Fourier–Bessel transform and precise integration method (PIM) are employed. Here,
the Fourier–Bessel transform is employed to convert the wave motion equation from the spatial domain to
the wavenumber domain, which derives a second-order ordinary differential equation. Then, a dual vector
representation of wave motion equation is introduced to reduce the second-order differential equation to first
order. It is solved by PIM. Finally, the Green’s function in the wavenumber domain is obtained. In order to
calculate theGreen’s function in the spatial domain, the inverse Fourier–Bessel transform over thewavenumber
is employed for deriving the solutions, which results in a one-dimensional infinite integral withBessel functions
involved. An adaptive Gauss quadrature is used for the evaluation of this integral. Numerical examples are
provided to demonstrate the capability of the proposed method. Comparisons with other methods are made.
Very promising results are obtained.

1 Introduction

Alarge number of experiments indicate that the soilmedium innature always exhibits somedegree of anisotropy
in its response to stress. For instance, the natural clay deposits, during the physical process of their formation,
will make the particles or particle-units orient in a horizontal arrangement. Due to this preferred orientation and
the resulting electrochemical bonds among the clay particles, the soil medium is always horizontally layered
and exhibits the transversely isotropic property, as demonstrated in the experiments [1–3]. Thus, in this paper,
an elastic problem for a transversely isotropic medium is relevant.

The Green’s function for a multi-layered medium is significant in applied mechanics and civil engineering
since it yields the best description of the dynamic properties of themedium. It is a subject of fundamental interest
because of its relevance to soil dynamics, soil–structure interaction, earthquake engineering, seismology and
geophysical methods [4–6]. Considering this, the Green’s function for the transversely isotropic medium is
concerned in the paper. Starting from the well-known work of Stoneley [7], a large number of studies have
been carried out for the transversely isotropic medium on the basis of wave propagation theory. Here, for
brevity, only a few significant ones are presented for reference. By applying the Fourier expansion and integral
transforms, Anderson [8], Buchwald [9], Singh [10], Seale et al. [11], Rajapakse et al. [12], Wang et al. [13]
obtained the analytical solutions for the surface displacements (Green’s function) of a transversely isotropic
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half-space. Additionally, on the basis of the potential method,Wang et al. [14], Shodja et al. [15] and Rahimian
et al. [16] presented the analytical solution of the Green’s function for a homogenous transversely isotropic
medium subjected to time-harmonic excitations. Although the considerable analytical solutions are available
now, they are still restricted to a relatively simplemedium, such as a full-space or half-space. The corresponding
analytical solutions for a multi-layered medium with arbitrary boundary conditions do not exist, because the
integral formulations need to be evaluated numerically. Among these works, one could firstly mention the
detailed reviews by Pao [17] and Nayfeh [18] on this subject. In their works, the major research contributions
for the analysis of elastic waves in the multi-layered medium were presented. By applying the Cagniard–de
Hoop method, van der Hijden [19] solved the differential equation of wave motion in the layered medium
and obtained the dynamic response (Green’s function) in the medium. Tan [20,21] employed the reflection
matrix method to calculate the Green’s function for an arbitrarily thick multi-layered medium. Pan et al.
[22,23] employed the propagation matrix method to calculate the three-dimensional Green’s function for
a transversely isotropic multi-layered half-space. Based on the potential method, Khojasteh et al. [24,25]
presented an efficient derivation of the Green’s function for a transversely isotropic multi-layered medium.
Additionally, by employing the thin-layer method (TLM), Waas et al. [26], Kausel [27] and Oliveira and
Kausel [28] obtained the numerical representation of the dynamic response (Green’s function) of a transversely
isotropic multi-layered half-space.

In this paper, a numerical approach to calculate the Green’s function for a transversely isotropic multi-
layered half-space is presented. The development of the method is guided by the desire to accomplish the
following objectives, and it should be:

1. valid for the wide range of frequency interested in seismology and earthquake engineering. There should
be no constraint on the magnitude of frequency.

2. suitable for the dynamic analysis of an arbitrarily layered medium. There should be no limitation on the
number of layers.

3. stable for models involving solid layers of thicknesses ranging from large values to thin ones. There should
be no restriction on the layer thickness.

4. capable of simultaneously calculating the response at several points.

To meet these objectives, the Fourier–Bessel transform and precise integration method (PIM) [29] are
employed. PIM is an efficient and accurate numericalmethod for the solution of a one-order ordinary differential
equation, which is widely employed in the field of structural dynamics [30–32] and wave propagation analysis
[33,34]. In the field of soil–structure interaction analysis, Lin et al. [35–38] applied the precise integration
method (PIM) to calculate the displacement Green’s function. However, in these works, they can only calculate
the displacement Green’s function on the top surface of the multi-layered medium. Also, in performing the
infinite integrals of the Green’s function, they employed the pth-order quasi discrete Hankel transform which
exhibits problems connected with the Gibbs phenomenon [39,40]. Recently, to analyze the dynamic response
of embedded foundation, Han et al. [41] utilized the precise integration method and stiffness matrix method
[42] to calculate the displacement Green’s function in the interior of the multi-layered medium. In the analysis,
they employed the precise integration method to obtain the stiffness matrix of the layered medium and then
used the stiffness matrix method [42] to calculate the displacement response. However, for the stiffness matrix
method, it exhibits computational instability as the layer thickness tends to be a small value, which is proved
in Sect. 2.3 in this paper and can also be easily proved from the formulations provided in the book of Kausel
[42]. Hence, their approach will lead to unstable solutions for the case of small layer thickness.

In this paper, the Green’s function (displacement and stress) at any point of the multi-layered medium (on
the top surface or inside the medium) will be calculated. The proposed algorithm is proved to be explicit and
unconditionally stable. It imposes no limit on the thickness of the layers or the magnitude of frequency. In
the implementation, the Fourier–Bessel transform is used to convert the differential equation of wave motion
from spatial domain to wavenumber domain. Then, a second-order ordinary differential equation is observed.
The dual vector representation of wave motion equation is introduced to reduce the second-order differential
equation to first order, which is solved by the precise integration method (PIM). Finally, it obtains the Green’s
function in the wavenumber domain. For the calculation of the Green’s function in the spatial domain, the
inverse Fourier–Bessel transform over the wavenumber is employed. An infinite integral involving Bessel
functions is derived. It is integrated by an adaptive Gauss quadrature, which is proved to be accurate because
a combined relative–absolute error criterion is employed in the calculation [43,44]. Numerical examples are
provided in the last part of the paper. The accuracy of the proposed approach is validated by comparisonwith the
Green’s function (displacement and stress) of a multi-layered half-space available in the literature [11,25,45].
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The advantages of the proposed algorithm are: (a) it overcomes the exponential overflow and computational
instability generally encountered with employing the propagation matrix method and transfer matrix method;
(b) it avoids the huge matrix calculation in the thin-layer method; (c) it imposes no limit to the thickness of the
layered medium and the magnitude of frequency; (d) it obviates the computational instability in the stiffness
matrix method as the layer thickness tends to be a small value.

The paper is organized as follows:
In Sect. 2, the wave motion equation of transversely isotropic medium is derived. Application of the

Fourier–Bessel transform to convert the wave motion equation from the spatial domain to the wavenumber
domain is addressed. Employment of the precise integration method (PIM) to solve the differential equation
is illustrated.

In Sect. 3, the Green’s function in the wavenumber domain is obtained. Comparison with the analytical
solution is made to validate the theory.

In Sect. 4, the Green’s function in the spatial domain by the double-inverse Fourier–Bessel transform is
obtained. A one-dimensional infinite integral involving Bessel functions is derived. The calculation of the
Green’s function under vertical load is addressed for illustration.

In Sect. 5, employment of the adaptive Gauss quadrature to perform the one-dimensional infinite integral
is addressed.

In Sect. 6, four numerical examples are presented. The first three examples are used to validate the proposed
approach. The last one is employed to demonstrate the capability of the approach.

Conclusions are stated in Sect. 7.

2 Wave propagation in the multi-layered medium

Consider a homogeneous, transversely isotropic half-space overlaid by n parallel layers of a similar medium
but with distinct material properties, as shown in Fig. 1. With a cylindrical coordinate system set at the top
free surface, the j th layer is characterized by the following material parameters: mass density ρ j (kg/m3),
Young’s moduli E j (N/m2) and E ′

j (N/m2), Poisson’s ratios ν j and ν′
j , shear modulus G ′

j (N/m2), material
damping ratios ξ j and ξ ′

j and the thickness h j = z j − z j−1 (m), where z j and z j−1 are the depths of its
upper and lower interface, respectively. Here, the units of the variables are given in the brackets. Apparently,
if one sets the Young’s moduli E j = E ′

j , shear modulus G ′
j = E j/2

(
1 + ν j

)
, Poisson’s ratios ν j = ν′

j and
material damping ratios ξ j = ξ ′

j , an isotropic soil layer is observed. The material parameters of the half-space
are denoted as ρH , EH and E ′

H , νH and ν′
H ,G ′

H , ξH and ξ ′
H . Here, the constants without prime refer to the

quantities in the plane of transverse isotropy, while the constants with prime refer to the quantity in the plane
normal to the plane of transverse isotropy. The medium is subjected to an arbitrarily distributed force (on the
plane z = zs), which is located in the kth layer and centered on the vertical axis, as shown in Fig. 1. It can be
represented as a set of prescribed stress discontinuities across the corresponding planar region.
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Fig. 1 Multi-layered half-space with internal source
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2.1 Transformation of the wave motion equation

In the cylindrical coordinate system, the stress–strain relation for a transversely isotropic medium is

