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Abstract By extending the pseudo-Stroh formalism tomultilayered one-dimensional orthorhombic quasicrys-
tal plates, we derive an exact closed-form solution for simply supported plates under surface loadings. The
propagator matrix method is introduced to efficiently and accurately treat the multilayered cases. As a nu-
merical example, a sandwich plate made of quasicrystals and crystals with two different stacking sequences
is investigated. The displacement and stress fields for these two stacking sequences are presented, which
clearly demonstrate the importance of the stacking sequences on the induced physical quantities. Our exact
closed-form solution should be of particular interest to the design of one-dimensional quasicrystal laminated
plates. The numerical results can be further used as benchmarks to various numerical methods, such as the
finite element and finite difference methods, on the analysis of laminated composites made of one-dimensional
quasicrystals.

1 Introduction

Since the discovery of icosahedral quasicrystals (QCs) in Al–Mn alloys in the early 1980s [1], great progress
has been made in experimental and theoretical analyses of QCs [2,3]. As a new structure of solid matter,
QCs have a long-range quasiperiodic translational order and a long-range orientational order [4]. Based on
the quasiperiodic directions of QCs, there are three kinds of QCs which are classified as one-, two- and
three-dimensional QCs [5]. A one-dimensional (1D) QC refers to a three-dimensional (3D) solid where its
atomic arrangement is periodic in a plane and quasiperiodic in the direction normal to the plane. A two-
dimensional (2D) QC is defined as a 3D body where its atomic arrangement is quasiperiodic in a plane and
periodic in the direction normal to the plane. A 3D QC behaves in such a way that the atomic arrangement
presents quasiperiodicity in all three directions. In the past few decades, 3D [1], 2D [6] and 1D [7] QCs with
thermodynamical stability were successfully discovered. Due to their low friction coefficient, low adhesion,
high wear resistance and low level of porosity, QCs have been increasingly investigated and utilized in industry.
For instance, they can be used as coatings or films of metals [8], as strengthening phases to reinforce alloys
[9], among others.

Soon after the discovery of QCs, Bak [10,11] and Levine et al. [12] developed the elastic energy theory
of QCs based on the Landau–Lifshitz phenomenological theory of elementary excitation of condensed matter.
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In the elastic theory of QCs, there exist two lower frequency excitations: phonon and phason. While phonons
are related to translations of atoms (standard elasticity), phasons are related to rearrangements of atomic
configurations. The introduction of the phason gives a macroscale description of the quasiperiodicity of QCs.
Since QCs at room temperature are brittle solids [5], Ding et al. [13] summarized the generalized linear
elasticity of QCs, which provides us with a fundamental theory to describe the elastic behavior of QCs based
on the notion of a continuum model. The material constants involved in the constitutive relation for some QCs
have been experimentally measured by various methods including X-ray diffraction and neutron scattering
[14–16]. Recent reviews on the linear elasticity theory of QCs can be found in Refs. [5,17,18].

Due to the introduction of the phason field, the equations in QC elasticity are much more complicated than
those in classical elasticity, and exact closed-form solutions are difficult to obtain in most cases. For 1D QCs,
many efforts have been made involving defect problems, such as dislocation and crack problems in infinite
space [19–23]. Based on the general solutions of 1D QCs [24,25], Gao et al. [26,27] solved exactly plane
problems for both a QC beam and QC plate by introducing a refined theory. Recently, static and transient
bending of 1D QC plates was studied by a mesh-free method [28], and an exact closed-form solution for a
half-infinite plane crack in an infinite space of 1D hexagonal QC under thermal loading was derived by Li [29].
However, an exact closed-form solution for 3D static problems of 1D orthorhombic QCs in a finite domain
has not been studied yet to the best of the authors’ knowledge.

