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Abstract In the present article, a new two-dimensional integrable system containing 17 free parameters
is introduced. For giving certain values for these parameters, new integrable problems can be constructed,
which generalize some known previous problems, and in some cases, we can restore some previous integrable
problems. Two new integrable problems are announced, describing the motion in an Euclidean plane and on a
pseudo-sphere. In the irreversible case, a new integrable problem in rigid body dynamics, which generalizes
Goriachev–Chaplygin’s case (Varshav Univ Izvest 3:1–13, 1916), Yehia’s case (Mech Res Commun 23:423–
427, 1996) and Elmandouh’s case (Acta Mech 226:2461–2472, 2015), is announced.

1 Preliminaries

It iswell known that, in general,Hamiltonian systems are non-integrable and integrable ones are a rare exception
among them. For them, their behavior can be investigated globally in an infinite time interval. They can also
be used, through perturbation theories, to give certain conclusions about the motion of non-integrable systems
near to them.

In the majority of all known integrable systems in mechanics the second integral, which is used for proving
the integrability and solving equations of motion, is a polynomial in velocity variables. The classification of
such systems attracted the attention of many scientists interested in this branch. Bertrand [1] was the first who
tried to construct all plane systems with linear, quadratic and cubic integrals, a long time ago. He was shortly
followed by Darboux [2] who studied the construction of integrable problems with quadratic integral (see also
[3]).

Kowalevski’s [4] integrable case in the dynamics of a rigid body which moves under the action of a uniform
gravitational field seems probably the first integrable case of a mechanical system having a complementary
quartic integral in velocities. After a decade or so, another case describing the motion of a rigid body in a liquid
was introduced by Chaplygin [5]. It should be noted that, until now, these two cases are the only examples of
integrable mechanical systems having complementary quartic integral on a two-dimensional curvedmanifolds.

In the last four decades or so, a limited number of integrable problems characterizing themotion of a particle
in the Euclidean plane were introduced (see, e.g., [6–19]). Most of these cases were collected in Hietarienta’s
review [20].
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1.1 Equations of motion of a rigid body

The problemof a rigid body is a rich problemwith applications in various branches of science such as astronomy
and physics (see, e.g., [21–23]). Consequently, it is a good model for investigation.

Let a rigid body with a fixed point be in motion under the influence of the resultant of potential and
gyroscopic forces. The potential force is characterized by V (γ ), and the gyroscopic force is determined by
l = (0, 0, l3). Such motion is described by the Lagrangian (see, e.g., [25])

L = 1

2
ω · ωI + l · ω − V, (1)

where ω is the angular velocity and where I = diag(A, B,C) is the inertia matrix of the body. The equations
of motion for Lagrangian (1) can be expressed as (see, e.g., [24–26])

ω̇I + ω × (ωI + μ) = γ × ∂V

∂γ
, γ̇ + ω × γ = 0, (2)

where γ = (γ1, γ2, γ3) is a unit vector which is fixed upward in space and μ is given by

μ = ∂

∂γ
(l · γ ) −

(
∂

∂γ
· l

)
γ . (3)

It is evident that Eqs. (2) have three integrals of motion, which are called classical integrals. They are

1. Jacobi integral:

I1 = 1

2
ω · ωI + V = h, (4)

where h is the numerical value of the Jacobi integral.
2. Geometric integral:

I2 = γ · γ = 1. (5)

3. Cyclic integral:

I3 = (ωI + l) · γ = f, (6)

where f is an arbitrary constant that represents the value of the cyclic integral.
According to Jacobi’s theorem on the last integrating multiplier [3], four integrals of motion are required

to prove the integrability of Eqs. (2). Consequently, one integral that is independent of the three integrals (4),
(5) and (6) is sufficient to establish the integrability.

It is clear that the present problem has three degrees of freedom, which can decrease to two due to the
presence of the cyclic variable ψ . Therefore, one can use the Routh procedure to ignore the cyclic variable
and describe the problem by using the Routhian

R = 1

2

[
γ̇ 2
3

1 − γ 2
3

+ C(1 − γ 2
3 )ϕ̇2

A − (A − C)γ 2
3

]
+ f Cγ3 + Al3(1 − γ 2

3 )

A
[
A − (A − C)γ 2

3

] ϕ̇ − 1

A

(
V + ( f − l3γ3)2

2[A − (A − C)γ 2
3 ]

)
. (7)

The new integrable case in the rigid body dynamic is always characterized by the two scalar and vector
functions V and μ. The reason for this is that they are invariant under all possible gauge transformations. To
clarify that, one can add d

dt N (γ1, γ2, γ3) to the Lagrangian (1). The linear terms in velocity in the Lagrangian
will be changed, and these changes do not affect the two functions V and μ. Consequently, the equations of
motion (2) still remain unchanged.
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2 Formulation of the problem

In [27], two-dimensional integrable problems (not necessarily plane) that admit a complementary integral
polynomial in velocities were presented, and have been reformulated in [28]. This method has been used
in constructing several integrable problems with complementary integral quadratic (see, e.g., [29,30]), cubic
(see, e.g., [31]) and quartic (see, for example, [32–34]). The utilization of this method is restricted to two-
dimensional mechanical systems. Many examples belong to this type such as the problem of motion with n
degrees of freedom having n−2 cyclic coordinates and the problem of motion of a particle on a smooth surface
under a variety of forces. Further example is the motion of a rigid body about its fixed point under the action of
a combination of potential and gyroscopic forces which permit to cyclic coordinate to exist (see, e.g., [35,36]).
Such systems are described by the Lagrangian

