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Abstract The nonlinear buckling and post-buckling problems of functionally graded stiffened toroidal shell
segments surrounded by an elastic medium under torsion based on an analytical approach are investigated. The
rings and stringers are attached to the shell, and material properties of the shell are assumed to be continuously
graded in the thickness direction. The classical shell theory with the geometrical nonlinearity in von Kármán
sense and the smeared stiffeners technique are applied to establish theoretical formulations. The three-term
approximate solution of deflection is chosen more correctly, and the explicit expression to find critical load
and post-buckling torsional load-deflection curves is given. The effects of geometrical parameters and the
effectiveness of stiffeners on the stability of the shell are investigated.

1 Introduction

Functionally graded materials (FGMs) were known by Japanese scientists in 1984 [1]. This composite material
is amixture of ceramic andmetallic constituentmaterials by continuously changing the volume fractions of their
components. The advantage of FGMs is that they are better than the traditional fiber-reinforced and laminated
composite materials in avoiding the stress concentration. FGMs are applied to heat-resistant, lightweight
structures in aerospace,mechanical, andmedical industries, etc. Therefore, the buckling and vibration problems
of FGM structures have attracted much attention of researchers.

On the research of the torsional problem, Sofiyev et al. [2,3] pointed out the torsional vibration and buckling
analysis of a cylindrical shell surrounded by an elastic medium. The torsion of a circular cylindrical bar made
of either an isotropic compressible or an isotropic incompressible linear elastic material with material moduli
varying only in the axial direction was taken into account by Batra [4]. The torsional post-buckling analysis of
FGM cylindrical shells in thermal environment based on a higher-order shear deformation theory with a von
Kármán–Donell type of kinematic nonlinearity was given by Shen [5]. Sofiyev and Schnack [6] presented the
stability of a functionally graded cylindrical shell subjected to torsional loading varying as a linear function of
time. The modified Donnell-type dynamic stability and compatibility equations were applied. The nonlinear
buckling problem of FGMcylindrical shells under torsion load based on the nonlinear large deflection theory by
using the energy method and the nonlinear strain–displacement relations of large deformation was studied by
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Huang and Han [7]. Wang et al. [8] carried out the exact solutions and transient behavior for torsional vibration
of functionally graded finite hollow cylinders. The torsional analysis of functionally graded hollow tubes of
arbitrary shape based on governing equations in terms of Prandtl’s stress functionwas investigated byArghavan
and Hematiyan [9]. Tan [10] developed the torsional buckling loads of thin and thick shells of revolution based
on the classical thin shell theory and the first-order shear deformation shell theory. The nonlinear buckling
and post-buckling problems of functionally graded stiffened thin circular cylindrical shells only subjected to
torsional load by the analytical approach based on the classical shell theory with the geometrical nonlinearity
in von Kármán sense were studied by Dung and Hoa [11]. The torsional stability analysis for thin cylindrical
shells with the functionally graded middle layer resting on a Winkler elastic foundation was given by Sofiyev
and Adiguzel [12]. The fundamental relations and basic equation of three-layered cylindrical shells with a
FG middle layer resting on a Winkler elastic foundation under torsional load were derived. Zhang and Fu
[13] addressed the torsional buckling characteristic of an elastic cylinder with a hard surface coating layer
by Navier’s equation and thin shell model. Recently, Dung and Hoa [14] investigated the nonlinear buckling
and post-buckling of functionally graded stiffened thin circular cylindrical shells surrounded by an elastic
foundation in thermal environments under torsional load by an analytical approach.

The nonlinear buckling and post-buckling of heat functionally graded cylindrical shells under combined
axial compression and radial pressure were studied by Huang and Han [15]. Bich et al. [16] investigated
the linear buckling of truncated conical panels made of functionally graded materials and subjected to axial
compression, external pressure, and the combination of these loads. The nonlinear buckling behavior of trun-
cated conical shells made of FGM using the large deformation theory with the von Kármán–Donnell type
of kinematic nonlinearity subjected to a uniform axial compressive load was investigated by Sofiyev [17].
Furthermore, Duc et al. [18,19] presented an analytical approach to present the nonlinear static buckling and
post-buckling for imperfect eccentrically stiffened FGM of shell structures on elastic foundations. The post-
buckling analysis of axially loaded functionally graded cylindrical shells in thermal environments using the
classical shell theory with von Kármán–Donnell type of kinematic nonlinearity was pointed out by Shen [20].
The dynamic buckling of imperfect FGM cylindrical shells with integrated surface-bonded sensor and actuator
layers subjected to some complex combinations of thermo-electro-mechanical loads based on the general form
of Green’s strain tensor in curvilinear coordinates and a high-order shell theory proposed earlier was studied by
Shariyat [21]. Liew et al. [22] calculated the post-buckling of FGM cylindrical shells under axial compression
and thermal loads using the element-free kp-Ritz method. Kernel shape functions were used to approximate
field variables and formulations based on the Ritz procedure which leads to a system of nonlinear discrete
equations and overcomes the shortcomings of the conventional Rayleigh–Ritz method, in which it is difficult
to choose appropriate global trial functions for problems with complicated boundary conditions. The linear
thermal buckling and free vibration for functionally graded cylindrical shells subjected to a clamped–clamped
boundary condition with temperature-dependent material properties were investigated by Kadoli and Ganesan
[23]. The buckling behavior of FGM cylindrical shells subjected to pure bending load were taken into account
byHuang et al. [24]. Sofiyev et al. [25] discussed the buckling of FGMhybrid truncated conical shells subjected
to hydrostatic pressure. The author chose the available solution to satisfy the boundary condition, inserted them
into the governing equations, and then used Galerkin’s method to lead to pairs of time-dependent differential
equations. Moreover, the thermal buckling of FGM sandwich plates was studied by Zenkour and Sobhy [26]
using the sinusoidal shear deformation.

The shell on an elastic foundation has been studied by many authors. The simplest model for the elastic
foundation is Winkler’s model [27] like a series of separated springs without coupling effects between each
other, and then a shear layer to one-parameter model is added by a Pasternak [28]. Bagherizadeh et al. [29]
investigated the mechanical buckling of functionally graded material cylindrical shells surrounded by a Paster-
nak elastic foundation. Theoretical formulations were presented based on a higher-order shear deformation
shell theory. Moreover, the post-buckling of FGM cylindrical shells surrounded by an elastic medium was
presented by Shen [30,31]. Sofiyev [32,33] studied the buckling of FGM shells on an elastic foundation. The
buckling of a heterogeneous orthotropic truncated conical shell under an axial load and surrounded by elastic
media based on the finite deformation theory was investigated by Sofiyev [34]. The governing equations of
elastic buckling of heterogeneous orthotropic truncated conical shells using von Kármán nonlinearity were
given. Furthermore, Sofiyev [35] researched the nonlinear buckling of the FGM truncated conical shell sur-
rounded by an elastic medium using the large deformation theory with von Kármán –Donnell type of kinematic
nonlinearity.