It is well known that the Stroh formalism [19,30–32] is powerful and convenient in dealingwith plane crack
and dislocation problems of QCs. The pseudo-Stroh formalism given by Pan [33] has been successfully used
to obtain the solutions for the graded and multilayered plates [34,35]. In this paper, the powerful pseudo-Stroh
formalism is extended to find the general solution for simply supported 1D orthorhombic QC plates of finite
size. The propagator matrix method is then introduced to treat the corresponding multilayered case. In so
doing, the final exact closed-form solution, derived for multilayered 1D QC plates under surface loadings, is
concise and elegant. As numerical illustrations, a multilayered plate made of QCs and crystals with different
stacking sequences under a surface loading on the top of the plate are investigated.

2 Problem description and basic equations

A1DQC is defined as a 3D bodywhere its atomic arrangement is quasiperiodic along x3-direction and periodic
in the x1− x2 plane referred to a coordinate system (x1, x2, x3). According toWang et al. [36], there are thirty-
one possible point groups in 1DQCs, which are divided into ten Laue classes and six systems, namely triclinic,
monoclinic, orthorhombic, tetragonal, trigonal and hexagonal systems. In this work, a 1D orthorhombic QC
with the point group 2h2h2,mm2, 2hmmh,mmmh is considered, and the solutions for this system can be used
for other systems (such as tetragonal, trigonal and hexagonal systems) of 1D QCs by simply changing the
elastic constant matrices.

We consider a simply supported multilayered 1D orthorhombic QC plate with horizontal dimensions
x1 × x2 = L1 × L2 and a total thickness x3 = H , as shown in Fig. 1. The origin of the coordinate system is at
one of the four corners on the bottom surface such that the plate is in the positive x3 region. We let j denote
the j th layer of the layered plate. For layer j , its lower and upper interfaces are defined, respectively, as x ( j)

3

and x ( j+1)
3 . Thus, for an N -layered plate, it is obvious that x (1)

3 = 0 and x (N+1)
3 = H .

The deformed state of the QCs requires a combined consideration of interrelated phonon and phason fields.
In 1D QCs, a phason displacement field w3 exists in addition to the phonon displacement ui (i = 1, 2, 3).
According to the linear elastic theory of QCs [13], the strain-displacement relations for 1D QCs are given by
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Fig. 1 Multilayered 1D orthorhombic QC plate
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εi j = (
∂ j ui + ∂i u j

)
/2, w3 j = ∂ jw3 (1)

where j = 1, 2, 3, with repeated indices implying summation. Also in Eq. (1), ∂ j = ∂/∂x j , and εi j and w3 j
denote the phonon and phason strains, respectively.

In the absence of body forces, the force balance laws require

σi j, j = 0, H3 j, j = 0 (2)

where σi j and H3 j denote, respectively, the phonon and phason stresses. It should be noted that in equilibrium
Eq. (2), the conservative component of the inner self-action shown in previous studies [37,38] in the phason
field is not taken into account. This may cause non-physical results as evidenced by Colli and Mariano [39].
In the present work, however, the common assumptions without self-action in the phason field are accepted as
reported in recent progresses for static problems [5,27,31] and dynamic problems [18,32].

For 1D orthorhombic QCs, the linear constitutive equations take the following form [5]:

σ11 = C11∂1u1 + C12∂2u2 + C13∂3u3 + R1∂3w3,

σ22 = C12∂1u1 + C22∂2u2 + C23∂3u3 + R2∂3w3,

σ33 = C13∂1u1 + C23∂2u2 + C33∂3u3 + R3∂3w3,

σ23 = σ32 = C44 (∂3u2 + ∂2u3) + R5∂2w3,

σ31 = σ13 = C55 (∂3u1 + ∂1u3) + R6∂1w3,

σ12 = σ21 = C66 (∂2u1 + ∂1u2),

H33 = R1∂1u1 + R2∂2u2 + R3∂3u3 + K3∂3w3,

H32 = R5 (∂3u2 + ∂2u3) + K2∂2w3,

H31 = R6 (∂3u1 + ∂1u3) + K1∂1w3

(3)

whereCi j ,C44,C55,C66 represent the elastic constants in the phononfield, K1, K2, K3 are the elastic constants
in the phason field, and R1, R2, R3, R5, R6 are the phonon–phason coupling elastic constants.