σ =

⎡

⎢
⎢⎢
⎢⎢
⎣

σrr
σθθ

σzz
τθ z
τr z
τrθ

⎤

⎥
⎥⎥
⎥⎥
⎦

= Cε =

⎡

⎢
⎢⎢
⎢⎢
⎣

d11 d11 − 2d66 d13 0 0 0
d11 − 2d66 d11 d13 0 0 0

d13 d13 d33 0 0 0
0 0 0 d44 0 0
0 0 0 0 d44 0
0 0 0 0 0 d66

⎤

⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎣

εrr
εθθ

εzz
εθ z
εr z
εrθ

⎤

⎥
⎥⎥
⎥⎥
⎦

(1)

where di j (i, j = 1, 2, . . . , 6) are the elastic constants of the medium and can be expressed in terms of the
material parameters of the soil medium (engineering constants):

d11 = E
(
1 − (

E/E ′) ν′2)

(1 + ν)
(
1 − ν − (2E/E ′) ν′2) , d13 = Eν′

1 − ν − (2E/E ′) ν′2 ,

d33 = E ′ (1 − ν)

1 − ν − (2E/E ′) ν′2 , d44 = G ′, d66 = E

2 (1 + ν)
. (2)

If the internal material damping is considered, one needs to replace E, E ′ and G ′ by the complex Young’s
moduli and shear modulus, i.e., E (1 + 2ξ i) , E ′ (1 + 2ξ ′i

)
and G ′ (1 + 2ξ ′i

)
, where ξ and ξ ′ are the damp-

ing ratios, i = √−1. In addition, in defining the material properties, the positive strain energy should be
unconditionally satisfied. Thus, the following constraints for the material constants di j should hold [25]:

(d11 − d66) d33 > d213, d44 > 0, d66 > 0. (3)

For analytical and numerical purposes, it is beneficial to introduce the dimensionless parameters for the
kth layer (k = 1, 2, . . ., n, n + 1), which will be employed in the numerical examples,

ρ̄k = ρk/ρ0, Ēk = Ek/d
0
66, Ē ′

k = E ′
k/d

0
66, Ḡ ′

k = G ′
k/d

0
66, d̄ki j = di j/d

0
66, (4)

in which ρ0 and d066 are the referencemass density and elastic constant, respectively. Also, it defines a reference

wavenumber a0 = ω

√
ρ0/d066 to normalize the frequency.

In the cylindrical coordinate system, the general differential equations of wave motion are

∂σrr

∂r
+ 1

r

∂τθr

∂θ
+ ∂τzr

∂z
+ σrr − σθθ

r
= ρ

∂2ur
∂t2

,

∂τrθ

∂r
+ 1

r

∂σθθ

∂θ
+ ∂τzθ

∂z
+ 2τrθ

r
= ρ

∂2uθ

∂t2
,

∂τr z

∂r
+ 1

r

∂τθ z

∂θ
+ ∂σzz

∂z
+ τr z

r
= ρ

∂2uz
∂t2

, (5)

where ur , uθ and uz are the radial, tangential and vertical displacements, respectively. The problem is solved
in the frequency domain. The variation with time is given by the factor eiωt .

In the cylindrical coordinate system, the strain–displacement relations are

εr = ∂ur
∂r

, εθ = 1

r

∂uθ

∂θ
+ ur

r
, εz = ∂uz

∂z
,

γθ z = 1

r

∂uz
∂θ

+ ∂uθ

∂z
, γzr = ∂ur

∂z
+ ∂uz

∂r
, γrθ = ∂uθ

∂r
+ 1

r

∂ur
∂θ

− uθ

r
. (6)

The Navier–Cauchy equation for the homogeneous transversely isotropic medium is observed by substi-
tuting Eqs. (1) and (6) in Eq. (5),
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[
d11

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
+ d66

r2
∂2

∂θ2
+ d44

∂2

∂z2

]
ur +

[
(d11 − d66)

r

∂2

∂r∂θ
− (d11 + d66)

r2
∂

∂θ

]
uθ

+ (d13 + d44)
∂2uz
∂r∂z

+ ρω2ur = 0
[
(d11 − d66)

r

∂2

∂r∂θ
+ (d11 + d66)

r2
∂

∂θ

]
ur +

[
d66

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
+ d11

r2
∂2

∂θ2
+ d44

∂2

∂z2

]
uθ

+ (d13 + d44)

r

∂2uz
∂θ∂z

+ ρω2uθ = 0

(d13 + d44)

(
∂2

∂r∂z
+ 1

r

∂

∂z

)
ur + (d13 + d44)

r

∂2uθ

∂θ∂z

+
[
d44

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂θ2

)
+ d33

∂2

∂z2

]
uz + ρω2uz = 0. (7)

Since the material is transversely isotropic, the wave motion equation can be decoupled into in-plane wave
motion (P–SV wave) and out-of-plane wave motion (SH wave) in the transformed wavenumber domain. The
transformations are performed by the Fourier–Bessel transform [42]

U (r, θ, z) =
∞∑

n=0

T (nθ)

∫ ∞

k=0
kCn (kr) Ū (k, z, n)dk,

Ū (k, z, n) = an

∫ ∞

r=0
rCn (kr)

∫ 2π

θ=0
T (nθ)U (r, θ, z)drdθ (8)

where Ū (k, z) = {ūr , ūθ , ūz}T denotes the displacement vector in the wavenumber domain. The superscript
bar is a reminder that the components are defined in the wavenumber domain.U (r, θ, z) = (ur , uθ , uz)T refers
to the displacement in the spatial domain.

The orthogonalization factor an is the normalization factor, which is equal to 1/2π for n = 0 and 1/π for
n �= 0. The diagonal matrix T (nθ) is T (nθ) = diag [cos nθ, − sin nθ, cos nθ ] for the symmetric case about
the x axis (the r axis at θ = 0); and T (nθ) = diag [sin nθ, cos nθ, sin nθ ] for the anti-symmetric case. θ is the
angle of revolution around the x axis. The matrix Cn (kr) includes Bessel functions, which is

Cn (kr) =

⎡

⎢⎢
⎣

dJn(kr)
d(kr)

nJn(kr)
kr 0

nJn(kr)
kr

dJn(kr)
d(kr) 0

0 0 −Jn (kr)

⎤

⎥⎥
⎦ (9)

in which Jn (kr) is the first kind Bessel function with nth order.
For the evaluation of Green’s function, only the cases of n = 0 and n = 1 in Eq. (8) need to be considered;

see [46]. The n = 0 corresponds to an axisymmetric load case (such as uniformly distributed vertical or
torsional load on a disk), while the n = 1 is used to the load case which is symmetric about the x axis (such
as uniformly distributed horizontal or rocking load on a disk).

Similar domain transformations can be performed for the stress vector P (r, θ, z) as Eq. (8) via substituting
the displacement vector with the stress vector. The definitions of the stress vector in the spatial domain and
wavenumber domain are

P (r, θ, z) = {τr z, τθ z, σzz}T , P̄ (k, z) = {τ̄r z, τ̄θ z, σ̄zz}T . (10)

By executing the Fourier–Bessel transform of Eq. (7), it will obtain the in-plane wave motion equation and
out-of-plane wave motion equation. In-plane wave motion relates to the displacements ūr (k, z) and ūz (k, z).
The corresponding equations are

{
d44ū′′

r (k, z) − ik (d13 + d44) ū′
z (k, z) − (

d11k2 − ρω2
)
ūr (k, z) = 0

d33ū′′
z (k, z) − ik (d13 + d44) ū′

r (k, z) − (
d44k2 − ρω2

)
ūz (k, z) = 0.

(11)
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Out-of-plane wave motion is related to the displacement ūθ (k, z) by

d44ū
′′
θ (k, z) − (

d66k
2 − ρω2) ūθ (k, z) = 0. (12)

In Eqs. (11) and (12), (·)′ = ∂ (·)/∂z. It is worthwhile to note that the displacements are identical for every
point at the same elevation z in the wavenumber domain [28]. Hence, in the following, we do not mention the
displacement of which point is calculated, but only the elevation of the point.

The wave motion equations in Eqs. (11) and (12) can be written in a matrix form

K22Ū′′ + (K21 − K12) Ū′ − (
K11 − ρω2I

)
Ū = 0 (13)

where Ū is the displacement vector in the wavenumber domain; see Eq. (8); I is a 3 × 3 unit matrix. The
coefficient matrices are

K11 = k2

⎡

⎣
d11 0 0
0 d66 0
0 0 d44

⎤

⎦ , K12 = KH
21 = ik

⎡

⎣
0 0 d13
0 0 0
d44 0 0

⎤

⎦ , K22 =
⎡

⎣
d44 0 0
0 d44 0
0 0 d33

⎤

⎦ (14)

in which the superscript H denotes the Hermitian transpose.
From the constitutive relations, the stress vector P̄ in Eq. (10) satisfies

P̄ = (
K22Ū′ + K21Ū

)
. (15)

Substituting Eq. (15) in Eq. (13), it can be written as the following dual vector representation of wave
motion equation:

V̄′ =
{
Ū
P̄

}′
= �V̄ =

[
A D
B C

]{
Ū
P̄

}
. (16)

in which
A = −K−1

22 K21 = −CH , B = K11 − K12K
−1
22 K21 − ρω2I, D = K−1

22 . (17)

The continuity conditions at the interface between two layers are

Ū+
i = Ū−

i , P̄+
i = P̄−

i , (i = 1, 2, . . . , n − 1, n) . (18)

2.2 Wave motion in the half-space

Two cases of a layered half-space are considered: the layered medium on a rigid base and on a semi-infinite
space. In the former case, there is no displacement at the bottom plane z = zn ,