L = 1

2

(
a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2

) + a1q̇1 + a2q̇ − V, (8)

where ai j , ai , V are functions in both variables q1, q2 and dots denote differentiation with respect to time t .
As outlined in [27], using point transformation to isometric coordinates and performing a time transformation

dt = �dτ, (9)

the Lagrangian (8) is reduced to

L = 1

2
(x́2 + ý2) + l1 x́ + l2 ý +U, (10)

whereU = �(h − V ) and dashes denote derivatives with respect to τ . Lagrange equations for the Lagrangian
(10) can be written in the form

x ′′ + �y′ = ∂U

∂x
, y′′ − �x ′ = ∂U

∂y
, (11)

where � = ∂l1
∂y − ∂l2

∂x . The Jacobi integral for this system is written in the form

I1 = 1

2
(x ′2 + y′2) −U = 0. (12)

The complementary integral for this problem is assumed to be quartic in the velocity variables. Following [43],
the complementary integral is written in the form

I2 = x́4 + κ f (y) x́3 + [Fxx + 3

8
κ2 f 2]x́2 − Fxy x́ ý + κ

[
−Gx + κ2

16
f 3

]
x́ + κ

[
Gy + 1

2

d f

dy
Fx

]
ý

−
∫ (

Q2
∂U

∂x
− �P1

)
dy −

∫ [
2P2

∂U

∂x
+ Q2

∂U

∂y
+ 2U

∂Q2

∂y
+ �Q1 − 4�UQ3

]
0
dx, (13)

where [·]0 means that the expression in the bracket is computed for y taking an arbitrary constant value y0
(say). The functions F and G are two arbitrary functions in both variables x , y, and f is a function in y while κ
is an arbitrary parameter which plays an important rules as will be seen later. Differentiating (13) with respect
to τ and using the Jacobi integral again, we obtain a nonlinear system of partial differential equations (for
more details, see [43]):

U = 1

4
∇2F , (14)

κ

[
4∇2G + 3 f

∂

∂x
∇2F + 2

d2 f

dy2
Fx + 4

d f

dy
Fxy

]
= 0, (15)

κ

{[
κ2 f + 8

(
2Gy + d f

dy
Fx

)]
∇2Fx + 8

[
d f

dy
+ 2Gx + 4Gyy − d f

dy
Fxy

]
∇2F

}
= 0, (16)

κ2

[
d2 f

dy2

(
Gy + d f

dy
Fx

)
+ 1

2

(
d f

dy

)2

Fxy − d f

dy
(Gxx − Gyy) − 3

2
f
d f

dy
∇2Fx − 3

4
f 2∇2Fxy

]

+ Fxy Fyyyy − Fxy Fxxxx + 2[Fyyyx − Fxx Fyxxx ] + 3[Fxyy Fyyy − Fxxy Fxxx ] = 0. (17)
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It is clear that any solution of Eqs. (14)−(17) can be used to construct a time-irreversible integrable systems
with complementary integral quartic in velocities. Also, these systems are conditional since they are valid only
on the zero-level Jacobi integral. Therefore, the inverse of a time transformation (9) is required.

3 Construction of reversible systems

The problem under consideration becomes time reversible when κ = 0. In this case, the Lagrangian (10) and
its conditional quartic integral (13) are reduced to

L = 1

2
(x́2 + ý2) + 1

4
∇2F (18)

and

I2= x́4+Fxx x́2 − Fxy x́ ý+ 1

4

∫
Fxy

∂

∂x
∇2Fdy − 1

4

∫ [
2Fxx

∂

∂x
∇2F − Fxy

∂

∂y
∇2F+2Fxyy∇2F

]
0
dx ,

(19)

where the function F satisfies

Fxy Fyyyy − Fxy Fxxxx + 2[Fyy Fyyyx − Fxx Fyxxx ] + 3[Fxyy Fyyy − Fxxy Fxxx ] = 0. (20)

This equation was introduced in [28] for the first time, and it is called resolving equation. It is also used to
construct new integrable problems describing the motion of a particle in the Euclidean plane [37]. Until now,
it is not known whether this equation is solvable, in the sense that its general solution can be constructed. As
outlined in [28,38], it is evident that the two variables x , y are not suitable variables to find the solution of Eq.
(20), and so, let us insert the two variables p, q instead of the present variables through the following point
transformation:

x =
∫

dq
4
√
a(q − q1)(q − q2)(q − q3)(q − q4)

, y =
∫

dp
4
√
b(p − p1)(p − p2)(p − p3)(p − p4)

. (21)

In [28], F(p, q) is assumed to have the structure

F(p, q) = u0(p) + u1(q) + k1 pq, (22)

where k1 is an arbitrary constant. This choice of F leads to construct a new integrable problem describing
the motion of a particle in the Euclidean plane and two new integrable problems in rigid body dynamics
generalizing special versions of the Kowalevski and Chaplygin cases (for more details, see [28]). In another
article [39], the function F is assumed to have the formula

F(p, q) = u0(p) + u1(q) + k1 pq + k2 p
2q2, (23)

where k1 and k2 are free parameters. Notice that this structure (23) of F enables the author to construct new
integrable problem in the dynamics of particle and rigid body.