For the multilayered QC plate, the simply supported displacement boundary conditions can be written as

x1 = 0 and L1 : u2 = u3 = w3 = 0;
x2 = 0 and L2 : u1 = u3 = w3 = 0. (4)

Along the interface of the layers, the displacements and traction forces are assumed to be continuous, i.e.,
{

(ui ) j = (ui ) j+1 , (w3) j = (w3) j+1 ,

(σi3) j = (σi3) j+1 , (H33) j = (H33) j+1 ,
at the interface between layers j and j+1. (5)

3 General solutions for 1D orthorhombic QC plates

For a homogeneous 1D QC plate under simply supported lateral boundary conditions, the solution of the
displacement vector can be assumed in the following form:

u =

⎧
⎪⎨

⎪⎩

u1
u2
u3
w3

⎫
⎪⎬

⎪⎭
=

∑

p,q

esx3

⎧
⎪⎨

⎪⎩

a1 cos px1 sin qx2
a2 sin px1 cos qx2
a3 sin px1 sin qx2
a4 sin px1 sin qx2

⎫
⎪⎬

⎪⎭
(6)

where

p = nπ/L1, q = mπ/L2, (7)

with n and m being two positive integers. Also in Eq. (6), s and (a1, a2, a3, a4) are eigenvalue and the
corresponding eigenvector to be determined. It can be seen that the displacement vector satisfies the simply
supported displacement boundary conditions in Eq. (4). In general, summations for n and m over suitable
ranges are implied whenever the sinusoidal term appears. To simplify the notation, we henceforth drop the
summation over p and q (or over n and m).
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Substitution of u from Eq. (6) in the constitutive Eq. (3) yields the following traction vector:

t =

⎧
⎪⎨

⎪⎩

σ13
σ23
σ33
H33

⎫
⎪⎬

⎪⎭
= esx3

⎧
⎪⎨

⎪⎩

b1 cos px1 sin qx2
b2 sin px1 cos qx2
b3 sin px1 sin qx2
b4 sin px1 sin qx2

⎫
⎪⎬

⎪⎭
(8)

where
⎧
⎪⎨

⎪⎩

b1
b2
b3
b4

⎫
⎪⎬

⎪⎭
=

⎛

⎜
⎝

⎡

⎢
⎣

0 0 C55 p R6 p
0 0 C44q R5q

−C13 p −C23q 0 0
−R1 p −R2q 0 0

⎤

⎥
⎦ + s

⎡

⎢
⎣

C55 0 0 0
0 C44 0 0
0 0 C33 R3
0 0 R3 K3

⎤

⎥
⎦

⎞

⎟
⎠

⎧
⎪⎨

⎪⎩

a1
a2
a3
a4

⎫
⎪⎬

⎪⎭
. (9)

Introducing two vectors

a = {a1, a2, a3, a4}t , b = {b1, b2, b3, b4}t , (10)

for the coefficients in Eq. (9), it can be shown that the vector b is related to a by

b = (−Rt + sT
)

a (11)

where the superscript t denotes matrix transpose, and

R =
⎡

⎢
⎣

0 0 C13 p R1 p
0 0 C23q R2q

−C55 p −C44q 0 0
−R6 p −R5q 0 0

⎤

⎥
⎦ , T =

⎡

⎢
⎣

C55 0 0 0
0 C44 0 0
0 0 C33 R3
0 0 R3 K3

⎤

⎥
⎦ . (12)

Similarly, the other stress components in Eq. (3) are obtained as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ11
σ12
σ22
H31
H32