Stein and McElman [36] carried out the buckling problem of homogenous and isotropic toroidal shell
segments. Moreover, the initial post-buckling behavior of toroidal shell segments subject to several loading
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conditions based on Koiter’s general theory was performed by Hutchinson [37]. Parnell [38] gave a simple
technique for the analysis of shells of revolution applied to toroidal shell segments.

To the best of the authors’ knowledge, there has not been a study on the nonlinear torsional buckling of
eccentrically stiffened FGM toroidal shell segments.

In the present paper, the nonlinear torsional buckling and post-buckling of eccentrically stiffened FGM
toroidal shell segments surrounded by an elastic medium are investigated. Basing on the classical shell theory
with nonlinear strain–displacement relation of large deflection, the Galerkin method is used for nonlinear
buckling analysis of shells to give the expression of curves between deflection and torsional load. The effects
of buckling modes, geometrical parameters, and volume fraction index on the nonlinear torsional buckling
behavior of shells are investigated.

2 Governing equations

2.1 Functionally graded material (FGM)

Suppose that the material composition of the shell varies smoothly along the thickness in such a way that the
inner surface is ceramic rich and the outer surface is metal rich by a simple power law in terms of the volume
fractions of the constituents.

Denote Vm and Vc the volume fractions of metal and ceramic phases, respectively, which are related by

Vm + Vc = 1 and Vc is expressed as Vm(z) = ( 2z+h
2h

)k
, where h is the thickness of the thin-walled structure,

k is the volume-fraction exponent (k ≥ 0); z is the thickness coordinate and varies from −h/2 to h/2; the
subscripts m and c refer to the metal and ceramic constituents, respectively. According to the mentioned law,
Young’s modulus reads:

E(z) = EmVm + EmVm = Em + (Em − Em)

(
2z + h

2h

)k

, (1)

Poisson’s ratio υ is assumed to be constant.

2.2 Constitutive relations and governing equations

Consider a functionally graded toroidal shell segment of thickness h and length L , which is formed by rotation
of a plane circular arc of radius R about an axis in the plane of the curve as shown in Fig. 1. For the middle
surface of a toroidal shell segment, from the figure:

r = a − R(1 − sin ϕ),

where a is the equator radius andϕ is the angle between the axis of revolution and the normal to the shell surface.
For a sufficiently shallow toroidal shell in the region of the equator of the torus, the angle ϕ is approximately
equal to π/2; thus, sin ϕ ≈ 1, cosϕ ≈ 0, and r = a [36]. The form of governing equation is simplified by
putting:

dx1 = R dϕ, dx2 = a dθ.

The radius of arc R is positive with convex toroidal shell segment and negative with concave toroidal shell
segment.

Suppose the FGM toroidal shell segment is reinforced by string and ring stiffeners. In order to provide
continuity within the shell and stiffeners and easier manufacture, homogeneous stiffeners can be used. Because
pure ceramic ones show brittleness, we used metal stiffeners and put them at the metal-rich side of the shell.
With the law indicated in (1), the outer surface is metal rich, so the external metal stiffeners are put at the outer
side of the shell.

The strains across the shell thickness at a distance z from the mid-surface are:

ε1 = ε01 − zχ1; ε2 = ε02 − zχ2; γ12 = γ 0
12 − 2zχ12 (2)

where ε01 and ε02 are normal strains, γ 0
12 is the shear strain at the middle surface of the shell, and χi j are the

curvatures.
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Fig. 1 Configuration of toroidal shell segments
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According to the classical shell theory, the strains at the middle surface and curvatures are related to the
displacement components u, v, w in the x1, x2, z coordinate directions as [39]:

ε01 = ∂u

∂x1
− w

R
+ 1

2

(
∂w

∂x1

)2

; ε02 = ∂v

∂x2
− w

a
+ 1

2

(
∂w

∂x2

)2

;

γ 0
12 = ∂u

∂x2
+ ∂v

∂x1
+ ∂w

∂x1

∂w

∂x2
; χ1 = ∂2w

∂x21
; χ2 = ∂2w

∂x22
; χ12 = ∂2w

∂x1∂x2
. (3)

From Eq. (3), the strains must be satisfied in the deformation compatibility equation

∂2ε01

∂x22
+ ∂2ε02

∂x21
− ∂2γ 0

12

∂x1∂x2
= − ∂2w

R∂x22
− ∂2w

a∂x21
+

(
∂2w

∂x1∂x2

)2

− ∂2w

∂x21

∂2w

∂x22
. (4)

Hooke’s stress–strain relation is applied for the shell,

σ sh
1 = E(z)

1 − ν2
(ε1 + νε2),

σ sh
2 = E(z)

1 − ν2
(ε2 + νε1),

σ sh
12 = E(z)

2(1 + ν)
γ12.

(5)

And for metal stiffeners

σ st
1 = Emε1,

σ st
2 = Emε2. (6)

Taking into account the contribution of stiffeners by the smeared stiffeners technique and omitting the twist
of stiffeners and integrating the stress–strain equations and their moments through the thickness of the shell,
we obtain the expressions for force and moment resultants of ES-FGM toroidal shell segment:

N1 =
(
A11 + EmA1

s1

)
ε01 + A12ε

0
2 − (B11 + C1)χ1 − B12χ2,

N2 = A12ε
0
1 +

(
A22 + EmA2

s2

)
ε02 − B12χ1 − (B22 + C2)χ2, (7)

N12 = A66γ
0
12 − 2B66χ12,

M1 = (B11 + C1)ε
0
1 + B12ε

0
2 −

(
D11 + Em I1

s1

)
χ1 − D12χ2,

M2 = B12ε
0
1 + (B22 + C2)ε

0
2 − D12χ1 −

(
D22 + Em I2

s2

)
χ2, (8)

M12 = B66γ
0
12 − 2D66χ12

where Ai j , Bi j , Di j (i, j = 1, 2, 6) are extensional, coupling, and bending stiffnesses of the shell without
stiffeners.

A11 = A22 = E1

1 − ν2
, A12 = E1.ν

1 − ν2
, A66 = E1

2(1 + ν)
,

B11 = B22 = E2

1 − ν2
, B12 = E2.ν

1 − ν2
, B66 = E2

2(1 + ν)
,

D11 = D22 = E3

1 − ν2
, D12 = E3.ν

1 − ν2
, D66 = E3

2(1 + ν)
, (9)

and



3506 D. G. Ninh et al.

E1 =
(
Em + Em − Em

k + 1

)
h, E2 = (Em − Em)kh2

2(k + 1)(k + 2)
,

E3 =
[
Em

12
+ (Em − Em)

(
1

k + 3
− 1

k + 2
+ 1

4k + 4

)]
h3,

(10)

and

C1 = ± EmA1z1
s1

, C2 = ± EmA2z2
s2

,

A1 = h1d1, A2 = h2d2, (11)

I1 = d1h31
12

+ A1z
2
1, I2 = d2h32

12
+ A2z

2
2.