In the present work, we aim to find another structure for the function F containing the two formulas (22)
and (23) as a special case, and this structure is considered acceptable if it provides us with new integrable
problems. Let us assume that the function F(p, q) has the structure

F(p, q) = u0(p) + u1(q) + p(β3 + β4q + β5q
2) + 4

√
a(q − q1)(q − q2)(q − q3)(q − q4)

×
[
β0 + β1

4
√
b(p − p1)(p − p2)(p − p3)(p − p4)

]
+ √

p + β6(β7 + β8q), (24)

where βi are free parameters. It is clear that the function F in (24) is reduced to (22) when β3 = β5 = a =
β7 = β8 = 0, β4 = k1, and it has the same structure as (23) if β0 = β3 = β5 = β7 = β8 = pi = qi = 0,
β4 = k1, β1 = k2

4√ab
. Inserting the transformation (21) into Eq. (20) and using the expression (24), we obtain
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a system of ordinary differential equations. After some manipulations, this system of ordinary differential
equations is solved, and thus, the function F(p, q) takes the form

F =
∫ C0 − ∫ C1 p+C2√

p−p1
4
√

(p−p3)3(p+2p1+p3)3
dp

√
p − p1 4

√
(p − p3)(p + 2p1 + p3)

dp + C7(β − μq)

√
−μq2 + 2βq + α] +

+√
p − p1

[
C4

√
−μq2 + 2βq + α + C5(β − μq)

]
+ p[C6(−2μ2q2 + (4βq + α)μ − β2)

+ 2
∫

dq√−μq2 + 2βq + α

[
C3 + C8

∫
dq√−μq2 + 2βq + α

]
, (25)

where Ci , β and α are free parameters, which are introduced instead of the original ones for suitability. Using
(21) and inserting (25) in the expression (18), we get

L = 1

2

[
q́2

−μq2 + 2βq + α
+ ṕ2

4μ(p − p1)
√

(p − p3)((p + 2p1 + p3)

]
+ K1√

(p − p3)(p + 2p1 + p3)

+
(

p + p1√
(p − p3)(p + 2p1 + p3)

− 1

)
[K2 + √

p − p1[a2(β − μq) − a1

√
−μq2 + 2βq + α]]

+
(
2p2 + 2p1 p − p21 − 2p1 p3 − p23
2
√

(p − p3)(p + 2p1 + p3)
− p

)
[a3(−2μ2q2 + [4βq + α]q − β2) − a4(β − μq)

×
√

−μq2 + 2βq + 2α], (26)

where K1, K2 and ai are free parameters. Its Jacobi integral becomes

I1 = 1

2

[
q́2

−μq2 + 2βq + α
+ ṕ2

4μ(p − p1)
√

(p − p3)((p + 2p1 + p3)

]
− K1√

(p − p3)(p + 2p1 + p3)

−
(

p + p1√
(p − p3)(p + 2p1 + p3)

− 1

)
[K2 + √

p − p1[a2(β − μq) − a1

√
−μq2 + 2βq + α]]

−
(
2p2 + 2p1 p − p21 − 2p1 p3 − p23
2
√

(p − p3)(p + 2p1 + p3)
− p

)
[a3(−2μ2q2 + [4βq + α]q − β2) − a4(β − μq)

×
√

−μq2 + 2βq + 2α]
= 0. (27)

Its conditional quartic integral is expressed in the form

I2 = I2(p, q , ṕ, q́; μ, β, α, p1, p3, K1, K2, a1, a2, a3, a4)

= μ2q́2

−μq2 + 2βq + α
+ 2μ2 {

a3(−2μq2 + 4βμq + αμ − β2) + 2a2
√
p − p1(β − μq) − β2) + 2K2

+ 2a2
√
p − p1(β − μq) + 2

√
−μq2 + 2βq + α[a4 p(β − μq) + a1

√
p − p1]

}
q́

−μq2 + 2βq + α

+ 2μ2

{
a3(β − μq) − a2√

p − p1
+ a4

√
p − p1(−2μq2 + 4βμq + αμ − β2) + a1(β − μq)

μ
√
p − p1

√−μq2 + 2βq + α

}

× ṕq́ + R(p, q), (28)
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where

R(p, q)=2p1 p3μ
3(a23μ − a24)(−μq2+2βq+α)2 − a24

2
μ(αμ+β2)2(p − p1)

√
(p − p1)(p + 2p1 + p3)

− 2μ2(αμ + β)[a3a4(p − p1)(β − μq)

√
(p − p3)(p + 2p1 + p3)(−μq2 + 2βq + α) − p1 p3

× (μa23 − a24)(μq
2 − 2βq − α)] + μ

4
(αμ + β2)[4μ2(2p2 − 3p21 − p23)(a

2
3(−μq2 + 2βq + α)

+ a24q
2) + a24(−β2 p1 p3 − μa24(8p

2(2βq + α) − 8βq(3p21 + p23) − α(12p21 − p1 p3 + 4p23)]
− 2a3a4μ

3(−μq2 + 2βq + α)
3
2 (μq − β)(2p2 − 3p21 − 2p1 p3 − p23) + μ

8
(αμ + β)2[16μK1a3

× a24(αμ + β)(4p2 − 3p21 − p23)] − 2μ2(−μq2 + 2βq + α)[(p + p1)(a
2
1 − μa22) + 2μK1a3]