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= esx3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1 sin px1 sin qx2
c2 cos px1 cos qx2
c3 sin px1 sin qx2
c4 cos px1 sin qx2
c5 sin px1 cos qx2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(13)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1
c2
c3
c4
c5

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢⎢
⎣

−C11 p −C12q C13s R1s
C66q C66 p 0 0

−C12 p −C22q C23s R2s
R6s 0 R6 p K1 p
0 R5s R5q K2q

⎤

⎥
⎥⎥
⎦

⎧
⎪⎨

⎪⎩

a1
a2
a3
a4

⎫
⎪⎬

⎪⎭
. (14)

Substituting all stress components in Eqs. (8) and (13) in the equilibrium Eq. (2), we have
(−C11 p

2a1−C66q
2a1−C12 pqa2−C66 pqa2

)+s (C13 pa3+C55 pa3+R1 pa4+R6 pa4) + s2C55a1 = 0,
(−C66 pqa1−C12 pqa1−C66 p

2a2−C22q
2a2

)+s (C23qa3+C44qa3+R2qa4+R3qa4) + s2C44a2 = 0,
(−C55 p

2a3 − C44q
2a3 − R6 p

2a4 − R5q
2a4

) + s (−C55 pa1 − C13 pa1 − C44qa2 − C23qa2)

+ s2 (C33a3 + R3a4) = 0,
(−R6 p

2a3 − R5q
2a3 − K1 p

2a4 − K2q
2a4

) + s (−R6 pa1 − R1 pa1 − R5qa2 − R2qa2)

+ s2 (R3a3 + K3a4) = 0.

(15)

In terms of vector a, Eq. (15) can be simplified as
[
Q + s

(
R − Rt) + s2T

]
a = 0 (16)
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where

Q =

⎡

⎢
⎢
⎣

− (
C11 p2 + C66q2

) −pq (C12 + C66) 0 0
−pq (C12 + C66) − (

C22q2 + C66 p2
)

0 0
0 0 − (

C55 p2 + C44q2
) − (

R6 p2 + R5q2
)

0 0 − (
R6 p2 + R5q2

) − (
K1 p2 + K2q2

)

⎤

⎥
⎥
⎦ . (17)

Because Eq. (16) is similar to the Stroh formalism [40], this formalism was named as the pseudo-Stroh
formalism [33]. From Eq. (16), it can be seen that eight eigenvalues s will form four opposite pairs rather than
conjugate complex pairs in the original Stroh formalism.

Making use of Eqs. (11) and (16), we also obtain the following relation between vectors a and b:

b = −1

s
(Q + sR) a. (18)

Then using Eqs. (11) and (18), Eq. (16) can be recast into a 8 × 8 linear eigensystem

Nξ = sξ , ξ = {a, b}t (19)

where

N =
[

T−1Rt T−1

−Q − RT−1Rt −RT−1

]
. (20)

A non-trivial solution for ξ exists if the determinant of the characteristic matrix in Eq. (19) vanishes. In other
words,

det (N − sI) = 0, (21)

with I being the 4 × 4 unit matrix, yields eight eigenvalues s. The corresponding eigenvectors ξ are determined
from Eq. (19). We point out that these eigenvalues may not be distinct. If repeated roots occur, a slight change
in any material constant would result in distinct roots with negligible error in our calculations [41]. Therefore,
only the case with distinct eigenvalues will be considered.

We assume that the first four eigenvalues have positive real parts (if the root is purely imaginary, we then
pick up the one with positive imaginary part) and the other four have opposite signs to the first four, as do their
associated eigenvectors a and b. That is,

sα+4 = −sα, Re(sα) > 0 (α = 1, 2, 3, 4), (22)

aα+4 = −aα, bα+4 = −bα (23)

where Re represents the real part of the quantity, then the general solution for the displacement vector in Eq. (6)
and traction vector in Eq. (8) is derived as