In the above relations (7), (8), (10), and (11), Em is the elasticity modulus of the metal stiffener which is
assumed to be identical for both types of stiffeners. The spacings of the stringer and ring stiffeners are denoted
by s1 and s2, respectively. The quantities A1, A2 are the cross section areas of the stiffeners, and I1, I2, z1, z2
are the second moments of cross section areas and eccentricities of the stiffeners with respect to the middle
surface of the shell, respectively. The sign minus of C1 and C2 depends on external stiffeners.

Remark Conversely, if the inner side of FGMshell ismetal richwith existence ofmetal stiffeners, all calculated
expressions can be used, but one must replace Ec and Em each to other in Eq. (10), and the plus sign is taken
in Eq. (11).

The nonlinear equilibrium equations of a toroidal shell segment surrounded by an elastic foundation based
on the classical shell theory are given by [39]:

∂N1

∂x1
+ ∂N12

∂x2
= 0, (12.1)

∂N12

∂x1
+ ∂N2

∂x2
= 0, (12.2)

∂2M1

∂x21
+ 2

∂2M12

∂x1∂x2
+ ∂2M2

∂x22
+ N1

∂2w

∂x21
+ 2N12

∂2w

∂x∂y
(12.3)

+ N2
∂2w

∂x22
+ N1

R
+ N2

a
− K1w + K2

(
∂2w

∂x21
+ ∂2w

∂x22

)

= 0 (12.4)

where K1 (N/m3) is the linear stiffness of the foundation and K2(N/m) is the shear modulus of the subgrade.
Considering the first two of Eqs. (12), a stress function may be defined as:

N 1
1 = ∂2F

∂x22
, N 1

2 = ∂2F

∂x21
, N 1

12 = − ∂2F

∂x1∂x2
. (13)

The reverse relations are obtained from Eq. (7)

ε01 = A∗
22N1 − A∗

12N2 + B∗
11χ1 + B∗

12χ2,

ε02 = A∗
11N2 − A∗

12N1 + B∗
21χ1 + B∗

22χ2, (14)

γ 0
12 = A∗

66N12 + 2B∗
66χ12,

where

A∗
11 = 1

�

(
A11 + E0A1

s1

)
, A∗

22 = 1

�

(
A22 + E0A2

s2

)
, A∗

12 = A12

�
, A∗

66 = 1

A66
,

� =
(
A11 + E0A1

s1

)
.

(
A22 + E0A2

s2

)
− A2

12;
B∗
11 = A∗

22(B11 + C1) − A∗
12B12, B∗

22 = A∗
11(B22 + C2) − A∗

12B12,

B∗
12 = A∗

22B12 − A∗
12(B22 + C2), B∗

21 = A∗
11.B12 − A∗

12(B11 + C1), B∗
66 = B66

A66
.
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Substituting Eq. (14) in Eq. (8) yields

M1 = B∗
11N1 + B∗

21N2 − D∗
11χ1 − D∗

12χ2,

M2 = B∗
12N1 + B∗

22N2 − D∗
21χ1 − D∗

22χ2, (15)

M12 = B∗
66N12 − 2D∗

66χ12

where

D∗
11 = D11 + E0 I1

s1
− (B11 + C1)B

∗
11 − B12B

∗
21,

D∗
22 = D22 + E0 I2

s2
− B12B

∗
21 − (B22 + C2)B

∗
22,

D∗
12 = D12 − (B11 + C1)B

∗
12 − B12B

∗
22,

D∗
21 = D12 − B12B

∗
11 − (B22 + C2)B

∗
21,

D∗
66 = D66 − B66B

∗
66.

The substitution of Eq. (14) in the compatibility Eqs. (4) and (15) in Eq. (12.3), taking into account expressions
(3) and (13), yields a system of equations

A∗
11

∂4F

∂x41
+ (A∗

66 − 2A∗
12)

∂4F

∂x21∂x
2
2

+ A∗
22

∂4F

∂x42
+ B∗

21
∂4w

∂x41
+ (B∗

11 + B∗
22 − 2B∗

66)
∂4w

∂x21∂x
2
2

+

+ B∗
12

∂4w

∂x42
= − 1

R

∂2w

∂x22
− 1

a

∂2w

∂x21
+

(
∂2w

∂x1∂x2

)2

− ∂2w

∂x21

∂2w

∂x22
, (16)

B∗
21

∂4F

∂x41
+ (B∗

11 + B∗
22 − 2B∗

66)
∂4F

∂x21∂x
2
2

+ B∗
12

∂4F

∂x42
− D∗

11
∂4w

∂x41
− (D∗

12 + D∗
21 + 4D∗

66)
∂4w

∂x21∂x
2
2

− D∗
22

∂4w

∂x42
+ 1

R

∂2F

∂x22
+ 1

a

∂2F

∂x21
+ ∂2F

∂x22

∂2w

∂x21
− 2

∂2F

∂x1∂x2

∂2w

∂x1∂x2
+ ∂2F

∂x21

∂2w

∂x22
− K1w

+ K2

(
∂2w

∂x21
+ ∂2w

∂x22

)

= 0.

(17)

3 Nonlinear torsional buckling analysis

The FGM toroidal shell segment is assumed to be simply supported at its edges x1 = 0 and x1 = L and
subjected to torsional load on the circular base of the shell.

The edge is simply supported and freely movable (FM) in the axial direction. The associated boundary
conditions are:

w = 0, M1 = 0, N1 = 0, N12 = τh at x1 = 0; L . (18)

With the consideration of boundary conditions (18), the deflection of the shell in this case can be expressed by
[7]:

w = W0 + W1 sin γmx1 sin βn(x2 − λx1) + W2 sin
2 γmx1, (19)

in which γm = mπ
L , βn = n

a , and m, n are the half wave numbers along x1-axis and wave numbers along
x2-axis, respectively. The first term of w in Eq. (19) represents the uniform deflection of points belonging
to two butt ends x1 = 0 and x1 = L , the second term—a linear buckling shape, and the third—a nonlinear
buckling shape.