Ū = 0, (z = zn) . (19)

In the latter case, the radiation conditions should be considered. The state equation Eq. (16) for the semi-
infinite space, i.e., the (n + 1) th layer, is expressed as

V̄′
n+1 = �n+1V̄n+1. (20)

Then, the eigenvalue equation of �n+1 is solved:

�n+1T̄n+1 = T̄n+1�̄n+1 (21)

where �̄n+1 and T̄n+1 are the eigenvalues and eigenvectors of matrix �n+1, partitioned as

�̄n+1 =
[

λp 0
0 λn

]
, T̄n+1 =

[
T̄u1 T̄u2

T̄q1 T̄q2

]
. (22)

The real part of all terms ofλp is positive (subscript ‘p’ for positive) and ofλn = −λp negative (subscript
‘n’ for negative). The solution of Eq. (20) equals

V̄n+1 =
[
T̄u1 T̄u2

T̄q1 T̄q2

] [
exp

(
λp (z − zn)

)
0

0 exp (λn (z − zn))

]{
c1
c2

}
. (23)
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Expending Eq. (23) yields the displacement and stress in the semi-infinite space (z ≥ zn)

Ū = T̄u1 exp
(
λp (z − zn)

)
c1 + T̄u2 exp (λn (z − zn)) c2,

P̄ = T̄q1 exp
(
λp (z − zn)

)
c1 + T̄q2 exp (λn (z − zn)) c2. (24)

For the semi-infinite space, the radiation conditions correspond to no upward wave in the space, which
leads to c1 = 0 in Eq. (24). Then, the stress–displacement relation on the plane z = zn (upper surface of the
semi-infinite space) is obtained from eliminating c2 in Eq. (24),

P̄ (zn) = T̄q2T̄
−1
u2 Ū (zn) = R̄∞Ū (zn) . (25)

Equation (25) is the general stress–displacement relation for the semi-infinite space. Considering different
values of wavenumber k and frequency ω, the following specific equations for R̄∞ can be obtained:

(a) Nonzero frequency, nonzero wavenumber: k > 0, ω > 0:

R̄∞ =

⎡

⎢⎢
⎣

d44(p1b2−p2b1)
b2−b1

0 id44(k(b1−b2)+i(p1−p2))
b2−b1

0
√
d44

(
d66k2 − ρHω2

)
0

id44(k(b2−b1)+i(p2−p1))
b2−b1

0 d33(p2b2−p1b1)
b2−b1

⎤

⎥⎥
⎦ (26)

in which

p j =
√

−m ± √
m2 − 4nl

2l
, b j = i

k2d11 − ρHω2 − d44 p2j
kp j (d13 + d44)

( j = 1, 2) (27)

where l = d44d33,m = [
(d13 + d44)2 − (

d11d33 + d244
)]
k2 + ρHω2 (d44 + d33) , n = (

k2d11 − ρHω2
)

(
k2d44 − ρHω2

)
.

(b) Zero frequency, nonzero wavenumber: k > 0, ω = 0:

R̄∞ =

⎡

⎢
⎢
⎣

d44(p1b2−p2b1)
b2−b1

0 id44(k(b1−b2)+i(p1−p2))
b2−b1

0
√
d44

(
d66k2 − ρHω2

)
0

id44(k(b2−b1)+i(p2−p1))
b2−b1

0 d33(p2b2−p1b1)
b2−b1

⎤

⎥
⎥
⎦ (28)

in which

p j = k f j , b j = i

f j

(
d11 − f 2j d44

)

(d13 + d44)
, ( j = 1, 2) (29)

where f j =
√{

d11d33+d244−(d13+d44)2±
√(

d11d33−d244
)2+[

(d13+d44)2−2
(
d11d33+d244

)]
(d13+d44)2

}
/
2d44d33.

(c) Nonzero frequency, zero wavenumber: k = 0, ω > 0:

R̄∞ = diag
[
iω

√
ρHd44 iω

√
ρHd44 iω

√
ρHd33

]
. (30)

(d) Zero frequency, zero wavenumber: k = 0, ω = 0:

R̄∞ = diag
[
0 0 0

]
. (31)
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2.3 Solution procedure for the multi-layered medium

Within an arbitrary layer, select an interval [za, zb] (za < zb), and assume that it is subjected to external
dynamic tractions, S̄a and S̄b, at its upper and lower interfaces, respectively. Hence, if Ūa and Ūb are the
displacement at the two interfaces of the layer, respectively, then

{
S̄a
S̄b

}
= L

{
Ūa

Ūb

}
=

[
Laa Lab
Lba Lbb

] {
Ūa

Ūb

}
(32)

in which L is the stiffness matrix of the layer [42].
The corresponding internal force vectors P̄a and P̄b can be obtained from the force equilibrium,

P̄a = S̄a = LaaŪa + LabŪb, P̄b = −S̄b = −LbaŪa − LbbŪb. (33)

Solving Eq. (33) yields the following dual vector form of matrix:
{
Ūb

P̄a

}
= H

{
Ūa

P̄b

}
=

[
F −G
Q E

] {
Ūa

P̄b

}
(34)

which implies that the stress–displacement at the two interfaces of one layer is linearly correlated. The matrix
H is the dual matrix; F,G,Q and E are termed as correlation matrices of the layer, which can be obtained
from Eq. (33). Noticing that the matrix L is unknown, thus, they cannot be obtained explicitly here. It will
solve the correlation matrices F,G,Q and E by the precise integration method (PIM) [29] in the next parts.

It is worthwhile to note that, as the layer thickness increases, the correlation matrices F and E will tend to
zero whileG andQwill remain stable. The interpretations are: When the layer thickness increases, the waves,
produced by the excitation source at the layer interface, may almost attenuate before they reach the opposite
side of the layer. Also the reflected waves from the opposite side of the layer may scarcely affect the behavior
of this interface. As a result, it seems that the dynamic responses at both interfaces of the layer are independent
of each other. Such property can also be observed from Fig. 2. As the thickness increases, F (1, 1) will tend
to zero while Q (1, 1) will lead to a stable value. Here, the correlation matrices of a single layer are employed
to investigate the influence of the layer thickness h. The normalized material properties of the layer are used:
material density ρ̄ = 1.5, Young’s moduli Ē = 2.6 and Ē ′ = 3.0, Poisson’s ratios ν = 0.3 and ν′ = 0.4, shear
modulus Ḡ ′ = 5.0, material damping ratios ξ = 0.05 and ξ ′ = 0.05. The normalized excitation frequency is

a0h = ωh
√

ρ0/d066 = 1 and wavenumber k.
Considering that the layer thickness h tends to be a sufficiently large value, then Eq. (34) could be simplified

as {
Ūb

P̄a

}
= H

{
Ūa

P̄b

}
=

[
0 −G
Q 0

]{
Ūa

P̄b

}
. (35)

Contrarily, as the layer thickness h approaches to zero, which denotes a thin layer with h/λ � 1 (h is the
layer thickness and λ is the wavelength), the stress and displacement at both interfaces of the layer should be

Fig. 2 Property of correlation matrices F andQ. Here, for brevity, only the terms F (1, 1) andQ (1, 1) in the matrices are depicted



Green’s function for a transversely isotropic multi-layered half-space 3889

almost identical. As a result, the correlation matrices G and Q will tend to zero, while F and E will lead to
unit matrices. Such property can be observed from Fig. 2, as the layer thickness decreases, F (1, 1) will tend
to one while Q (1, 1) will lead to zero. Considering the extreme case that the layer thickness is zero, it will
result in the boundary conditions for the correlation matrices F,G,Q and E in Eq. (40).

Currently, for the evaluation of Green’s function for a multi-layered medium, the stiffness matrix method
[42], the transfermatrixmethod [47] and the thin-layermethod [28] are always employed. The relation between
the dual matrix H and the stiffness matrix � in the stiffness matrix method, which relates the displacement
and stress at the layer top and bottom, is as below,

{
P̄a

P̄b

}
= �

{
Ūa

Ūb

}
, � =

[
Q + EG−1F −EG−1

G−1F −G−1

]
. (36)

Also the transfer matrix T in the transfer matrix method [47], which relates the stress and displacement
scalars (Ū, P̄) at the layer top and bottom, can be represented by the dual matrix H,

{
Ūb

P̄b

}
= T

{
Ūa

P̄a

}
, T =

[
F + GE−1Q −GE−1

−E−1Q E−1

]
. (37)

Generally, the proposed method can directly obtain the stiffness matrix � and the transfer matrix T.
Additionally, as stated previously, when it increases the layer thickness, only the correlation matrices G and
Q will remain stable. Consequently, from Eq. (36), the stiffness matrix � is always a regular matrix, which
is consistent with the analysis of Kausel [42] and Rokhlin et al. [47]. However, the transfer matrix T in
Eq. (37) will become singular; it will exhibit the well-known computational instability problem, which is also
in accordance with the analysis of Rokhlin et al. [47]. Conversely, when it decreases the layer thickness to that
of a thin layer (h/λ � 1), the correlation matrices F and E will tend to be unit matrices, while G and Q will
lead to zero. Accordingly, the stiffness matrix � will become singular, which can also be easily proved from
the formulations provided in the book of Kausel [42]. Nevertheless, the transfer matrix T will remain stable
[47]. Thus, the proposed method essentially yields both the merit and demerit of the stiffness matrix method
and the transfer matrix method.