(
u
t

)
=

[
A1 A2
B1 B2

] 〈
es

∗x3
〉 {K1

K2

}
(24)

where

A1 = [a1, a2, a3, a4] , A2 = [a5, a6, a7, a8] ,
B1 = [b1, b2, b3, b4] , B2 = [b5, b6, b7, b8] , (25)

〈
es

∗z
〉
= diag

[
es1x3, es2x3, es3x3, es4x3, e−s1x3, e−s2x3, e−s3x3, e−s4x3

]
,

and K1 and K2 are two 4 × 1 constant column matrices to be determined.
Equation (24) is a general solution for a homogeneous and simply supported platemade of 1Dorthorhombic

QC. It should be noted that certain thin plate results can also be deduced from this solution by expanding the
exponential term in terms of a Taylor series [42].

It is imperative to note that crystals can be seen as special QCs with all phason-field physical quantities
being zero. From Eq. (3), it can be seen that if we set R1 → 0, K1 = K2 = K4 → 0, then H33 → 0. It
can be inferred that for multilayered plates containing both QC layers and crystal layers, the phonon stresses
and strains of the QC are infinitely close to those in the corresponding purely elastic crystal. Therefore, the
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general solution in Eq. (24) can be used for the purely elastic crystal simply supported plates by regarding a
crystal layer as “a special QC” layer with the phason-field elastic constants approaching zero. Thus, we regard
a crystal layer as a “special QC” layer where the coupling constants are zero and the phason elastic constants
are relatively very small (compared to the corresponding phonon elastic constants).

For a multilayered plate containing both 1D QC layers and crystal layers, the interface boundary condition
in phason field satisfies [43]

H33 = 0. (26)

By processing crystal layers as the “special QC” layers, the interface boundary condition in Eq. (26) can be
very closely approximated. That is, the continuity conditions for x3-direction phason traction forces along the
interfaces in Eq. (5) can be satisfied. Therefore, by virtue of the general solution in Eq. (24), the continuity
conditions along the interfaces in Eq. (5) and the boundary conditions on the top and bottom surfaces, the
phonon physical quantities and phason stresses can be accurately obtained for themultilayered plate containing
both QC layers and crystal layers. For QC layers, all phonon and phason stresses and displacements can be
exactly obtained under the boundary condition in Eq. (4). For crystal layers, there is no physical meaning at
all for phason displacement, and thus, one can simply set it to zero [35].

In summary, the general solution in Eq. (24) along with the boundary/interface conditions can be used
to solve the problems of multilayered 1D QC and crystal plates. To deal with a multilayered structure with
relatively large numbers of layers, the propagator matrix method can be employed instead [44]. In the next
section, this method is introduced to simplify the solution procedure involving multilayered 1D QC plates.

4 Solutions of the layered system

From Eq. (24), it can be seen that the constant columnmatrices K1 and K2 for layer j can be solved as follows:

(
K1
K2

)

j
=

〈
es

∗(x3−x ( j)
3 )

〉−1
[

A1 A2
B1 B2

]−1 (
u
t

)

x3

(27)

where the subscript j indicates layer j and s∗ are the eigenvalues of layer j , and x ( j)
3 ≤ x3 ≤ x ( j+1)

3 . Letting

x3 be x
( j)
3 and x ( j+1)

3 , we then have

{
K1
K2

}

j
=

[
A1 A2
B1 B2

]−1 (
u
t

)

x3=x ( j)
3

=
〈
es

∗h j
〉−1

[
A1 A2
B1 B2

]−1 (
u
t

)

x3=x ( j+1)
3

(28)

where h j is the thickness of layer j . From Eq. (28), the displacement u and traction t on the upper surface

x3 = x ( j+1)
3 can be expressed in terms of those on the lower surface x3 = x ( j)

3 of layer j as

(
u
t

)

x3=x ( j+1)
3

=
[

A1 A2
B1 B2

] 〈
es

∗h j
〉 [A1 A2

B1 B2

]−1 (
u
t

)

x3=x ( j)
3

. (29)