As can be seen, the simply supported boundary condition at x1 = 0 and x1 = L is fulfilled in the average
sense.
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Substituting Eq. (19) in Eq. (16) one obtains

A∗
11

∂4F

∂x41
+ (A∗

66 − 2A∗
12)

∂4F

∂x21∂x
2
2

+ A∗
22

∂4F

∂x42
= H01 cos 2γmx1 + H02 cos 2βn(x2 − λx1)

+ H03

{
cosβn

[
x2 −

(
3γm
βn

+ λ

)
x1

]
− cosβn

[
x2 +

(
3γm
βn

− λ

)
x1

]}

+ H04 cosβn

[
x2 −

(
γm

βn
+ λ

)
x1

]
+ H05 cosβn

[
x2 +

(
γm

βn
− λ

)
x1

]
(20)

where

H01 =
[
2γ 2

m

(
4B∗

21γ
2
m − 1

a

)]
W2 + 1

2
W 2

1 γ 2
mβ2

n ; H02 = 1

2
γ 2
mβ2

nW
2
1 ; H03 = 1

2
γ 2
mβ2

nW1W2;

H04 = 1

2
W1

{
−B∗

21(γ
2
m + β2

nλ
2)2 + (2γmβnλ)2 +

[
1

a
− β2

n (B
∗
11 + B∗

22 − 2B∗
66)

]
(γ 2

m + β2
nλ

2) − B∗
12β

4
n

+ 2γmβnλ

[
−2B∗

21(γ
2
m + β2

nλ
2) + 1

a
− (B∗

11 + B∗
22 − 2B∗

66)β
2
n

]}
− 1

2
γ 2
mβ2

nW1W2 + 1

2R
β2
nW1;

H05 = W1

{
1

2
B∗
21

[
(γ 2

m + β2
nλ

2)2 + (2γmβnλ)2
] − 1

2

[
1

a
− β2

n (B
∗
11 + B∗

22 − 2B∗
66)

]
(γ 2

m + β2
nλ

2) + B∗
12γ

4
n

+ γmβnλ

[
−2B∗

21(γ
2
m + β2

nλ
2) + 1

a
− (B∗

11 + B∗
22 − 2B∗

66)β
2
n

]}
+ 1

2
γ 2
mβ2

nW1W2 − 1

2R
β2
nW1. (21)

The general solution of Eq. (20) for a torsion-loaded shell is of the form

F = H1 cos 2γmx1 + H2 cos 2βn(x2 − λx1)

+ H3 cosβn

[
x2 −

(
3γm
βn

+ λ

)
x1

]
+ H4 cosβn

[
x2 +

(
3γm
βn

− λ

)
x1

]

+ H5 cosβn

[
x2 −

(
γm

βn
+ λ

)
x1

]
+ H6 cosβn

[
x2 +

(
γm

βn
− λ

)
x1

]
− τhx1x2 (22)

where τ is the torsional load intensity and the coefficients Hi (i = 1 ÷ 8) are defined by:

H1 = H01

16γ 4
m A∗

11
= M1W2 + M2W

2
1 ;

H2 = H02

16β4
n [A∗

11λ
4 + (

A∗
66 − 2A∗

12

)
λ2 + A∗

22]
= M3W

2
1 ;

H3 = H03

β4
n

[
A∗
11

(
3γm
βn

+ λ
)4 + (

A∗
66 − 2A∗

12

) (
3γm
βn

+ λ
)2 + A∗

22

] = M4W1W2;

H4 = −H03

β4
n

[
A∗
11

(
3γm
βn

− λ
)4 + (

A∗
66 − 2A∗

12

) (
3γm
βn

− λ
)2 + A∗

22

] = M5W1W2;

H5 = H04

β4
n

[
A∗
11

(
γm
βn

+ λ
)4 + (

A∗
66 − 2A∗

12

) (
γm
βn

+ λ
)2 + A∗

22

] = M6W1 + M7W1W2;

H6 = H05

β4
n

[
A∗
11

(
γm
βn

− λ
)4 + (

A∗
66 − 2A∗

12

) (
γm
βn

− λ
)2 + A∗

22

] = M8W1 + M9W1W2 (23)
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in which

M1 = 4B∗
21γ

2
m − 1

a

8γ 2
m A∗

11
; M2 = β2

n

32γ 2
m A∗

11
; M3 = γ 2

m

32β2
n [A∗

11λ
4 + (

A∗
66 − 2A∗

12

)
λ2 + A∗

22]
;

M4 = γ 2
m

β2
n

[
A∗
11

(
3γm
βn

+ λ
)4 + (

A∗
66 − 2A∗

12

) (
3γm
βn

+ λ
)2 + A∗

22

] ;

M5 = −γ 2
m

β2
n

[
A∗
11

(
3γm
βn

− λ
)4 + (

A∗
66 − 2A∗

12

) (
3γm
βn

− λ
)2 + A∗

22

] ;

M6 =

1
2

{
−B∗

21(γ
2
m + β2

nλ
2)2 + (2γmβnλ)2 + [ 1

a − β2
n (B

∗
11 + B∗

22 − 2B∗
66)

]
(γ 2

m + β2
nλ

2) − B∗
12β

4
n

+ 2γmβnλ
[−2B∗

21(γ
2
m + β2

nλ
2) + 1

a − (B∗
11 + B∗

22 − 2B∗
66)β

2
n

]} + 1
2Rβ2

n

β4
n

[
A∗
11

(
γm
βn

+ λ
)4 + (

A∗
66 − 2A∗

12

) (
γm
βn

+ λ
)2 + A∗

22

] ;

M7 = − 1
2γ

2
m

β2
n

[
A∗
11

(
γm
βn

+ λ
)4 + (

A∗
66 − 2A∗

12

) (
γm
βn

+ λ
)2 + A∗

22

] ;

M8 =

{
1
2 B

∗
21

[
(γ 2

m + β2
nλ

2)2 + (2γmβnλ)2
] − 1

2

[ 1
a − β2

n (B
∗
11 + B∗

22 − 2B∗
66)

]
(γ 2

m + β2
nλ

2) + B∗
12γ

4
n

+ γmβnλ
[−2B∗

21(γ
2
m + β2

nλ
2) + 1

a − (B∗
11 + B∗

22 − 2B∗
66)β

2
n

]} − 1
2Rβ2

n

β4
n

[
A∗
11

(
γm
βn

− λ
)4 + (

A∗
66 − 2A∗

12

) (
γm
βn

− λ
)2 + A∗

22

] ;

M9 =
1
2γ

2
m

β2
n

[
A∗
11

(
γm
βn

− λ
)4 + (

A∗
66 − 2A∗

12

) (
γm
βn

− λ
)2 + A∗

22

] . (24)

Equation (17) will be evaluated by the Galerkin method. The procedure is performed in the following:
Substituting Eqs. (19) and (22) in the left side of Eq. (17), then multiplying the obtained equation in turn

with each shape function of Eq. (19), and integrating in the ranges 0 ≤ x1 ≤ L; 0 ≤ x2 ≤ 2πa and after some
calculations lead to:

S1 + S2W2 + S3W
2
1 + S4W

2
2 + 2τβ2λh = 0, (25)