+ 4μ2(β − μq)√
p − p1

√
(p − p3)(p+2p1+ p3)[a3a2μ(p − p1) − a1a4 p] − 4μ3(−μq2 + 2βq+α)

3
2

×√
(p − p1)(p + 2p1 + p3)[a3a4(β − μq)

√
p − p1 − a3a1 − a2a4] − μ2(αμ + β2)√

p − p1

×
√

−μq2 + 2βq + α[a3a4(β − μq)(2p2 − 3p21 − p23)
√
p − p1 − 2(p2 − p21)(a3a1 + a4a2)]

+ 2μ4(p − p1)
√

(p − p3)(p + 2p1 + p3)[a23(μ2q4 − 4βμq3 − 2(αμ − 2β2)q2 + 4αβq + α2)

+ a24(−μq4 + 4βq3+αq2)] − 2μ3
[
2q

√
−μq2+2βq+α(a4K1 − a2a1(p + p1)) + a24(p − p1)

× (2βq + α)2
√

(p − p3)(p + 2p1 + p3)
]

+ 4βμ2
√

−μq2 + 2βq + α[a4K1 − a1a2(p + p1)]
− 2μ

√
(p − p3)(p + 2p1+ p3)

[
2a1a2(μq − β) + μ

2
(a21 − μa22)q(2β − μq)+μ2αa22 + a21β

2
]

+ 2p1a4μ4

√
p − p1

[
a3 p3(αμ + β2)

√
p − p1

√
−μq2 + 2βq + α + 2a1(−μq2 + 2βq + α)

×√
(p − p3)(p + 2p1 + p3)

]
− 2μ(p − p1)

3
2 (β − μq)[2μ2a2a3(−μq2 + 2βq + α) − a1a3

× (−2μ2q2 + 4βμq + αμ − β2)] − 4μ3(p + p1)
√
p − p1(a3a1 + a4a2)(−μq2 + 2βq + α)

3
2

− 2μ(αμ + β2)
[
μ(p − p1)(−μq2 + 2βq + α)(a23μ − a24)

√
(p − p3)

√
p + 2p1 + p3 − a21 p

]

− μ3(−μq2 + 2βq + α)2(2p2 − 3p21 − p23)(μa
2
3 − a24) − 2μ(αμ + β2)[μ(2a1a3 + a4a2)

×
√

−μq2 + 2βq + α + a4a1(β − μq)
√

(p − p3)(p + 2p1 + p3). (29)

3.1 The generic unconditional system

The Lagrangian (26) is integrable on its zero level of energy integral (27), and so it is named a conditional
system. The parameters Ki and a j are energy-like parameters. Let us introduce new parameters instead of
them:

a1 = b1 + n1h, a2 = b2 + n2h, a3 = b3 + n3h, a4 = b4 + n4h, K1 = b5 + n5h, K2 = b6 + n6h,

(30)

where bi and ni are arbitrary parameters. We perform the inverse of a time transformation (9) with a conformal
factor �, which is given by
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� = √
p − p1

[
p + p1√

(p − p3)(p + 2p1 + p3)
− 1

] [
n1

√
−μq2 + 2βq + α + 4n2(β − μq)

]

+ n5√
(p − p3)(p + 2p1 + p3)

+ n6

[
p + p1√

(p − p3)(p + 2p1 + p3)
− 1

]

+
[
2p2 − 2p1 p − p21 − 2p1 p3 − p23
2
√

(p − p3)(p + 2p1 + p3)
− p

](
n3

[
−μ2q2 +

(
2βq + α

2

)
μ − β2

2

]

− n4(β − μq)

√
−μq2 + 2βq + α

)
. (31)

The Lagrangian (26) takes the form

L = �

2

[
q̇2

−μq2 + 2βq + α
+ ṗ2

4μ(p − p1)
√

(p − p3)((p + 2p1 + p3)

]

+ 1

�

{
K1√

(p − p3)(p + 2p1 + p3)
+

(
p + p1√

(p − p3)(p + 2p1 + p3)
− 1

)[
K2 + √

p − p1

×
[
a2(β − μq) − a1

√
−μq2 + 2βq + α

]]
+

(
2p2 + 2p1 p − p21 − 2p1 p3 − p23
2
√

(p − p3)(p + 2p1 + p3)
− p

)

×
[
a3(−2μ2q2 + [4βq + α]q − β2) − a4(β − μq) ×

√
−μq2 + 2βq + 2α

]}
+ h. (32)

The uconditional energy integral can be written in the form

I1 = �

2

[
q̇2

−μq2 + 2βq + α
+ ṗ2

4μ(p − p1)
√

(p − p3)((p + 2p1 + p3)

]

− 1

�

{
K1√

(p − p3)(p + 2p1 + p3)
+

(
p + p1√

(p − p3)(p + 2p1 + p3)
− 1

) [
K2 + √

p − p1

×
[
a2(β − μq) − a1

√
−μq2 + 2βq + α

]]
+

(
2p2 + 2p1 p − p21 − 2p1 p3 − p23
2
√

(p − p3)(p + 2p1 + p3)
− p

)

× [a3(−2μ2q2 + [4βq + α]q − β2) − a4(β − μq) ×
√

−μq2 + 2βq + 2α]
}

= h. (33)

Its unconditional complementary integral becomes

I2 = I2(p, q , � ṗ, �q̇;μ, β, α, p1, p3, b5 + n5h, b6 + n6h, b1 + n1h, b2 + n2h, b3 + n3h, b4 + n4h).