Concerning the thin-layer method [28], it is a discrete version of the stiffness matrix method based on
the finite element method. It consists of a discretization in the direction of layering into a number of thin
sub-layers. The discrete matrices allow finding the normal modes from the solution of a standard eigenvalue
problem. However, it is well known that if a physical layer is subdivided into several thin layers, the matrix
calculation may be burdened and time-consuming because the dimension of the matrices is proportional to the
number of the discretized thin layers. Also, in the calculation, the eigenvalue problem needs to be solved for
large matrices. Theoretically, an eigenvalue problem could be solved for any dimension of matrices. However,
the current eigenvalue solver is not adequate to solve quite large matrices due to the numerical instability
[48], which leads to prohibitive costs and severely taxes the storage memory capabilities of presently available
computer hardware.

However, it is worthwhile to note that the proposed method is unconditionally stable, which will be
detailedly illustrated in the next parts. In addition, the dimension of all matrices is 3×3, and the computational
effort is moderate. It retains the computational simplicity with only the algebraic calculations involved. There is
no need to solve the eigenvalue problems. It imposes no limit on the thickness of the layers or the magnitude of
frequency. It obviates the singularity problem of the stiffness matrix methodwhen the layer thickness decreases
to that of a thin layer (h/λ � 1). Also, it can avoid the computational instability of the transfer matrix method
as the layer thickness increases. Employing the adaptive Gauss quadrature in Sect. 5 to calculate the Green’s
function in the spatial domain, the algorithm is accurate because a combined relative–absolute error criterion
is employed to terminate the calculation. If the error criterion is not satisfied, new Gauss points are added. At
each step, it retains the integral kernel and Bessel function values so that only the new integrand values need
to be calculated. Hence, to achieve a special level of accuracy, one only needs to choose proper relative and
absolute errors in the calculation. In the numerical examples, the relative and absolute errors are set as 10−6

and 10−7, which is sufficient for the engineering calculation.
Considering any two adjacent layers 1 and 2 ranging in [za, zb] and [zb, zc], respectively, now, we apply

Eq. (34) to the two layers to merge into a new layer c ranging in [za, zc] with the continuity condition at the
interface between them. The corresponding correlation matrices for the newly combined layer c are obtained
as

Fc = F2 (I + G1Q2)
−1 F1, Gc = G2 + F2G1 (I + Q2G1)

−1 E2,

Qc = Q1 + E1Q2 (I + G1Q2)
−1 F1, Ec = E1 (I + Q2G1)

−1 E2 (38)
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where the subscripts 1, 2 and c denote the corresponding layer that the correlation matrices belong to. I denotes
a unit matrix. Here, it can be observed that, when it performs the layer combination in Eq. (38), the formulations
remain stable no matter whether the layer thickness tends to be that of a thin layer (h/λ � 1) or increases
to a large value. It can be interpreted that: in case the layer thickness increases, the formulations involve only
the inverse of the stable matrices G and Q, which correspondingly maintains the computational stability; in
case the layer thickness decreases to that of a thin layer, the correlation matrices F and E will tend to be unit
matrices, while G and Q will lead to zero. As a result, all the formulations in Eq. (38) will remain stable.

Since Ūa and P̄b are mutually independent in Eq. (34), differentiating it with respect to zb and comparing
with Eq. (16), one can obtain a set of ordinary differential equations

F′ = (A + GB)F, G′ = AG − GC − D + GBG, Q′ = −EBF, E′ = E (BG − C) . (39)

Let zb approach za , the boundary conditions for these equations are derived as

E (za, za) = F (za, za) = I, G (za, za) = Q (za, za) = 0. (40)

Equation (39) shows that the matrices F,G,Q and E are coupled with each other. In order to obtain them,
the precise integration method (PIM) [29] will be employed. The detailed theoretical derivation of the method
can be found in the work of Zhong. Here, only the application of the method in the present study will be
addressed.

For an arbitrary i th layer (i = 1, 2, . . . , n) of the layered medium, it assumes the thickness of the layer
being hi . The layer is firstly divided into 2N1 (N1 is an integer, N1 = 6−20) sub-layers of equal thickness
h̄i = hi/2N1 . Then, each sub-layer is further divided into 2N2 (N2 is an integer, N2 = 12−20) mini-layers
of equal thickness τ = h̄i/2N2 . In this paper, N1 = 20 and N2 = 20 are chosen. Under such condition, the
thickness of the mini-layers is τ = h̄i/2N2 = hi/2N1+N2 = hi/(1048576 × 1048576). Since the thickness τ
is extremely small, the correlation matrices F (τ ) ,G (τ ) ,Q (τ ) and E (τ ) can be expressed in terms of Taylor
series expansion. Any desired accuracy can be achieved with increasing terms of Taylor expansion. In this
paper, four terms of Taylor series are considered. The Taylor series expansion is truncated after the τ 4 terms.
Therefore, the relative order of the neglected terms is τ 4. With N2 = 20, τ has been divided by even more
than 106. Thus, τ 4 will be of the order 10−24, which is well beyond the precision of real*8 typically only the
leftmost 15 digits significant. The correlation matrices F (τ ) ,G (τ ) ,Q (τ ) and E (τ ) are expressed as

Q (τ ) ≈ θ1τ + θ2τ
2 + θ3τ

3 + θ4τ
4, G (τ ) ≈ γ1τ + γ2τ

2 + γ3τ
3 + γ4τ

4,

F̃ (τ ) ≈ f1τ + f2τ 2 + f3τ 3 + f4τ 4, F (τ ) = I + F̃ (τ ) ,

Ẽ (τ ) ≈ ϕ1τ + ϕ2τ
2 + ϕ3τ

3 + ϕ4τ
4, E (τ ) = I + Ẽ (τ ) (41)

where θi , γi , fi and ϕi , (i = 1, 2, 3, 4) are coefficient matrices to be determined. Substituting Eq. (41) in
(39), the coefficients of various τ must be equal to zero, which leads to

θ1 = −B, γ1 = −D, f1 = A, ϕ1 = −C, (42)

θ2 = − (ϕ1B + Bf1)/2, γ2 = (Aγ1 − γ1C)/2, f2 = (Af1 + γ1B)/2, ϕ2 = (Bγ1 − ϕ1C)/2, (43)

θ3 = − (ϕ2B + Bf2 + ϕ1Bf1)/3, γ3 = (Aγ2 − γ2C + γ1Bγ1)/3,

f3 = (Af2 + γ2B + γ1Bf1)/3, ϕ3 = (Bγ2 − ϕ2C + ϕ1Bγ1)/3, (44)

θ4 = − (ϕ3B + Bf3 + ϕ2Bϕ1 + ϕ1Bf2)/4, γ4 = (Aγ3 − γ3C + γ2Bγ1 + γ1Bγ2)/4,

f4 = (Af3 + γ3B + γ2Bf1 + γ1Bf2)/4, ϕ4 = (Bγ3 − ϕ3C + ϕ1Bγ2 + ϕ2Bγ1)/4. (45)

The matrixes F̃ (τ ) and Ẽ (τ ) are extremely small compared to the unit matrix I in the small interval τ .
Therefore, they are calculated and stored independently to avoid losing effective digits. Here, the equations in
Eqs. (41)–(45) are computationally stable since they involve only the additive and multiplicative operations
except the inverse ofmatrices. The derivations in the former sections are exact, and the only approximationmade
in the precise integrationmethod is the truncation of Taylor series expansion in Eq. (41). It will cause numerical
errors; however, the errors are less than the round-off error of double-precision computation. Therefore, the
method is exact in the sense that any method can be exact; i.e., it is as exact as the computer precision permits.

Once F (τ ) ,G (τ ) ,Q (τ ) and E (τ ) for a mini-layer are obtained, they are combined in the following way.
Note that all mini-layers within one sub-layer have equal thickness and identical material properties; therefore,
when it performs the combination of mini-layers in Eq. (38), F1 = F2 = F,G1 = G2 = G,Q1 = Q2 = Q,
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and E1 = E2 = E. However, considering F̃c and Ẽc being very small, for combination of mini-layers, Eq. (38)
should be modified as

Qc = Q +
(
I + Ẽ

)
Q (I + GQ)−1

(
I + F̃

)
, Gc = G +

(
I + F̃

)−1
G (I + QG)−1

(
I + Ẽ

)
,

F̃c =
(
F̃ − GQ/2

)
(I + GQ)−1 + (I + GQ)−1

(
F̃ − GQ/2

)
+ F̃ (I + GQ)−1 F̃, Fc = I + F̃c,

Ẽc =
(
Ẽ − QG/2

)
(I + QG)−1 + (I + QG)−1

(
Ẽ − QG/2

)
+ Ẽ (I + QG)−1 Ẽ, Ec = I + Ẽc. (46)

Here, in performing the mini-layer combination in Eq. (46), one should notice that the thickness of the
mini-layer is extremely small. Under such condition, as stated previously, the correlation matrices F and E
will tend to be unit matrices while G and Q will lead to zero. Consequently, all the formulations in Eq. (46)
will remain stable.

Recursively executing Eq. (46) N2 times, the matrices F,G,Q and E turn to be the correlation matrices
F

(
h̄i

)
,G

(
h̄i

)
,Q

(
h̄i

)
and E

(
h̄i

)
of the given h̄i interval (sub-layer). Such algorithm is termed as ‘interval

doubling.’ Since matrices F̃ and Ẽ of h̄i interval are no longer very small, repeatedly employing Eq. (38)
N1 times, the correlation matrices F (hi ) ,G (hi ) ,Q (hi ) and E (hi ) of the i th layer are observed. Further
combination of layers having different thickness andmaterial properties can be directly carried out by Eq. (38).

Until now, equations of PIM to obtain the correlationmatricesF,G,Q andE are available, and the algorithm
is presented as below:

1. read the material properties and thickness hi of the i th layer, the wavenumber k, the excitation frequency
ω.