S5W2 + S6W
2
1 + S7W

2
1W2 + 2K1W0 = 0 (26)

where

S1 =
{[

B∗
21(γm + βnλ)4 + B∗

12β
4
n + β2

n (B
∗
11 + B∗

22 − 2B∗
66)(γm + βnλ)2 − β2

n

R
− (γm + βnλ)2

a

]

M6

−
[

B∗
21(γm − βnλ)4 + B∗

12β
4
n + β2

n (B
∗
11 + B∗

22 − 2B∗
66)(γm − βnλ)2 − β2

n

R
− (γm − βnλ)2

a

]

M8

−D∗
11

2

[
(γm + βnλ)4 + (γm − βnλ)4

]

− (D∗
12 + D∗

21 + 4D∗
66)β

3
nγmλ − D∗

22β
4
n − K1 − K2

(
γ 2
m + β2

nλ
2) − K2β

2
n

}

,
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S2 =
{[

B∗
21(γm + βnλ)4 + B∗

12β
4
n + β2

n (B
∗
11 + B∗

22 − 2B∗
66)(γm + βnλ)2 − β2

n

R
− (γm + βnλ)2

a

]

M7

−
[

B∗
21(γm − βnλ)4 + B∗

12β
4
n + β2

n (B
∗
11 + B∗

22 − 2B∗
66)(γm − βnλ)2 − β2

n

R
− (γm − βnλ)2

a

]

M9

+ (M6 − M8) γ 2
mβ2

n − 2M1γ
2
mβ2

n

}

,

S3 = −2
[
M3β

2
n

(
γ 2
m + β2

nλ
2) − 2M3β

4
nλ

2 + M2γ
2
mβ2

n + M3β
4
nλ

2] ,

S4 = γ 2
mβ2

n (M5 + M7 − M4 − M9) ,

S5 =
[(

16B∗
21γ

4
m − 4γ 2

m

a

)
M1 + 8γ 4

mD
∗
11 + 3K1

2
+ 2K2γ

2
m

]
,

S6 =
[(

16B∗
21γ

4
m − 4γ 2

m

a

)
M2 + M8β

2
n (γ

2
m + β2

nλ
2 − γ 2

mβ2
nλ

2) − M6β
2
n (γ

2
m + β2

nλ
2 − γ 2

mβ2
nλ

2)

]
, (27)

S7 = γ 2
mβ2

n (M4 + M9 − M5 − M7) .

Furthermore, the toroidal shell segments have to also satisfy the circumferential closed condition [7,15]
as:

L∫

0

2πa∫

0

∂v

∂x2
dx1dx2 =

L∫

0

2πa∫

0

[

ε02 + w

a
− 1

2

(
∂w

∂x2

)2
]

dx1dx2 = 0. (28)

Using Eqs. (13), (14), and (19), the integral becomes:

8W0 + 4W2 − W 2
1 aβ

2
n = 0. (29)

Substituting W0 in Eqs. (26)–(29), then substituting W 2
1 in Eq. (26) into Eq. (25) leads to an equation repre-

senting the τ ∼ W2 relation as

τ = −
⎛

⎝S1 + W2S2 + K1 − S5

S6 + S7W2 + K1aβ2
n

4

S3W2 + W 2
2 S4

⎞

⎠ 1

2β2
nλh

. (30)

Equation (30) expresses the post-buckling τ ∼ W2 curves of stiffened FGM toroidal shell segments. When
W2 → 0, Eq. (30) becomes

τ = − S1
2β2

nλh
. (31)

Equation (31) is used to show upper critical loads in case of a linear buckling shape.
From Eq. (19), it can be seen that the maximal deflection of the shells

wmax = W0 + W1 + W2 (32)

locates at x1 = i L/(2m), x2 = jπa/(2n) + iλL/(2m), where i and j are odd integer numbers.
SolvingW1 andW0 from Eqs. (25), (26), and (29) with respect toW2 and then substituting them in Eq. (32)

leads to

Wmax = aβ2
n

8

⎛

⎝ K1W2 − S5W2

S6 + S7W2 + K1aβ2
n

4

⎞

⎠ +
√

K1W2 − S5W2

S6 + S7W2 + K1aβ2
n

4

+ W2

2
. (33)

Combining Eq. (30) with Eq. (33), the post-buckling load-maximal deflection curves of stiffened FGM toroidal
shell segments can be derived.



Torsional buckling and post-buckling behavior of shell segments 3511

Table 1 Comparisons of critical torsional load τ (psi) for an un-stiffened isotropic cylindrical shell

τ (psi) Exp of Nash [40] Shen [5] Present (λ = 0.23) Error (%)

E = 27e6psi, ν = 0.3;
L = 38 in, R = 4 in,
h = 0.0172 in

6590 6835 (m, n) = (1, 2) 6712.767 (m, n) = (1, 3) 1.86 (exp) 1.79 (Shen)

Table 2 Comparisons of critical torsional load τ (psi) for an un-stiffened isotropic cylindrical shell

τ (psi) Exp of Ekstrom [41] Shen [5] Present (λ = 0.1) Error (%)

E = 29e6psi, ν = 0.3;
L = 19.85 in, R = 3
in, h = 0.0075 in

4800 4997 (m, n) = (1, 3) 4968.131 (m, n) = (1, 3) 3.50 (exp) 0.58 (Shen)

Table 3 Comparisons of critical torsional load τ (MPa) for an FGM cylindrical shell

R/h L/R = 1 L/R = 1.5 L/R = 2

Huang and Han 400 48.90 (15, 0.39) 39.25 (13, 0.33) 33.82 (12, 0.31)
Present 48.40 (15, 0.41) 39.67 (13, 0.29) 33.96 (12, 0.24)
Huang and Han 500 36.78 (16, 0.36) 29.61 (14, 0.32) 25.58 (13, 0.30)
Present 36.27 (16, 0.36) 29.91 (14, 0.26) 25.30 (13, 0.22)

4 Results and discussion

4.1 Validation of the present study

Up to now, there is no publication about an FGM toroidal shell segment under torsional load, which is the
reason to compare the post-buckling path of the FGM cylindrical shell (i.e., a toroidal shell segment with
R → ∞). Two comparisons on the critical load are given to validate the present study.

Firstly, the present results will be compared with the results for an un-stiffened isotropic cylindrical shell
under torsion load given by Shen [5] using the higher-order shear deformation shell theory and the experimental
results of Nash [40] and Ekstrom [41]. In Tables 1 and 2, the critical torsional loads τ are calculated by Eqs. (30)
for an un-stiffened isotropic shell without an elastic foundation and where the material of the shell is full of
metal.