(34)

Note that the presence of the arbitrary parameters h in the Lagrangian (32) is insignificant and can be ignored.
The same arbitrary constant h is now interpreted as the value of the energy integral (33). It is more suitable that
the energy’s constant h in (34) should be replaced by its expression in (33). The system (32)−(34) describes
a new two-dimensional integrable mechanical system in which the complementary integral is quartic in the
velocities. It contains 17 free parameters

μ, β, α, p1, p3, n1, n2, n3, n4, n5, n6, b1, b2, b3, b4, b5, b6.

The first eleven parameters constitute the structure of the line element on the configuration manifold as seen
from Eq. (32), and the other six parameters enter in the potential part of the Lagrangian.

Until now, the full physical interpretation of this system is unknown. One of the most important advantages
for this system is the structure of a configuration manifold containing a large set of free parameters. This
structure widens the range of its applications to various problems such as the problem of motion in the
Euclidean plane, the hyperbolic plane and different types of curved two-dimensional manifolds (for example,
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the problem of rigid body dynamics). The Gaussian curvature of the configurationmanifolds plays a significant
rule in this study. Therefore, let us give the expression of Gaussian curvature of the configuration manifold of
the Lagrangian (32),

χ = 1

4�

[
2�

∂�

∂p

∂F

∂p
+ 4F�

∂2�

∂2 p
− ∂�

∂q

∂G

∂q
− 2G

∂2�

∂2q

]
, (35)

where

F(p) = μ(p − p1)
√

(p − p3)(p + 2p1 + p3), G(q) = −μq2 + 2βq + α. (36)

It is well known that the Gaussian curvature for a sphere is χ = 1
a2
. For the Euclidean space, the Gaussian cur-

vature vanishes (χ = 0). Also, for the Gauss–Bolyai–Lobachevsky space, the Gaussian curvature is χ = − 1
a2
.

3.2 New integrable problems

1. The first case is constructed by setting α = μ = 1, β = 0, p1 = −p3 = −1 and using the point
transformation p = − cos 2y, q = cos x in the expression (32); we obtain after some manipulations

L = �1

2
(ẋ2 + ẏ2) + 1

�1

[ −ρ1

cos2 y
+ sin y[ρ2 cos x − ρ3 sin x] + ρ4[cos2 x + cos2 y

− 2 cos2 y cos2 x] − ρ5 sin x cos x cos 2y

]
+ h, (37)

where

�1 = δ0 + δ1

cos2 y
+ sin y(δ2 cos x + δ3 sin x) − δ4(cos

2 y − cos2 x − 2 cos2 x cos2 y)

+ δ5 sin x cos x cos 2y, (38)

where δi and ρi are free parameters, which are introduced instead of the original ones for simplicity. This
system is new. It generalizes the case that is introduced byYehia in [39] by adding four parameters ρ3, ρ5, δ3
and δ5.Using (35), one can evaluate theGaussian curvature that vanisheswhen δ1 = δ2 = δ3 = δ4 = δ5 = 0
and δ0 = 1. The Lagrangian (37) becomes

L = 1

2
(ẋ2 + ẏ2) − ρ1

cos2 y
+ sin y[ρ2 cos x − ρ3 sin x] + ρ4[cos2 x + cos2 y

− 2 cos2 y cos2 x] − ρ5 sin x cos x cos 2y + h, (39)

This special case is also new. It adds two parameters, ρ3 and ρ5, to the case that is presented by Yehia in
[39]. It also generalizes a special version of Bozis’s case by inserting three parameters, ρ3, ρ4 and ρ5. The
complementary quartic integral for the present case can be expressed in the form

I2 = ẋ2
(
ẏ2 + 2ρ1

cos2 y

)
− 2

[
(2ρ4 sin x cos x + ρ5(1 − 2 cos2 x)) sin y + (ρ2 sin x + ρ3 cos x)

]

× cos yẋ ẏ + cos4 y
[
4 cos3 x((ρ2

4 − ρ2
5 ) cos x + 2ρ4ρ5 sin x) − 4 cos x((ρ2

4 − ρ2
5 ) cos x

+ ρ4ρ5 sin x) − ρ2
5

] − cos2 y[4(ρ2
4 − ρ2

5 ) cos
4 x + 4 (2ρ4ρ5 sin x + (ρ2ρ4 + ρ3ρ5) sin y)

× cos3 x + (
4 (ρ2ρ5 − ρ3ρ4) sin x sin y + ρ2

2 − ρ2
3 − 4ρ2

4 + 4ρ2
5

)
cos2 x − 2(ρ2(ρ3 sin x

+ 2ρ4 sin y) + ρ5(ρ3 sin y + 2ρ4 sin x)) cos x − 2ρ2ρ5 sin x sin y − ρ2
2 − ρ2

5 ]
+ 4ρ1 cos x(ρ5 sin x + ρ4 cos x). (40)

Another new integrable problem like the types of [40] can be constructed by performing the transformation
(x, y) → (i x , iy) in the Lagrangian (39), and we get

L = 1

2
(ẋ2 + ẏ2) + ρ1

cosh2 y
− sinh y[a cosh x + ρ3 sinh x] − ρ4[cosh2 x + cosh2 y

− 2 cosh2 y cosh2 x] + b sinh x cosh x cosh 2y + h, (41)



New integrable problems in the dynamics of particle and rigid body 3757

where the two constants a, b are introduced instead of ρ2, ρ5 to make the potential of the force real-valued.
It is easy to construct the complementary integral for the present case by applying the same transformation
to the integral (40).