2. calculate the matricesA,B,C andD in Eq. (17); let N1 = 20 and N2 = 20, h̄i = hi/2N1 and τ = h̄i/2N2 .
3. employ Eq. (41) to calculate Q (τ ) ,G (τ ) , F̃ (τ ) and Ẽ (τ ).

Q = Q (τ ) , G = G (τ ) , F̃ = F̃ (τ ) and Ẽ = Ẽ (τ ). Comment: initiation.
4. for (iter = 0; iter < N2; iter++) comment: PIM in the h̄i interval.

4.1 apply Eq. (46) to compute Qc,Gc, F̃c and Ẽc;
4.2 Q = Qc,G = Gc, F̃ = F̃c and Ẽ = Ẽc;
end
F

(
h̄i

) = I+ F̃c, E
(
h̄i

) = I+ Ẽc, G
(
h̄i

) = Gc andQ
(
h̄i

) = Qc. Comment: the correlation matrices
F

(
h̄i

)
,G

(
h̄i

)
,Q

(
h̄i

)
and E

(
h̄i

)
of the given h̄i interval are obtained.

F1 = F2 = F
(
h̄i

)
, G1 = G2 = G

(
h̄i

)
, Q1 = Q2 = Q

(
h̄i

)
and E1 = E2 = E

(
h̄i

)
. Comment:

initiation.
5. for (iter = 0; iter < N1; iter++) comment: PIM in the hi interval.

5.1 use Eq. (38) to calculate Fc,Gc,Qc and Ec;
5.2 F1 = F2 = Fc,G1 = G2 = Gc,Q1 = Q2 = Qc and E1 = E2 = Ec;
end

F (hi ) = Fc, G (hi ) = Gc, Q (hi ) = Qc and E (hi ) = Ec. Comment: the correlation matrices
F (hi ) ,G (hi ) ,Q (hi ) and E (hi ) of the i th layer are approached. Combination of layers having different
thickness and material properties is directly performed by Eq. (38).

3 Green’s function in the wavenumber domain

Based on the above equations, the displacements in the wavenumber domain can be obtained. As stated
previously, in increasing the layer thickness, the correlation matricesG andQ will remain stable, while F and
E will tend to zero; in decreasing the layer thickness, F and E will tend to be unit matrices, while G and Q
will lead to zero. Considering this, to obviate the computational instability in the formulation, the following
equations are given correspondingly for the two situations: (i) thin layer (h/λ � 1, h is the layer thickness
and λ is the wavelength) and (ii) all layers except the thin layer (termed as normal layer).

To carry out the calculation, the kth layer, located with the force S (at plane z = zs), should be split into
two sub-layers, k1 and k2, as shown in Fig. 3. The first sub-layer k1 is bounded by the planes z = zk−1 and
z = zs−0 with the thickness hk1, and the second sub-layer k2 by z = zs+0 and z = zk with the thickness hk2.
The stress in the z-direction is continuous across any interface of layers except at z = zs . Considering this
discontinuous, the whole layered medium is divided into two sub-domains: one is domain �1 from the first
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Fig. 3 Splitting the layered half-space into two domains by the force point

layer to the k1th layer bounded by planes z = z0 and z = zs−0, while another one corresponds to domain �2
from the k2th layer to the nth layer bounded by planes z = zs+0 and z = zn .

In domain, �1, Ū0 and P̄0 correspond to the displacement and stress at the free surface z = z0, while Ūk1
and P̄k1 are the corresponding variables at the plane z = zs−0. By recursively applying Eq. (38) in domain �1,
we have the following equations:

Ūk1 = FL Ū0 − GL P̄k1, P̄0 = QL Ū0 + EL P̄k1 (47)

where the matrices FL ,GL ,QL and EL are the correlation matrices from the first layer to the k1th layer.
Considering the boundary condition, the stress P̄0 = 0 at z = z0, it can obtain the stress at the plane

z = zs−0 for the case of normal layer,

P̄k1 = −
(
FLQ

−1
L EL + GL

)−1
Ūk1 = K1Ūk1. (48)

Correspondingly, for the case of a thin layer, the stress at the plane z = zs−0 is

P̄k1 = −E−1
L QL

(
FL + GLE

−1
L QL

)−1
Ūk1 = K1Ūk1. (49)

In domain �2, the combination of layers can also be carried out in an analogous approach,

Ūn = FN Ūk2 − GN P̄n, P̄k2 = QN Ūk2 + EN P̄n, (50)

where the matrices FN ,GN ,QN and EN are the correlation matrices from the k2th layer to the nth layer; Ūk2
and P̄k2 denote the displacement and stress at the plane z = zs+0, while Ūn and P̄n are the displacement and
stress at the plane z = zn .

In case of the layered medium resting on a rigid base, from Eqs. (19) and (50), it can obtain the stress at
the plane z = zs+0 for the case of a normal layer,

P̄k2 =
(
QN + ENG

−1
N FN

)
Ūk2 = K2Ūk2. (51)
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For the case of a thin layer, one can obtain the displacement at the plane z = zs+0,

Ūk2 = F−1
N GN

(
QNF

−1
N GN + EN

)−1
P̄k2 = K−1

2 P̄k2. (52)

Here, it should be pointed out that, when the layer is resting on a rigid base, the matrix K2 will become
infinite, and the displacement Ūk2 will tend to zero for the thin layer. It can be interpreted that, as the layer
thickness decreases to that of a thin layer, the calculation point tends to be directly laid at the surface of the
rigid base. As a result, the displacement will tend to zero as presented in Eq. (19), and the matrix K2 will
become infinite.

In case the layered medium is underlaid by a semi-infinite space, substituting Eq. (25) in (50) yields the
stress at the plane z = zs+0 for both cases of normal layer and thin layer,

P̄k2 = (
QN + ENR∞ (I + GNR∞)−1 FN

)
Ūk2 = K2Ūk2. (53)

On the plane z = zs , the displacements should be identical in both domains�1 and�2; let Ūk1 = Ūk2 = Ūs ,
the total stress P̄s at the plane z = zs can be formulated as

P̄s = P̄k2 − P̄k1 = (K2 − K1) Ūs = KŪs (54)

which results in Ūs = K−1P̄s . Here, it can be observed that,when the layer thickness increases, the formulations
in Eqs. (48) and (51) or (53) will remain stable since they involve only the inverse of the stable matricesG and
Q. In contrast, as the layer thickness decreases to that of the thin layer, the equations in Eqs. (49) and (52) or
(53) should also be stable since they involve only the inverse of the stable matrices F and E. Hence, the matrix
K in Eq. (54) is indeed regular regardless of the layer thickness.

Considering Eqs. (47), (48) and (54), one can obtain the stress P̄0 and displacement Ū0 at the free surface
(z = z0) for the case of a normal layer,

P̄0 = 0, Ū0 = Q−1
L EL

(
FLQ

−1
L EL + GL

)−1
K−1P̄s . (55)

Correspondingly, the stress P̄0 and displacement Ū0 at the free surface (z = z0) for the case of a thin layer
are

P̄0 = 0, Ū0 =
(
FL + GLE

−1
L QL

)−1
K−1P̄s . (56)

Analogously, the stress P̄n and displacement Ūn at the plane z = zn can be obtained from Eqs. (50), (51) or
(53), and (54) for both cases of normal layer and thin layer. Here, one should consider different configurations
of the bottom half-space. When the layered medium is underlaid by a semi-infinite space, one should have

P̄n = R∞ (I + GNR∞)−1 FNK−1P̄s, Ūn = (I + GNR∞)−1 FNK−1P̄s . (57)

When the layered medium is resting on a rigid base, one can obtain

P̄n = G−1
N FNK−1P̄s, Ūn = 0. (58)

Obviously, the equations in Eqs. (55)–(58) are unconditionally stable since the inverse of the matrix only
performs for the stable matrices G and Q as the layer thickness increases, or the inverse of the matrix only
performs for the stable matrices F and E as the layer thickness decreases to that of a thin layer.

Until now, we obtained the stress and displacement at the free surface z = z0, at the force plane z = zs ,
and at the plane z = zn . On the basis of these variables, one can easily obtain the stress and displacement at
any plane z = zc. Since the displacement is identical for every point at the same elevation z in the wavenumber
domain [28], in the following we do not mention the displacement of which point is calculated, but only the
elevation of the point.

Considering a general layer configuration model, as shown in Fig. 4, it locates a pointC at the plane z = zc.
The corresponding stress–displacement relation can be expressed as

{
Ūc

P̄t

}
=

[
F1 −G1
Q1 E1

]{
Ūt

P̄c

}
,

{
Ūb

P̄c

}
=

[
F2 −G2
Q2 E2

] {
Ūc

P̄b

}
(59)
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Fig. 4 Layer configuration of the analysis model

in which Ūt and P̄t are the displacement and stress at the plane z = zt ; Ūc and P̄c are at the plane z = zc;
Ūb and P̄b are at the plane z = zb; F1,G1,Q1,E1 are the correlation matrices from the plane z = zt to the
plane z = zc (zt ≤ zc); F2,G2,Q2,E2 are the correlation matrices from the plane z = zc to the plane z = zb
(zc ≤ zb).

Considering the continuity condition at the plane z = zc, it yields the stress P̄c and displacement Ūc for
the case of a normal layer

Ūc = MŪt + NŪb, P̄c = PŪt + RŪb (60)

where M=
(
G1E2G

−1
2 F2 + G1Q2 + I

)−1
F1,N=

(
E2G

−1
2 F2 + Q2 + G−1

1

)−1
E2G

−1
2 ,P=G−1

1 (F1−M) ,

R = −G−1
1 N.