Tables 1 and 2 show good agreements in these comparisons.
Secondly, the torsional post-buckling behavior of an FGM cylindrical shell in the present paper is analyzed

by the Galerkin method. The obtained results are compared with the results of Huang and Han [7] who used
the other method—Ritz method. Equations (30) and (33) are used to determine the critical loads of an FGM
cylindrical shell without an elastic foundation. An FGM cylindrical shell is made of ZrO2/ Ti-6Al-4V material
at initial temperature T0 = 300K by considering the following material properties of torsional load (Table 3):

Ec = 168.0421GPa; Em = 105.6835GPaGPa; υ = 0.3; k = 1.

4.2 Results of nonlinear torsional buckling of FGM toroidal shell segments

To illustrate the proposed approach,we consider ceramic–metal functionally graded toroidal shell segments that
consist of aluminum and alumina with the following properties: Em = 70×109 N/m2; Em = 380×109 N/m2

(whereas Poisson’s ratio is chosen to be 0.3).

4.2.1 Effect of the mode (m, n, λ) on the critical torsional load

The geometrical parameters of a stiffened FGM shell are given by: k = 1; h = 0.01m; L = 3a; a =
100h; R = 400h; the number of stiffeners: n1 = n2 = 50 (where n1, n2 are the number of stringer and rings
of shell, respectively); d1 = d2 = h/2; h1 = h2 = h/2. Based on Eqs. (30) and (33), the post-buckling curves
of a stiffened toroidal shell segment with various combinations of the mode (m, n, λ) are investigated. The
corresponding curve to find the lower and upper critical loads is obtained. The lowest point of the curve is
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Table 4 Lower critical load (GPa) with various modes (m, n, λ)

n m = 1 m = 2 m = 3 m = 4

5 1.2734 (0.21)* 1.9226 (0.35) 2.0851 (0.31) 4.4533 (0.38)
6 1.1263 (0.32) 1.7276 (0.42) 1.8362 (0.42) 2.5217 (0.42)
7 0.9953 (0.35) 1.4043 (0.43) 1.3777 (0.48) 1.9697 (0.53)
8 1.0543 (0.46) 1.2808 (0.45) 1.7925 (0.59) 1.8310 (0.65)
9 1.1375 (0.61) 1.4504 (0.52) 2.2457 (0.67) 1.7183 (0.71)
10 1.1492 (0.75) 1.6455 (0.60) 2.2661 (0.70) 2.2710 (0.78)
* The number of λ

τlowercr = 0.9953 GPa

τuppercr = 1.5083GPa

Fig. 2 Critical buckling load (m = 1)

τ(
G
Pa
)

Wmax /h

k = 1; n1 = n2 = 50; d1 = d2 =h/2; h1 = h2 =h/2; 
K1 = 2.5×108 N/m3, K2 = 5×105 N/m

Fig. 3 Torsional post-buckling curves of a stiffened FGM convex shell on an elastic medium with effects of R/h ratio (m = 1,
h = 0.01m, L = 2a, a = 100h). **Buckling mode (n, λ)

regarded as the critical condition. As can be seen from Table 1, the lower critical load is 0.9953 GPa with mode
(1, 7, 0.35). Thus, the τcr ∼ Wmax/h curve in Fig. 2 describes the upper and lower critical loads at the m = 1
case. The linear critical load calculated by Eq. (31) τlinearcr = 1.5083GPa with mode (1, 7, 0.35) completely
coincides with the result of the upper critical buckling load in Fig. 2.

4.2.2 Effect of R/h ratio

The effect of the R/h on τcr ∼ Wmax/h post-buckling curves of a stiffened FGM convex and concave toroidal
shell segment on an elastic medium (K1 = 2.5× 108N/m3, K2 = 5× 105N/m) is illustrated in Figs. 3 and 4,
respectively. It can be seen that the critical torsional buckling load τcr decreases when the R/h ratio increases
for both stiffened FGM convex and concave toroidal shell segments (Table 4).

The torsional load carrying themore convex (concave) shells is higher than that of the less convex (concave)
ones.
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τ(
G
Pa
)

Wmax /h

k = 1; n1 = n2 = 50; d1 = d2 =h/2; h1 = h2 =h/2; 
K1 = 2.5×108 N/m3, K2 = 5×105 N/m

Fig. 4 Torsional post-buckling curves of a stiffened FGM concave shell on an elastic medium with effects of R/h ratio (m = 1,
h = 0.01m, L = 2a, a = 100h)

τ(
G
Pa
)

Wmax /h

k = 1; n1 = n2 = 50; d1 = d2 =h/2; h1 = h2 =h/2; 
K1 = 2.5×108 N/m3, K2 = 5×105 N/m

Fig. 5 Torsional post-buckling curves of a stiffened FGM concave shell on an elastic foundation with effects of L/R ratio (m = 1,
h = 0.01m, R = 200h, a = 100h)
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τ(
G
Pa
)

Wmax /h

L/R = -1, (4, 0.80) L/R = -1.5, (4, 1.05)
L/R = -2, (5, 1.10) L/R = -2.5, (5, 1.12)
L/R = -3, (6, 1.18)

k = 1; n1 = n2 = 50; d1 = d2 =h/2; h1 = h2 =h/2; 
K1 = 2.5×108 N/m3, K2 = 5×105 N/m

Fig. 6 Torsional post-buckling curves of a stiffened FGM concave shell on an elastic medium with effects of L/R ratio (m = 1,
h = 0.01m, R = 200h, a = 100h)

4.2.3 Effect of L/R ratio

Similar to 4.2.2, effects of the L/R ratio on the torsional buckling load is investigated for both a stiffened FGM
convex and concave shell on an elastic medium and represented in Figs. 5 and 6, respectively.

Based on Figs. 5 and 6, one can see that when the L/R ratio goes up, the critical torsional buckling loads
decrease for both stiffened FGM convex and concave shells, but convex shells work better. The load carrying
capacity of longer shells is lower than that of shorter ones. Particularly, from L/R = 1 to L/R = 3, the lower
torsional load decreases about 70.99 % for a stiffened FGM convex shell and approximately 81.5 % for a
stiffened FGM concave shell ().
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τ(
G
Pa
)

Wmax /h

k = 1; n1 = n2 = 50; d1 = d2 =h/2; h1 = h2 =h/2; 
K1 = 2.5×108 N/m3, K2 = 5×105 N/m

Fig. 7 Torsional post-buckling curves of a stiffened FGM convex shell on an elastic medium with effects of L/a ratio (m = 1,
h = 0.01m, a = 100h, R/h = 200)

Table 5 Effect of mode and L/a ratio on the upper and lower critical loads (GPa; m = 1)

R/h L/a = 2 L/a = 2.5 L/a = 3

Upper critical
load calculated
by Eq. (31)

Lower critical
load calculated
by Eqs. (30) and
(33)

Upper critical
load calculated
by Eq. (31)

Lower critical
load calculated
by Eqs. (30) and
(33)

Upper critical
load calculated
by Eq. (31)

Lower critical
load calculated
by Eqs. (30) and
(33)