Assuming that the displacement u and traction t are continuous across the interfaces, Eq. (29) can be
applied repeatedly so that one can propagate the physical quantities from the bottom surface x3 = 0 to the top
surface x3 = H of the multilayered 1D QC plate. Therefore, we have

(
u
t

)

x3=H
= PN (hN )PN−1(hN−1) . . . P2(h2)P1(h1)

(
u
t

)

x3=0
(30)

where

P j (h j ) =
[

A1 A2
B1 B2

] 〈
es

∗h j
〉 [A1 A2

B1 B2

]−1

, ( j = 1, 2, . . . N ) (31)

is defined as the propagating matrix or propagator of layer j .
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The most remarkable feature in the pseudo-Stroh formalism is that calculation of the inverse matrix in
Eq. (31) can be avoided using the following simple relation [33]:

[
A1 A2
B1 B2

]−1

=
[−Bt

2 At
2

Bt
1 −At

1

]
(32)

where the matrices Al and Bl(l = 1, 2) are normalized according to

− Bt
2A1 + At

2B1 = I. (33)

Equation (30) is a very simplematrix propagation relation, and for given boundary conditions the unknowns
involved can be directly solved. Boundary conditions prescribed on the top and bottom surfaces can be either
displacement components ui and w3 or traction components σi3 and H33, or a suitable linear combination of
both. Since the normal loading (such as uniform or point loading) can be expanded as a double Fourier series
in x1 and x2, it is sufficient to consider only one term in the double Fourier series. As an example, we assume
that an x3-direction traction component is applied on the top surface of the plate as

σ13 = σ23 = 0, σ33 = σ0 sin px1 sin qx2, H33 = 0 (34)

where σ0 is the amplitude of the loading. All other traction components on the top and bottom surfaces are
assumed to be zero.

For loadings given by Eq. (34), it is reasonable to assume that only one term in the series expansion of
Eq. (6) will be non-vanishing. Thus, for this one-term solution, Eq. (30) is simplified to

(
u(H)
t(H)

)

x3=H
=

[
C1 C2
C3 C4

](
u(0)
0

)
(35)

where C1, C2, C3 and C4 are the multiplications of the propagator matrices in Eq. (30), and t(H) is the given
traction on the boundary of the top surface, i.e.,

t(H) = {0, 0, σ0 sin px1 sin qx2, 0}t . (36)

Substituting Eq. (36) in Eq. (35), the unknown displacements at the bottom and top surfaces can be obtained
as

u(0) = C−1
3 t(H), u(H) = C1C−1

3 t(H). (37)

Thus, for the displacement and traction vectors at any depth x ( j)
3 ≤ x3 ≤ x ( j+1)

3 , the solution is

(
u
t

)

x3

= P j (x3 − x ( j−1)
3 )P j−1(h j−1) . . . P2(h2)P1(h1)

(
u
t

)

x3=0
. (38)

With the solved displacement and traction vectors at any given depth, the corresponding stress vector in Eq. (13)
can be evaluated.

Similar exact closed-form solutions for other boundary conditions can also be simply obtained. Therefore,
for a multilayered 1D orthorhombic QC rectangular plate, we have derived the exact closed-form solution
based on the pseudo-Stroh formalism and the propagator matrix method. In the next section, we apply our
solution to investigate the response of a sandwiched QC plate under surface loading.
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5 Numerical studies

Here we consider a square sandwich plate made of 1D orthorhombic QC Al–Ni–Co and crystal BaTiO3 with
L1 = L2 = 1m and H = 0.3m. The three layers have equal thicknesses of 0.1 m. According to the material
coefficients of QCs shown by Fan [18] and Sladek et al. [28], the material properties for Al–Ni–Co are given
by

C11 = C22 = 23.433 × 1010 N/m2,C12 = 5.741 × 1010 N/m2,C13 = C23 = 6.663 × 1010 N/m2,

C33=23.222×1010 N/m2,C44 = C55 = 7.019 × 1010 N/m2,C66 = (C11 − C12)/2 = 8.846 × 1010 N/m2,

R1 = R2 = R3 = R5 = R6 = 8.846 × 109 N/m2, K1 = K2 = 12.2 × 1010 N/m2, K3 = 2.4 × 1010 N/m2.