Considering that the thickness of the upper layer decreases to that of a thin layer, as stated before, the
correlation matrices G1 and Q1 will tend to zero, while F1 and E1 will lead to unit matrices. Hence, the
coefficient matrices in Eq. (60) should be modified to obviate the singularity problem,

M = �F1, N = �G1E2G
−1
2 , P = �

(
E2G

−1
2 F2 + Q2

)
F1, R = −�E2G

−1
2 , (61)

where � =
(
G1E2G

−1
2 F2 + G1Q2 + I

)−1
, � =

(
E2G

−1
2 F2G1 + Q2G1 + I

)−1
.

In case the thickness of the lower layer tends to be that of a thin layer, the correlation matrices G2 and
Q2 will tend to zero, while F2 and E2 will lead to unit matrices. Thus, to eliminate the matrix singularity, the
coefficient matrices in Eq. (60) should be refined as below,

M = �G2E
−1
2 G−1

1 F1, N = �, P = G−1
1 (F1 − M) , R = −G−1

1 N, (62)

where � =
(
F2 + G2E

−1
2 Q2 + G2E

−1
2 G−1

1

)−1
.

In case both layers in Fig. 4 tend to be the thin layer, the correlation matrices G and Q for both layers will
tend to zero, while F and E will lead to unit matrices. Hence, the stress P̄c and displacement Ūc at the plane
z = zc are

Ūc = (
Ūt + Ūb

)
/2, P̄c = (

P̄t + P̄b
)
/2. (63)

Apparently, Eqs. (60)–(63) are computationally stable formulations since the inverse of the matrix only
performs for the stable matrices G andQ as the layer thickness increases, or the inverse only performs for the
stable matrices F and E as the layer thickness decreases to that of a thin layer. Equations (60)–(63) are the
general formulations for the derivation of the stress and displacement at the point C (z = zc). To be specific,
there are three different conditions existing due to the position of point C (Fig. 3): above the force, below
the force and on the plane of the force. For the last case, since the displacement is identical for points at the
same elevation z in the wavenumber domain [28], the stress–displacement relation can be directly obtained
via Eq. (54). Hence, we only need to consider the first two conditions. In case the calculation point C is above
the force (in the mth layer, as shown in Fig. 3), one should consider Ūt = Ū0 and Ūb = Ūs in Eqs. (60)–(63)
to obtain the stress and displacement at the point C . Here, Ū0 and Ūs are obtained from Eqs. (54) and (55) or
(56), respectively. In case the calculation point C is below the force (in the pth layer, as shown in Fig. 3), one
should consider Ūt = Ūs and Ūb = Ūn in Eqs. (60)–(63) to obtain the stress and displacement at the point C .
Here, Ūs and Ūn are obtained from Eqs. (54) and (57) or (58), respectively.

It is worthwhile to note that, if the layer thickness is zero, the correlation matrices should be set as

F = E = I, G = Q = 0. (64)
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Generally, the above formulations to calculate the stress and displacement at point C are unconditionally
stable. From Eq. (60), the displacement at point C can be written in a matrix form,

Ūc = Ḡ (k) P̄s =
⎡

⎣
Ḡrr (k, zc) 0 Ḡzr (k, zc)

0 Ḡθθ (k, zc) 0
Ḡrz (k, zc) 0 Ḡzz (k, zc)

⎤

⎦

⎧
⎨

⎩

τ̄r z (k, zs)
τ̄θ z (k, zs)
σ̄zz (k, zs)

⎫
⎬

⎭
, (65)

where Ūc = {ūr , ūθ , ūz}T denotes the displacement at pointC ; Ḡ (k) represents the flexibilitymatrix (displace-
mentGreen’s function in thewavenumber domain),which is a function of z, k and ω only. τ̄r z (k, zs) , τ̄θ z (k, zs)
and σ̄zz (k, zs) are the radial, circumferential and vertical stress of force S in the wavenumber domain, which
can be calculated similarly by Eq. (8) via substituting the displacement vector with the stress vector.

Similarly, from Eq. (60), the stress vector at point C can also be formulated in a matrix form,

P̄c = S̄ (k) P̄s =
⎡

⎣
S̄rr (k, zc) 0 S̄zr (k, zc)

0 S̄θθ (k, zc) 0
S̄r z (k, zc) 0 S̄zz (k, zc)

⎤

⎦

⎧
⎨

⎩

τ̄r z (k, zs)
τ̄θ z (k, zs)
σ̄zz (k, zs)

⎫
⎬

⎭
, (66)

where P̄c = {τ̄r z, τ̄θ z, σ̄zz}T denotes the stress vector at point C ; S̄ (k) is the relation matrix between the force
S and the stress at point C , which is a function of z, k and ω only.

From Eqs. (16), (65) and (66), one can obtain the derivation of displacement and stress with respect to z in
the wavenumber domain,

dŪc

dz
= AŪc + DP̄c,

dP̄c

dz
= BŪc + CP̄c, (67)

where the coefficient matrices A,B,C and D can be obtained from Eq. (17).
In order to verify the proposed approach, calculations are performed for the homogeneous transversely

isotropic semi-infinite space. When a unit point load locates on the free surface, there are analytical solutions
for the surface displacement Green’s function in the wavenumber domain [11]. Comparisons are made with the
results obtained from the proposed method and analytical solutions. The homogeneous transversely isotropic
semi-infinite space with normalized parameters is investigated here. The material properties are: material
density ρ̄ = 1, Young’s moduli Ē = 2.6 and Ē ′ = 2.0, Poisson’s ratios ν = 0.3 and ν′ = 1/3, shear modulus
Ḡ ′ = 1.0, material damping ratios ξ = ξ ′ = 0.05. For highlighting the advantages of the proposed method,
the homogenous semi-infinite space is artificially split into three sub-layers plus a semi-infinite space. Thus,
it approaches a multi-layered medium but with identical material properties. The thickness of each sub-layer
is flexible, which has no influence on the results. Here, the thicknesses of the three sub-layers are set as
h1 = h, h2 = 0.00001h and h3 = 3h, which comprises both normal layer thickness and thin ones. The

normalized excitation frequency is a0h = ωh
√

ρ0/d066 = 5.

The horizontal component Ḡrr (k, z = 0) and vertical component Ḡzz (k, z = 0) of displacement Green’s
function are presented in Fig. 5. In the figure, the real and imaginary parts of the solutions are depicted. It

Fig. 5 Displacement Green’s function in the wavenumber domain. Here, the homogeneous semi-infinite space is considered. a
Horizontal component, b vertical component
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can be observed that both results coincide, which indicates that excellent agreements between the proposed
method and the analytical solutions are achieved.

4 Green’s function in the spatial domain

From Eqs. (8) and (65), the displacement in the spatial domain can be obtained,

U (r, θ, z) =
∞∑

n=0

T (nθ)

∫ ∞

k=0
kCn (kr) Ū (k, z, n)dk =

∞∑

n=0

T (nθ)

∫ ∞

k=0
kCn (kr) Ḡ (k) P̄s (k)dk, (68)

where U (r, θ, z) = (ur , uθ , uz)T; P̄s (k) being the transform of the loads in the wavenumber domain, which
can be calculated similarly by Eq. (8) via substituting the displacement vector with the stress vector.

Here, the derivation of the displacement with respect to r, θ and z can be obtained from Eq. (68):

dU (r, θ, z)

dr
=

∞∑

n=0

T (nθ)

∫ ∞

k=0
k
dCn (kr)

dr
Ḡ (k) P̄s (k)dk,

dU (r, θ, z)

dθ
=

∞∑

n=0

dT (nθ)

dθ

∫ ∞

k=0
kCn (kr) Ḡ (k) P̄s (k)dk,

dU (r, θ, z)

dz
=

∞∑

n=0

T (nθ)

∫ ∞

k=0
kCn (kr)

dŪ (k, z, n)

dz
dk (69)

in which

dCn (kr)

dr
=

⎡

⎢⎢
⎣

k d2 Jn(kr)
d(kr)2

nk
(

1
kr

dJn(kr)
d(kr) − Jn(kr)

(kr)2

)
0

nk
(

1
kr

dJn(kr)
d(kr) − Jn(kr)

(kr)2

)
k d2 Jn(kr)

d(kr)2
0

0 0 −k dJn(kr)
d(kr)

⎤

⎥⎥
⎦ . (70)

The diagonal matrix T (nθ) is dT(nθ)
dθ = −ndiag [sin nθ, cos nθ, sin nθ ] for the symmetric case about the

x axis (the r axis at θ = 0), and dT(nθ)
dθ = ndiag [cos nθ, − sin nθ, cos nθ ] for the anti-symmetric case. θ is

the angle of revolution around the x axis.
From Eqs. (65)–(67) and (69), the derivation of the displacement with respect to z can be obtained,

dU (r, θ, z)

dz
=

∞∑

n=0

T (nθ)

∫ ∞

k=0
kCn (kr)

[
AḠ (k) + DS̄ (k)

]
P̄sdk. (71)

Substituting Eqs. (69) and (71) in Eq. (6), one can obtain the strain ε = [
εrr , εθθ , εzz, εθ z, εr z, εrθ

]T in the
spatial domain. Then, substituting the strain ε in Eq. (1), the stress σ in the spatial domain is obtained, which
can be expressed in a matrix form,

σ (r, θ, z) =

⎡

⎢⎢⎢
⎢⎢
⎣

σrr
σθθ

σzz
τθ z
τr z
τrθ

⎤

⎥⎥⎥
⎥⎥
⎦

= S� =

⎡

⎢⎢⎢
⎢⎢
⎣

Sxrr Syrr Szrr
Sxθθ Syθθ Szθθ

Sxzz Syzz Szzz
Sxθ z Syθ z Szθ z
Sxrz Syrz Szrz
Sxrθ Syrθ Szrθ

⎤

⎥⎥⎥
⎥⎥
⎦

⎧
⎨

⎩

�x (rs, θs, zs)
�y (rs, θs, zs)
�z (rs, θs, zs)

⎫
⎬

⎭
, (72)

where � represents the resultant force of the applied load; (rs, θs, zs) denotes the coordinate of the force S; S
is the stress Green’s function matrix in the spatial domain; elements Si jl (i = x, y, z; j = r, θ, z; l = r, θ, z)
represent the stress in the j direction at point (r, θ, z) when a unit load is applied in the i direction at point
(rs, θs, zs); here, l is the direction of the normal of the infinitesimal area that the stress component acts on.