100 19.1886 (4, 1.10) 17.1865 (4, 1.10) 11.3422 (5, 0.88) 10.6674 (5, 0.88) 7.0943 (6, 0.85) 7.0666 (6, 0.85)
200 14.6288 (4, 0.98) 12.7234 (4, 0.98) 7.6285 (5, 0.92) 7.3263 (5, 0.92) 6.4354 (5, 0.72) 6.3449 (5, 0.72)
300 12.7829 (4, 0.86) 10.6615 (4, 0.86) 6.1497 (5, 0.65) 5.7704 (5, 0.65) 5.3847 (5, 0.82) 5.3556 (5, 0.82)
400 8.0186 (5, 0.88) 7.1926 (5, 0.88) 5.3320 (5, 0.58) 5.0458 (5, 0.58) 4.7929 (5, 0.75) 4.7757 (5, 0.75)

4.2.4 Effect of L/a ratio

The effect of L/a ratio on the torsional buckling load of a stiffened FGM convex shell on an elastic medium is
also analyzed in Fig. 7.

It is observed that the critical torsional buckling load falls down when the L/a ratio increases. Table 5
presents the effect of L/a and R/h ratios with various modes (m, n, λ) on the critical loads (a/h = 100). The
upper critical loads are calculated by Eq. (31), while the lower critical loads are computed by Eqs. (30) and
(33).

As can be seen, the critical loads of the more convex shells are larger than those of the less convex ones, and
the critical loads of shorter shells are larger than those of longer ones. For instance, when L/a ratio increases
from 2 to 3 (R/h = 100), the lower torsional load falls down about 58.9%, while the upper torsional load
decreases by about 63%.Moreover, for R/h = 400, the lower torsional load decreases about 34% and the upper
torsional load reduces to about 40% when the L/a ratio goes up from 2 to 3.

4.2.5 Effect of volume fraction index

Figures 8 and 9 show the torsional buckling curves of stiffened FGM convex and concave shells on an elastic
medium when the value of the volume fraction index changes from 0.5 to ∞. The geometrical parameters of
the shell are: a = 100h; h = 0.01m; L = 2a; d1 = d2 = h/2; h1 = h2 = h/2; n1 = n2 = 50.

As can be seen, the torsional buckling curves falls down when the value volume fraction index increases
for both stiffened FGM convex and concave shells.

Obviously, this property corresponds to the real characteristic of the material, because the higher value of
k corresponds to a metal-richer shell which has less stiffness than a ceramic-richer one.

4.2.6 Comparison of torsional buckling loads of a stiffened and un-stiffened FGM toroidal shell segment

To investigate the effects of stiffeners, the database is used as:

m = 1; n = 5; λ = 0.90; h = 0.01m; a = 100h; L = 2a; R = 300h; K1 = 2.5 × 108 N/m3,

K2 = 5 × 105N/m; d1 = d2 = h/2; h1 = h2 = h/2; n1 = n2 = 50.
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d1 = d2 =h/2; h1 = h2 =h/2; n1 = n2 =50;
K1 = 2.5×108 N/m3, K2 = 5×105 N/m; 
R/h = 200; L = 2a; a = 100h
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Fig. 8 Torsional post-buckling curves of a stiffened FGM convex shell on an elastic medium with effects of the volume fraction
index (m = 1, n = 5, λ = 0.88)
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Fig. 9 Torsional post-buckling curves of a stiffened FGM convex shell on an elastic medium with effects of the volume fraction
index (m = 1, n = 3, λ = 0.95)

Table 6 Torsional buckling loads of a stiffened and un-stiffened FGM toroidal shell segment (GPa)

Toroidal shell segment k = 0.5 k = 1 k = 5 k = 10 k = ∞
Un-stiffened 9.1855 7.6869 4.6745 3.9702 3.0729
Stringer stiffened 9.1980 7.6989 4.6842 3.9795 3.0830
Ring stiffened 9.2307 7.7309 4.7186 4.0161 3.1247
Orthogonal stiffened 9.2434 7.7430 4.7288 4.0259 3.1354

As expected, the critical buckling loads of a stiffened FGM convex shell are larger than the corresponding
values of an un-stiffened one. Moreover, the critical torsional buckling loads of an un-stiffened FGM convex
shell are the smallest, the critical torsional loads of a ring stiffened FGM shell are higher than those of a stringer
stiffened shell, and the critical torsional loads of stringer-ring stiffened ones are the largest. Thus, the stiffeners
enhance the load carrying capacity of the shell (Table 6).

4.2.7 Effects of the number of stiffeners

The effects of the number of stiffeners are carried out with three categories: stringer stiffened, ring stiffened,
and orthogonal stiffened. The geometric parameters are: h = 0.01m; a = 100h; L = 3a; R = 200h; K1 =
2.5 × 108 N/m3, K2 = 5 × 105 N/m; d1 = d2 = h/2; h1 = h2 = h/2.

Based on Table 7, the critical torsional buckling load increases when the number of stiffeners goes up.
Thus, the number of stiffeners makes the shells to become stiffer. If the number of stiffeners adds 10 stiffeners,
the critical torsional load will increase from 0.01 to 0.08% depending on the stiffener system. In addition,
for the orthogonal stiffened system, the lower torsional load will increase about 0.34% when the number of
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Table 7 Effects of the number of stiffeners on the critical torsional buckling load (GPa; m = 1; k = 1)

Number of stiffeners Stringer stiffened Ring stiffened Orthogonal stiffened

10 6.4167 (5, 0.55) 9.1936 (4, 0.68) 9.3415 (4, 0.98)
20 6.4195 (5, 0.55) 9.1964 (4, 0.68) 9.3493 (4, 0.98)
30 6.4224 (5, 0.55) 9.1991 (4, 0.68) 9.3572 (4, 0.98)
40 6.4252 (5, 0.55) 9.2019 (4, 0.68) 9.3650 (4, 0.98)
50 6.4281 (5, 0.55) 9.2046 (4, 0.68) 9.3728 (4, 0.98)
60 6.4309 (5, 0.55) 9.2074 (4, 0.68) 9.3806 (4, 0.98)
70 6.4337 (5, 0.55) 9.2101 (4, 0.68) 9.3883 (4, 0.98)
80 6.4365 (5, 0.55) 9.2128 (4, 0.68) 9.3961 (4, 0.98)
90 6.4393 (5, 0.55) 9.2155 (4, 0.68) 9.4038 (4, 0.98)
100 6.4422 (5, 0.55) 9.2182 (4, 0.68) 9.4115 (4, 0.98)

Table 8 Effects of the elastic medium on the critical torsional buckling load (GPa)

Elastic medium Un-stiffened Stringer stiffened Ring stiffened Orthogonal stiffened

K1 = 0; K2 = 0. 5.1470 5.1569 5.1658 5.1758
K1 = 2.5 × 108 N/m3; K2 = 0. 6.2529 6.2613 6.2733 6.2818
K1 = 2.5 × 108 N/m3; K2 = 5 × 105 N/m. 6.3049 6.3133 6.3254 6.3338

stiffeners increases from 10 to 50 stiffeners and it increases about 0.75% if the number of stiffeners goes up
from 10 to 100 stiffeners.