2. Let p1 = −p3 = 1, α = 1, β = 0, μ = 1. Under the coordinate transformation q = cos x , p =
1 − 2 tanh2 y, the Lagrangian (32) takes the following form after some manipulations:

L = �2

2

(
cosh2 yẋ2 + ẏ2

) + 1

�2

[
ρ1

cosh2 y
+ sinh y

cosh3 y
(ρ2 cos x + ρ3 sin x) + cosh2 y − 2

2 cosh4(y)

× (ρ4 cos 2x + ρ5 sin 2x)

]
+ h, (42)

where

�2 = δ0 + δ1

cosh2 y
+ cosh2 y − 2

2 cosh4 y
(δ4 cos 2x + δ5 sin 2x) + sinh y

cosh3 y
(δ2 cos x + δ3 sin x), (43)

where ρi and δi are arbitrary parameters, which are introduced instead of the original ones for simplicity.
This problem characterizes a new integrable problem. The Gaussian curvature (35) for the present problem
takes the form

χ2 = −2

�2
. (44)

It is evident that the Gaussian curvature (44) takes a negative constant value when δ1 = δ2 = δ3 = δ4 = 0,
δ0 > 0, and consequently, the configuration manifold for the Lagrangian (42) represents a metric of a
pseudo-sphere. Under these conditions, the Lagrangian (42) can be written in the form

L = 1

2
(cosh2 yẋ2 + ẏ2) + ρ1

cosh2 y
+ sinh y

cosh3 y
(ρ2 cos x + ρ3 sin x) + cosh2 y − 2

2 cosh4(y)
× (ρ4 cos 2x + ρ5 sin 2x)] + h. (45)

Its quartic integral can be written in the form

I2 = cosh8 yẋ4 + [ρ4 cos 2x + ρ5 sin 2x]ẏ2 + 2 cosh yẋ ẏ[cosh y(ρ2 sin x − ρ3 cos x)

+ sinh y cosh y(ρ4 sin 2x − ρ5 cos 2x)] + cosh2 yẋ2[(3 − cosh2 y)(ρ4 cos 2x

+ ρ5 sin 2x) − 2(ρ1 cosh
2 y + sinh y cosh y(ρ2 cos x + ρ3 sin x))] + 1

2

sinh2 y

cosh4 y

× [(ρ2
4 − ρ2

5 ) cos 4x + 2ρ4ρ5 sin 4x] + sinh y

cosh3 y
[(ρ2ρ4 − ρ3ρ5) cos 3x + (ρ2ρ5

+ ρ3ρ4) sin 3x] − (ρ4 cos 2x + ρ5 sin 2x)

cosh4 y
[2ρ1 cosh2 y + 2 sinh y cosh y(ρ2 cos x

+ ρ3 sin x) + (cosh2 y − 2)(ρ4 cos 2x + ρ5 sin 2x)] + 1

2 cosh2 y
[(ρ2

2 − ρ2
3 )

× cos 2x + 2ρ2ρ3 sin 2x] − sinh y

cosh3 y
[(ρ2ρ5 − ρ3ρ4) sin x + (ρ2ρ4 + ρ3ρ5) cos x]

+ (ρ2
4 + ρ2

5 )

16 cosh4 y
[sinh4 y − 6 sinh2 y + 1] + (ρ2

2 + ρ2
3 )

4 cosh2 y
[sinh2 y − 1]. (46)

This case is new. It describes the motion of a particle on a pseudo-sphere. From another point of view,
the Gaussian curvature (44) takes a positive constant value when δ1 = δ2 = δ3 = δ4 = 0, δ0 < 0, and
consequently, the configuration manifold for the Lagrangian (42) represents a metric of a standard sphere.
Alternatively, this case can be obtained by performing the point transformation (x, y) = (iϕ, i(π

2 − θ)) to
express the Lagrangian (45) in the usual spherical coordinates, and we get
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L = 1

2
(θ̇2 + sin2 θϕ̇2) − ρ1

sin2 θ
− cos θ

sin3 θ
[a cosh ϕ − ρ3 sinh ϕ] + 1 + cos2 θ

sin4 θ
×[ρ4 cosh 2ϕ + b sinh 2ϕ]. (47)

It is clear that the potential function is not periodic in the longitudinal variable ϕ, and so, the given integrable
problem has only limited use in real problems. The complementary integral for the present case can be
formulated by applying the same transformation to (46).

Also, some previously known integrable problems can be reconstructed as special cases of (34) for certain
values of the parameters. Let us illustrate that by introducing a case as an example. This case is constructed
by setting α = 0, β = ν

2 , μ = −1, p1 = p3 = 0 in the Lagrangian (34) and performing the coordinate

transformation p = e−x−y and q = 1
2e

x−y
2 − ν

2 + ν2

8e
x−y
2

. The Lagrangian (32) takes the following form after

some manipulations:

L = 1

2
�3(ẋ

2 + ẏ2) − 1

�3
[a0 + a1e

−2x + a2e
−2y + a3e

x+y + a4e
2(x+y)] + h, (48)

where

�3 = b0 + b1e
−2x + b2e

−2y + b3e
x+y + b4e

2(x+y). (49)

Its quartic integral can be written in the form

I2 = �4
3 ẋ

2 ẏ2 + 2�2
3[a2e−2y ẋ2 + a1e

−2x ẏ2 + (a3e
x+y + de2x+2y)ẋ ẏ]

+ e2x+2y(a3 + a4e
x+y)2 + 2d(a2e

2x + a1e
2y) + 4a2a1e

−2x−2y . (50)

This case is completely found in [39].