The material coefficients for crystal BaTiO3 are obtained by Lee and Jiang [45] as

C11=C22=16.6×1010 N/m2,C12=7.7×1010 N/m2,C13=C23=7.8×1010 N/m2,C33=16.2×1010 N/m2,

C44 = C55 = 4.3 × 1010 N/m2,C66 = (C11 − C12)/2 = 4.45 × 1010 N/m2,

R1 = R2 = R3 = R5 = R6 = 0, K1 = K2 = K3 = 0.

It should be noted that in a crystal BaTiO3 layer, a very small value for Ki (i = 1, 2, 3) is assumed
during the calculation so that the system matrices of each layer have the same dimension (about 10−10 of the
corresponding Ki value in QC layer) to ensure that the system matrices are not singular.

Two stacking sequences,Al–Ni–Co/BaTiO3/Al–Ni–Co (calledQC/C/QC) andBaTiO3/Al–Ni–Co/BaTiO3
(called C/QC/C) of the layered plate are investigated. On the top surface of the layered plate (x3 = 0.3m), an
x3-direction traction is applied by Eq. (36) with n = m = 1 and amplitude σ0 = 1N/m2, while on the top
and bottom surfaces all other traction components are zero; that is, σ13 = σ23 = H33 = 0. To show the stress
and displacement responses of the plate in the thickness direction under the top surface loading, we choose
the vertical line (x3 from 0 to 0.3m) with fixed horizontal coordinates at (x1, x2) = (0.75L1, 0.75L2).

Figures 2 and 3 show, respectively, the variations of the stress components in the phonon and phason fields
along the x3-direction in the sandwich plate. From Figs. 2d and 3b, it can be seen that the values of the stress
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Fig. 2 Variation of the stress components in the phonon field along the thickness direction of the plate
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Fig. 4 Variation of displacement components u3 and w3 along the thickness direction of the plate

components in the x3-direction on the top and bottom surfaces satisfy the traction boundary conditions, which
also partially verifies the correctness of the derived solution. It is clear that the top surface loading produces
quite different responses in these two sandwich structures, which clearly demonstrates the role played by the
material stacking sequences. Figures 2 and 3 also show that the stress components in Eq. (13) are discontinuous
across the interfaces and are nonzero on the bottomand top surfaces,while the traction components inEq. (8) are
continuous across the interfaces. These stress components are approximately either symmetric or antisymmetric
about the middle plane. Figure 4 shows the variation of the displacement components u3 and w3 along the
x3-direction. It is clear that the displacement u3 is continuous, while the displacement w3 is not.

The model results may have potential applications in the field of laminated structures made of 1D QCs and
crystals. For example, to design a QC/C/QC sandwich plate, the stress level (or distribution) within the plate
under a normal surface loading on the top surface is required.

6 Conclusions

Utilizing the powerful pseudo-Stroh formalism, we have derived an exact closed-form solution for a simply
supported and multilayered 1D orthorhombic plate under surface loading. The propagator matrix method is
also introduced in order to treat efficiently and accurately the multilayered cases. Thus, our solution can be
applied to 1D QCs with arbitrary material property layering in the layered plate.

The typical sandwich plate made of 1D QC Al–Ni–Co and crystal BaTiO3 with two different stacking
sequences is investigated. It is observed that the stacking sequences can substantially influence all physical
quantities, which should be of interest to the design of the 1D QC laminated plates. The results can also
be employed to verify the accuracy of the solutions by numerical methods, such as the finite element and
difference methods, when analyzing laminated composites made of QCs.
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