4.2.8 Effects of the elastic medium

Table 8 illustrates the effects of the elastic medium on the critical torsional buckling load of an un-stiffened
and stiffened FGM convex shell. The parameters of the shell are chosen: a = 100h; L = 3a; R = 200h; m = 1;
n = 5; k = 1; λ = 0.92; d1 = d2 = h/2; h1 = h2 = h/2; n1 = n2 = 50.

It is observed that the critical torsional buckling loads of an FGM convex shell on a two-parameter elastic
medium are the highest. For the shell without elastic medium, the critical torsional loads are lowest.

4.3 Results of nonlinear torsional buckling of internally stiffened FGM toroidal shell segments

The present results investigate the same toroidal shell segment which is made of FGM such that the inner
side is metal rich and the internal metal stiffeners are put at this side. When the volume fraction index k = 1,
it is available to compare the critical torsional buckling loads of both types of stiffened FGM toroidal shell
segments.

4.3.1 Effects of R/h ratio

Firstly, the critical torsional buckling loads of an internally stiffened FGM toroidal shell segment with various
R/h ratios are given in Tables 9 and 10, respectively. The geometric properties are similar to Sect. 4.2.2 and
k = 1. Corresponding results for critical torsional loads of an externally stiffened FGM shell are taken from
Figs. 3 and 4, respectively.

Based on both Tables 9 and 10, it can be seen that the critical torsional loads of an externally stiffened
FGM shell are higher than those of an internally stiffened one.

Table 9 Critical torsional loads of a stiffened FGM convex toroidal shell segment with various R/h ratios (GPa)

R/h Upper critical load Lower critical load

Externally stiffened Internally stiffened Externally stiffened Internally stiffened

100 10.4327 (6, 0.78) 10.3852 (6, 0.78) 9.2196 (6, 0.78) 9.1769 (6, 0.78)
200 5.2710 (7, 0.81) 5.2282 (7, 0.81) 4.9665 (7, 0.81) 4.9264 (7, 0.81)
300 3.6216 (8, 0.83) 3.5801 (8, 0.83) 3.5222 (8, 0.83) 3.4824 (8, 0.83)
400 2.8212 (9, 0.88) 2.7781 (9, 0.88) 2.7943 (9, 0.88) 2.7522 (9, 0.88)
500 2.4153 (10, 0.99) 2.3673 (10, 0.99) 2.4120 (10, 0.99) 2.3644 (10, 0.99)
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Table 10 Critical torsional loads of a stiffened FGM concave toroidal shell segment with various R/h ratios (GPa)

R/h Upper critical load Lower critical load

Externally stiffened Internally stiffened Externally stiffened Internally stiffened

−100 2.9544 (5, 0.78) 2.6948 (5, 0.78) 2.7187 (5, 0.78) 2.6946 (5, 0.78)
−200 2.5838 (6, 0.81) 2.5536 (6, 0.81) 2.4982 (6, 0.81) 2.4695 (6, 0.81)
−300 2.4099 (7, 0.85) 2.3760 (7, 0.85) 2.3492 (7, 0.85) 2.3167 (7, 0.85)
−400 2.2058 (8, 0.88) 2.1129 (8, 0.88) 2.1234 (8, 0.88) 2.0882 (8, 0.88)
−500 2.0643 (9, 0.92) 1.9047 (9, 0.92) 1.9373 (9, 0.92) 1.8988 (9, 0.92)

Table 11 Critical torsional loads of a stiffened FGM toroidal shell segment with various stiffeners (GPa)

Toroidal shell segment Externally stiffened Internally stiffened

Stringer stiffened 7.6989 7.6908
Ring stiffened 7.7309 7.6978
Orthogonal stiffened 7.7430 7.7018

Table 12 Critical torsional loads of a stiffened FGM toroidal shell segment on an elastic medium (GPa)

Shell K1 = 0; K2 = 0 K1 = 2.5 × 108 N/m3;
K2 = 0

K1 = 2.5 × 108 N/m3; K2 = 5 × 105 N/m

Stringer stiffened
Externally stiffened 5.1569 6.2613 6.3133
Internally stiffened 5.1503 6.2543 6.3065

Ring stiffened
Externally stiffened 5.1658 6.2733 6.3254
Internally stiffened 5.1504 6.2570 6.3090

Orthogonal stiffened
Externally stiffened 5.1758 6.2818 6.3338
Internally stiffened 5.1538 6.2583 6.3104

4.3.2 Comparison of critical loads of an internally and externally stiffened FGM toroidal shell segment with
various stiffeners

Secondly, the critical torsional loads of various stiffened FGM shells are given in Table 11 to compare between
externally stiffened FGM and internally stiffened FGM shells. The parameters here are similar to Sect. 4.2.6
and k = 1. As can be seen, the critical torsional loads of an externally stiffened FGM shell are higher than
those of internally stiffened in three stiffener categories. Also, for an internally stiffened FGM shell, the critical
torsional buckling loads of a ring stiffened FGM shell are higher than those of a stringer one.

4.3.3 Effects of the elastic medium

Finally, Table 12 illustrates the critical torsional load of a stiffened FGM toroidal shell on an elastic medium.
The database used is similar to Sect. 4.2.8. Corresponding critical torsional loads of externally stiffened shells
are taken from Table 8.

It is regarded that the critical torsional loads of an externally stiffened FGM shell are higher than those
of an internally stiffened one. Furthermore, the critical torsional loads on a Pasternak elastic medium are the
highest, while those without an elastic medium are the smallest.

5 Conclusions

An analytical approach to analyze the torsional buckling and post-buckling behavior of an eccentrically stiff-
ened FGM toroidal shell segment based on the classical shell theory and the smeared stiffeners technique with
geometrical nonlinearity in von Kármán sense is investigated. The results are shown:

– The deflection of the shell is more correctly expressed in the form of three-term equation including the
linear and nonlinear buckling shape.
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– The closed-form expressions to find the critical torsional load and post-buckling load-deflection curves are
obtained.

– The stiffener system is used to enhance strongly the stability and the load carrying capacity of an FGM
toroidal shell segment.

– Effects of geometric parameters, volume fraction index, various stiffeners, number of stiffeners, and elastic
medium are investigated.

– The present result shows that the critical torsional loads of an externally stiffened FGM toroidal shell
segment are higher than those of an internally stiffened one. Thus, the toroidal shell segment with externally
stiffened FGM is better used and more preeminent.
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