4 Irreversible case

Now, we return again to the irreversible case. As outlined in section two, the basic equations that are used to
construct a time-irreversible system with complementary quartic integral have been formulated in the general
setting. Until now, these equations remain unsolved in general, but they will be solved for certain values of
parameters which lead to a rigid body dynamics, especially to Kowalevski’s configuration space. In other
words, the solution of Eqs. (15)–(17) is composed of the solution in the reversible case plus some additional
terms under certain conditions leading to themetric of Kowalevski’s type of rigid body dynamics. To keep these
equations (15)–(17) tractable, we will assume that the function F has the same structure as in the reversible
case (25) and the other function G we will postulate to be written in the form

G(p, q) = w0(p) + w1(q) + p(δ3 + δ4q + δ5q
2) + 4

√
a(q − q1)(q − q2)(q − q3)(q − q4)

×
[
δ0 + δ1

4
√
b(p − p1)(p − p2)(p − p3)(p − p4)

]
+ √

p + δ6(δ7 + δ8q), (51)

where δi are free parameters. Taking into consideration the transformation (21) and the two expressions for F
and G, Eqs. (15)–(17) are reduced to a system of ordinary differential equations involving u0, u1, w0, w1, f ,
and they are solved for the following combination of parameters:

p1 = p3 = α = μ = 1, β = 0, (52)

and the point transformation

q = cosϕ, p = cos4 θ

1 − cos2 θ
+ 1 , (53)

where θ is the angle of nutation andϕ is the angle of proper rotation. Inserting (52), (53) and the two expressions
(25), (51) into Eqs. (15)–(17), we get, after some manipulations which are not writable in a suitable size, a
new integrable problem in a rigid body dynamic. Its Lagrangian can be written in the form
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L = 1

2

[
θ̇2 + sin2 θ

2 − cos2 θ
ϕ̇2

]
+ sin2 θ

2 − cos2 θ

(
K + ν[1 + sin2 θ cos2 ϕ]

sin2 θ sin2 ϕ

)
ϕ̇ − 1

2

{
λ

2 cos2 θ

+ sin θ [a sin ϕ + b cosϕ] + 1

2
sin2 θ [d sin 2ϕ − 2c cos 2ϕ] − ν2 cos2 θ

sin4 θ sin4 ϕ
[1 + sin2 θ cos 2ϕ]

− νK cos2 θ

sin2 θ sin2 ϕ
+ cos2 θ

2(2 − cos2 θ)

(
K + ν[1 + sin2 θ cos2 ϕ]

sin2 θ sin2 ϕ

)2
}
, (54)

where K , σ , a, b, c, d and λ are free parameters. Its Jacobi integral becomes

I1 = 1

2

[
θ̇2 + sin2 θ

2 − cos2 θ
ϕ̇2

]
+ 1

2

{
λ

2 cos2 θ
+ sin θ [a sin ϕ + b cosϕ] + 1

2
sin2 θ [d sin 2ϕ − 2c cos 2ϕ]

− νK cos2 θ

sin2 θ sin2 ϕ
− ν2 cos2 θ

sin4 θ sin4 ϕ
[1 + sin2 θ cos 2ϕ] + cos2 θ

2(2 − cos2 θ)

(
K + ν[1 + sin2 θ cos2 ϕ]

sin2 θ sin2 ϕ

)2
}

= h, (55)

where h is the value of the numerical value of the Jacobi integral. The complementary integral can be expressed
after utilizing the expression (55) to remove h as

I2 = θ̇4 + sin4 θ

(2 − cos2 θ)4
ϕ̇4 +

{
2 sin2 θ

(2 − cos2 θ)2
ϕ̇(cos2 θϕ̇ + 4(K − ν)) + 2 sin θ(a sin ϕ + b cosϕ)

− cos2 θ [d sin 2ϕ − 2c cos 2ϕ] + λ sin2 θ

cos2 θ
− 2(K − ν)2

(2 − cos2 θ)2

[
cos4 θ − 3 cos2 θ + 4

]}
θ̇2

+ 2 cos θ

cos2 θ − 2
θ̇[sin θ(2c sin 2ϕ + d cos 2ϕ](cos2 θϕ̇ + 2K − 2ν) − 2(K − ν − sin2 θϕ̇)(b sin ϕ