Thus, we complete the formulation and can proceed to the calculation of the Green’s function in the spatial
domain for various load conditions. In the following, we will present an example for the evaluation of the
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Fig. 6 Displacement under the uniformly distributed load on a disk

displacement Green’s function in detail for better illustration. The Green’s function for other load conditions
could be calculated similarly as in the example.

It assumes an uniformly distributed vertical load of amplitude q acting on a sub-disk of radius R at the
plane z = zs , as shown in Fig. 6. This case corresponds to the zeroth symmetric case (n = 0) in Eq. (8).
Formulating the equation leads to the load in the wavenumber domain,

σ̄zz (k) = 1

2π

∫ R

r=0
r J0 (kr)

∫ 2π

θ=0
qdθdr = qR

k
J1 (kR) . (73)

Substituting Eq. (73) in (68), one can obtain the displacement in the spatial domain,
⎧
⎨

⎩

ur (r, θ, z)
uθ (r, θ, z)
uz (r, θ, z)

⎫
⎬

⎭
= qR

∫ ∞

k=0
J1 (kR)

⎧
⎨

⎩

Ḡzr (k) J1 (kr)
0

Ḡzz (k) J0 (kr)

⎫
⎬

⎭
dk. (74)

The displacement for the vertical ring load can be obtained from the previous results for a disk load by
simple algebraic manipulations. If Û (r, ζ ) represents the displacement due to a ring load q with radius ζ , and
U (r, R) denotes the displacement due to a disk load having radius R with intensity q (R) = q , then

U (r, R) =
∫ R

ζ=0
Û (r, ζ ) dζ , Û (r, R) = ∂U (r, R)

∂R
. (75)

Therefore, the displacement due to the vertical ring load is obtained by employing derivation with respect
to R in Eq. (74). The final equations are

⎧
⎨

⎩

ur (r, θ, z)
uθ (r, θ, z)
uz (r, θ, z)

⎫
⎬

⎭
= qR

∫ ∞

k=0
k J0 (kR)

⎧
⎨

⎩

Ḡzr (k) J1 (kr)
0

Ḡzz (k) J0 (kr)

⎫
⎬

⎭
dk. (76)

The displacement for a vertical point load can be obtained from those for a disk load by considering the limit
when R tends to zero. In the case of a load with intensity Q, the corresponding stress is q = Q/πR2. The
limit expression for the displacement due to a vertical point load when R → 0 is

⎧
⎨

⎩

ur (r, θ, z)
uθ (r, θ, z)
uz (r, θ, z)

⎫
⎬

⎭
= Q

π

∫ ∞

k=0
k

⎧
⎨

⎩

Ḡzr (k) J1 (kr)
0

Ḡzz (k) J0 (kr)

⎫
⎬

⎭
dk. (77)

The force–displacement relation, obtained by Eqs. (68), (74), (76) and (77) in the cylindrical coordinate
system, can be expressed in matrix form as

⎧
⎨

⎩

ur (r, θ, z)
uθ (r, θ, z)
uz (r, θ, z)

⎫
⎬

⎭
= G� =

⎡

⎣
Gxr Gyr Gzr
Gxθ Gyθ Gzθ
Gxz Gyz Gzz

⎤

⎦

⎧
⎨

⎩

�x (rs, θs, zs)
�y (rs, θs, zs)
�z (rs, θs, zs)

⎫
⎬

⎭
(78)
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where � represents the resultant force of the applied load, � = πR2q (uniformly distributed load), � = 2πRq
(ring load) and � = Q (point load); (rs, θs, zs) denotes the coordinate of the force S; G is the displacement
Green’s function matrix in the spatial domain; elements Gi j , (i = x, y, z; j = r, θ, z) represent the flexibility
coefficient, which indicates the displacement in the j direction at point (r, θ, z) when a unit load is applied in
the i direction at point (rs, θs, zs).

5 Approach of numerical integration

The infinite integrals of Green’s function in Eqs. (68), (69) and (72) can be integrated numerically. It is
worthwhile to note that the integrands involve Bessel functions, which are oscillation functions and tend to
zero slowly with the rise of the variable. A common numerical integration method, such as Simpson’s rule
or trapezoidal rule, is inadequate to achieve sufficient accuracy [49]. The method employed in this work is
the adaptive Gauss quadrature from Chave [43] and Lucas [44]. Due to the difference of the integrands in the
distributed, ring and point load cases, the integrations should be performed separately.

For the evaluation of Green’s function under the point load, such as Eq. (77), the integrands involve only
one Bessel function Jm (kr). The integration can be easily performed by themethod of Chave [43]. The detailed
theoretical derivation of the method can be found in [43]. Here, only the concept of the method will be briefly
introduced. To perform the integrations involving one Bessel function, the integrals are expressed as a finite
sum of a sequence of partial integral terms,

I =
∫ ∞

0
f (k, z) Jm (kr) dk ≈

N∑

n=1

In =
N∑

n=1

∫ kn+1

kn
f (k, z) Jm (kr) dk (79)

where kn is the nth zero of Jm (x) normalized by the range r .
Every partial integral terms In are evaluated by the Gauss–Legendre quadrature. A combined relative–

absolute error criterion is employed to terminate the calculation. If the error criterion is not satisfied, new
Gauss points are added. At each step, it retains the integral kernel and Bessel function values so that only
the new integrand values need to be calculated. The complete integral is formally obtained by summing the
partial integrals. Due to the Bessel function’s oscillatory behavior, the convergence of the result will be very
slow, and the divergence maybe happen if the integral kernel increases faster than k1/2. In [43], the continued
fraction approach is used for the summation of the integral. We therefore adopt this algorithm. In the following
examples, the relative and absolute errors are set as 10−6 and 10−7. A three-point Gauss rule is firstly employed
with extension to 7, 15, 31, 63, 127 and 255 common-point interlacing forms, which corresponds to integrating
polynomials of degree 5, 11, 23, 47, 95, 191 and 383, respectively.

For the evaluation of Green’s function under distributed load or ring load, such as Eqs. (74) and (76), there
are products of Bessel functions of different orders, Jm (kR) Jn (kr). It cannot be directly integrated by the
method of Chave. It has been studied by Lucas [44] employing adaptive Gauss quadrature. The details of the
method can be found in [44]. Here, we will briefly introduce the concept behind the method.

The infinite integral of products of Bessel functions is expressed as a summation of two integrals

I =
∫ ∞

0
f (k, z) Jm (kR) Jn (kr) dk =

∫ kmax

0
f (k, z) Jm (kR) Jn (kr) dk +

∫ ∞

kmax

f (k, z) Jm (kR) Jn (kr) dk

(80)
where kmax is the largest of the first zeros of Ym (kR) and Yn (kr); Ym (kR) and Yn (kr) are the Bessel functions
of the second kind. Both the finite and infinite integrals at the right-hand side in Eq. (80) are then evaluated by
the adaptive Gauss quadrature of Chave [43]. To facilitate the calculation, ε-algorithm and mW transform are
used to achieve high accuracy and efficiency.

6 Examples: horizontal and vertical point loads

To validate the present solutions, four types of soil medium are considered: homogenous transversely isotropic
semi-infinite space, isotropic five-layered semi-infinite space, transversely isotropic four-layered semi-infinite
space and transversely isotropic five-layered semi-infinite space. The first three cases are employed to validate
the theory by comparing with the solutions available in the literature, while the last one is presented to illustrate
the capability of the proposed method for the analysis of a transversely isotropic arbitrarily layered medium.
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Fig. 7 Displacement Green’s function in the spatial domain. Here, the homogenous semi-infinite space is considered. The point
load is applied at its free surface. a Horizontal component, b vertical component

6.1 Comparison with the exact solution

Considering the case of a homogeneous transversely isotropic semi-infinite space, it is loaded with a unit
harmonic point load at its free surface. The normalized material properties of the medium are: material density
ρ̄ = 1, Young’s moduli Ē = 2.5 and Ē ′ = 4.0, Poisson’s ratios ν = 0.25 and ν′ = 0.4, shear modulus
Ḡ ′ = 2.0, material damping ratios ξ = 0.03 and ξ ′ = 0.05. The displacement (Green’s function) under the
point load can be obtained from Eq. (78). Also, an exact solution for this case can be obtained from the work of
Seale et al. [11]. Here the exact solution formulates the functions with the continuum theory in the wavenumber
domain and integrates numerically by the adaptive Gauss quadrature proposed by Chave [43]; see Eq. (79).
Comparisons are made between the proposed approach and the exact solution. Two cases are considered within
the comparisons: the horizontal component of displacementGreen’s functionGxr (r, θ = 0, z = 0) and vertical
component Gzz (r, θ = 0, z = 0). In the calculation, for highlighting the advantages of the proposed method,
it artificially splits the homogenous semi-infinite space into four sub-layers plus a semi-infinite space. Thus,
it approaches a multi-layered medium but with identical material properties. Without loss of generality, the
thicknesses of the four sub-layers are set as h1 = 5r, h2 = 2r, h3 = 0.0005r and h4 = r . It comprises
both normal layer thickness and thin ones. Here, r is the radius of the calculation point. Figure 7 shows the
results of the comparison. The real and imaginary parts of the results are presented. ω̄ denotes the normalized

frequency, ω̄ = a0r = ωr
√

ρ0/d066 [Eq. (4)]. It can be observed that both results coincide, which indicates
that the proposed approach leads to the correct results.