− a cosϕ] + 2 cos2 θ

(2 − cos2 θ)
ϕ̇2

{
cos2 θ sin2 θ(d sin 2ϕ − 2c cos 2ϕ) − λ sin4 θ

cos2 θ
− 2 sin3 θ(a sin ϕ

+ b cosϕ) + 2 sin2 θ

(2 − cos2 θ)2
(cos4 θ − 7 cos2 θ + 4)(K − ν)2

}
+ 4(K − ν) sin2 θ cos2 θ

(2 − cos2 θ)2
ϕ̇

×
{
d sin 2ϕ − 2c cos 2ϕ + a sin ϕ + b cosϕ

sin θ
+ λ

cos4 θ
− (K − ν)2

(2 − cos2 θ)2

}
− λ(K − ν)2

cos2 θ(2 − cos2 θ)2

× (cos6 θ − 4 cos4 θ + 3 cos2 θ + 4) − (K − ν)4 cos2 θ sin2 θ

(2 − cos2 θ)4
[cos4 θ − 5 cos2 θ + 8] + λ2 sin4 θ

4 cos4 θ

− cos4 θ

4
[4(a2 + b2) − (4c2 + d2) cos2 θ ] − sin θ

cos2 θ(2 − cos2 θ)

{[
(ad − 2bc) cos8 θ

+
[
−4da + 2b

[
(K − ν)2 + 4c + λ

2

]]
cos6 θ +

[
4da − 6b

[
(K − ν)2 + 4c

3
+ 5λ

6

]]
cos4 θ + 8bλ

× cos2 θ − 4bλ
]
cosϕ + 2

[(
bd

2
+ ac

)
cos8 θ +

[(
λ

2
+ (K − ν)2 − 4c

)
a − 2bd

]
cos6 θ

+
[
2bd +

[
4Kν − 5λ

2
− 3ν2 − 3K 2 + 4c

]
a

]
cos4 θ + 4aλ cos2 θ − 2aλ

]
sin ϕ

}
.
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Comparing the Routhian (7) and the Lagrangian (54), we obtain

f = 0,

l3 = K + ν[1 + sin2 θ cos2 ϕ]
sin2 θ sin2 ϕ

,

V = sin θ [a sin ϕ + b cosϕ] + 1

2
sin2 θ [d sin 2ϕ − 2c cos 2ϕ] − ν2 cos2 θ

sin4 θ sin4 ϕ
[1 + sin2 θ cos 2ϕ]

+ λ

2 cos2 θ
− νK cos2 θ

sin2 θ sin2 ϕ
. (56)

This case describes a new integrable problem in a rigid body dynamics. It also generalizes some previous
results in this field. To clarify the comparison with other results, we now write this case in terms of traditional
Euler–Poisson variables as the following

Theorem 1 Assume the inertia matrix for a rigid body is I = diag(2C, 2C,C) and let the scalar and vector
potentials V and μ be given by

V = C

[
aγ1 + bγ2 + dγ1γ2 + c(γ 2

1 − γ 2
2 ) − νK

γ 2
1

γ 2
3 − ν2(2γ 2

2 + γ 2
3 )

2γ 4
1

γ 2
3 + λ

2γ 2
3

]
, (57)

and

μ = (μ1, μ2, μ3) = C

(
−2νγ3

γ 3
1

(1 + γ 2
2 ),

2νγ2γ3

γ 2
1

, K + ν(1 + γ 2
2 )

γ 2
1

)
, (58)

or, equivalently,

l = C

(
0, 0, K + ν(1 + γ 2

2 )

γ 2
1

)
,

where a, b, c, d, λ, K and ν are free parameters. Then, the Euler–Poisson equations (2) with (57) and (58)
are integrable on the zero level of the cyclic integral

I1 = 2pγ1 + 2qγ2 +
(
r + K + ν(1 + γ 2

2 )

γ 2
1

)
γ3.

The complementary integral takes the form

I2 =
[
p2 − q2 − aγ1 + bγ2 + cγ 2

3 − λ(γ 2
1 − γ 2

2 )

2γ 2
3

]2

+
[
2pq − aγ2 − bγ1 + d

2
γ 2
3 − λγ1γ2

γ 2
3

]2

+ (K − ν)

[
(r − K + ν)

[
2(p2+q2)+λ(1+ 1

γ 2
3

)

]
− 2γ3

[
(2cγ1+dγ2)p+q(dγ1 − 2cγ2)

]+ 2νλ

γ 2
1

]

− 4γ3
γ 2
1

(Kγ 2
1 + νγ 2

2 )(ap + bq) + 2νγ 2
3

γ 2
1

(aγ1 + bγ2)

[
ν(γ 2

1 − γ 2
2 )

γ 2
1

− 2K

]
+ νγ 2

3

γ 4
1

[ν(2γ 2
1 + γ 2

3 )

− 2Kγ 2
1 ](r2 + 2(c(γ 2

1 − γ 2
2 ) + dγ1γ2)) − ν(ν + rγ 2

1 )

γ 4
1

[
2γ 2

3 (p2 + q2) − λ(γ 2
1 + γ 2

2 )
] + 2νγ 3

3

γ 2
1

×[p(2cγ1 + dγ2) + q(dγ1 − 2cγ2)] − 2ν2γ 2
3

γ 6
1

r [Kγ 2
1 − ν(γ 2

1 + γ 2
3 )] + ν(K − ν)2γ 2

3

γ 4
1

[2Kγ 2
1

+ ν(γ 2
3 + 2γ 2

2 )] + ν4γ 4
3

γ 8
1

. (59)
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Table 1 Comparison with previous results

Authors Conditions on parameters References

Elmandouh a = b = 0 [43]
Yehia ν = 0 [42]
Goriachev K = ν = 0 [41]
Chaplygin c = d = ν = K = λ = 0 [5]

It contains seven free parameters. The comparison between the present integrable case and the related
previous cases is summarized in Table 1.
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