6.2 Comparison with the thin-layer method

In order to validate the proposed procedure suitable for the analysis of a layered medium, comparison with the
thin-layer method (TLM) [45] is performed. The isotropic five-layered semi-infinite space, subject to a unit
vertical harmonic point load, is considered here, as shown in Fig. 8a. The point load is applied at (0, 0, h). In
the case of an isotropic medium, the following relations between the material constants are valid:

d11 = d33 = λ + 2μ, d13 = λ, d44 = d66 = μ, ξ = ξ ′ (81)

where λ and μ are Lamé constants. The corresponding values for the soil medium are shown in Fig. 8a. In the
analysis, the thickness is set as r/h = 1 (r radius of the calculation point), and the damping ratio is assumed
as ξ = 0.05.

For the implementation of the thin-layer method, the thickness of the thin layers is determined as: There
are 8 thin layers inside 1 shear wavelength, 2πcs/ωd = 8 [45]. Here, d is the thickness of the thin layer, and
cs is the shear wave velocity of the corresponding layer. Moreover, the interpolation for displacement within
thin layers is cubic interpolation. To consider the radiation condition in the semi-infinite space, the space is
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(a) (b)

Fig. 8 Multi-layered semi-infinite space with point load. a Isotropic medium, b transversely isotropic medium

Fig. 9 Vertical displacement in the spatial domain. a On the plane z = h, b on the plane z = 2h

idealized as a thick buffer layer and a paraxial boundary with second-order approximation [11,50]. To ensure
high accuracy, the thickness of the buffer layer is set as D = 500r [50].

Two examples are illustrated here, differing in the depth of the calculation point: on the plane z = h and
z = 2h. The results are shown in Fig. 9. The vertical component of displacement uz (r, θ = 0, z) is plotted

versus the normalized frequency ω̄ = a0r = ωr
√

ρ0/d066 (d066 = μ). Both the real and imaginary parts are
presented. It can be observed that almost identical results are produced for the real part as well as for the
imaginary part.

6.3 Comparison for a transversely isotropic multi-layered medium

To illustrate the accuracy of the proposed method for the analysis of a transversely isotropic multi-layered
medium, the numerical solutions presented by Khojasteh et al. [25] for the displacement uz and stress σzz
due to a unit vertical point load are used in the comparison. The configuration of the transversely isotropic
four-layered semi-infinite space is shown in Fig. 8b. The point load is applied at (0, θ, 4h). The normalized
material properties are considered here and presented in Table 1. The comparison is shown in Fig. 10. The
vertical displacement uz (0, θ, z) and stress σzz (0, θ, z) are plotted versus the normalized depth z/h. Here,

the results of a0h = ωh
√

ρ0/d066 = 2 are concerned. As indicated in Fig. 10, excellent agreement between the
two solutions is achieved. Also, it is worthwhile to note that the imaginary part of the solutions is continuous
across the loaded plane, while the real part is singular at the loaded plane. This is consistent with the analysis
of Khojasteh et al. [25].
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Table 1 Properties of the transversely isotropic four-layered medium

Engineering constants Elastic constants

ρ̄ Ē Ē
′

Ḡ
′

ν ν′ d̄11 d̄13 d̄33 d̄44 d̄66

Layer 1 1.0 2.5 3.0 1.0 0.25 0.25 2.94 0.97 3.48 1.0 1.0
Layer 2 1.1 3.0 4.0 1.4 0.25 0.25 3.49 1.14 4.57 1.4 1.2
Layer 3 1.3 5.0 5.0 2.0 0.25 0.25 6.00 2.0 6.00 2.0 2
Semi-infinite space 1.5 7.5 6.0 2.5 0.25 0.25 9.32 3.16 7.58 2.5 3

Fig. 10 Comparison of theGreen’s function for the transversely isotropic four-layered semi-infinite space. aDisplacementGreen’s
function, b stress Green’s function

Fig. 11 Five-layered semi-infinite space with point load

Table 2 Properties of the transversely isotropic five-layered medium

Engineering constants Damping ratio Elastic constants

ρ̄ Ē Ē ′ Ḡ ′ ν ν′ ξ ξ ′ d̄11 d̄13 d̄33 d̄44 d̄66

Layer 1 1.0 2.4 2.5 2.0 0.2 0.25 0.03 0.03 2.77 0.88 2.94 2.0 1.0
Layer 2 1.1 2.6 5.2 1.5 0.4 0.3 0.05 0.05 3.48 1.53 6.12 1.5 0.93
Layer 3 1.3 4.0 4.0 3.5 0.2 0.1 0.04 0.04 4.23 0.51 4.1 3.5 5/3
Layer 4 1.5 5.0 6.0 2.5 1/3 0.4 0.03 0.03 8.13 5.0 10.0 2.5 1.88
Semi-infinite space 1.7 7.5 6.0 3.0 0.3 0.4 0.06 0.06 15.4 10.0 14.0 3.0 2.88

6.4 Green’s function for a transversely isotropic layered semi-infinite space

To illustrate the capability of the proposedmethod for the analysis of a transversely isotropic arbitrarily layered
medium, a five-layered semi-infinite space shown in Fig. 11 is employed. It is subject to a unit harmonic point
load at point (0, 0, h). In the analysis, the thickness is set as r/h = 1 (r radius of the calculation point). The
normalized material properties are considered here and presented in Table 2.
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Fig. 12 Effect of soil anisotropy (Ē/Ē
′
) on the displacement (z = h)

Fig. 13 Effect of soil anisotropy (ν/ν′) on the displacement (z = 2h)

Fig. 14 Effect of soil anisotropy (Ḡ/Ḡ
′
) on the displacement (z = 0)

Also, it investigates the effect of the degree of anisotropy on the displacement. The degree of anisotropy
includes the ratios Ē/Ē ′, ν/ν′ and Ḡ/Ḡ ′ (i.e., Ḡ = d̄66). Here, the change in the degree of anisotropy
implements at the close layer below the calculation point. For instance, when the calculation point is at the
plane z = h, we will only modify the ratios Ē/Ē ′, ν/ν′ and Ḡ/Ḡ ′ for Layer 2. Moreover, we will fix Ē, ν and
Ḡ and change Ē ′, ν′ and Ḡ ′ to achieve the corresponding ratios Ē/Ē ′, ν/ν′ and Ḡ/Ḡ ′. Illustrative examples
consist of the horizontal component of displacement Green’s functionGxr (r, θ = 0, z) and vertical component
Gzz (r, θ = 0, z), respectively. The results are shown in Figs. 12, 13 and 14. In the figures, ω̄ is the normalized

frequency, ω̄ = a0r = ωr
√

ρ0/d066. Generally, it can be observed from Figs. 12, 13 and 14 that the dynamic
response induced by the external excitations strongly depends on the degree ofmaterial anisotropy. In detail, the
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increase in the ratios Ē/Ē ′ and Ḡ/Ḡ ′ does have a great influence on the horizontal and vertical displacement.
It reflects the fact that the displacement increases with the rise of deformability in the direction parallel to the
applied load. Also, with increasing Ē/Ē ′ and Ḡ/Ḡ ′, the peaks of both the horizontal and vertical displacement
shift to the side of lower frequency. The change in ν/ν′ does not significantly shift the peaks of the horizontal
and vertical displacement; the tendency of the curves is almost identical. However, it stresses an important
influence on the amplitude of the displacement. Additionally, it is interesting to note that the horizontal and
vertical displacements are less affected by the value of ν/ν′ at the lower frequency range.

7 Conclusions

In this paper, a numerical approach is proposed for the calculation of Green’s function for a transversely
isotropicmulti-layered half-space. Thewhole algorithm is unconditionally stable and retains the computational
simplicity with only the algebraic calculations involved. It imposes no limit to the thickness of the layered
medium and the magnitude of frequency. In the analysis, it employs the domain transformation, dual vector
representation of wave motion equation and precise integration method. In the numerical implementation,
the Fourier–Bessel transform is employed to transform the wave motion equation from spatial domain to
wavenumber domain, which results in a set of second-order ordinary differential equations. The dual vector
representation of wave motion equation is introduced to reduce the second-order differential equation to first
order. Then, the precise integration method is used to solve it. Finally, the Green’s function in the wavenumber
domain is obtained. To obtain the Green’s function in the spatial domain, the inverse Fourier–Bessel transform
over wavenumber is conducted, which gives a one-dimensional infinite integral with Bessel functions involved.
In order to perform the infinite integrals, an adaptive Gauss quadrature is used. Numerical examples are
provided. Comparisons have been made with the results available in the literature. Very good agreement is
reached. Also, it investigated the Green’s function for a transversely isotropic five-layered semi-infinite space
and illustrated the effect of the material anisotropy. To analyze the multi-layered half-space, the proposed
approach has the following advantages: the dual vector form of matrices makes the combinations of two
adjacent sub-/mini-layers into a new jointed sub-/mini-layer quite easy. Since the dimension of the matrices is
3×3, partitioning each layer into a large number of mini-layers and employing the precise integration method,
the calculation is computationally stable and efficient. It enables higher accuracy of the results to be achieved.
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