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Abstract A two-dimensional problem for an infinite thermoelastic half-space with a permeating substance
in contact with the bounding plane is developed. The formulation is applied to the generalized thermoelastic
diffusion based on Lord–Shulman theory. The bounding surface is traction free and subjected to a known
axisymmetric temperature distribution, and the chemical potential is assumed to be a known function of
time. Integral transform technique is used to find the analytic solution in the transform domain by using a
direct approach. Inversion of transforms is done employing a numerical scheme. The mathematical model is
prepared for copper material, and numerical results for temperature, stress, displacement, chemical potential
and concentration are obtained and illustrated graphically.

1 Introduction

For the last fewdecades, generalized problemsof dynamic thermoelasticity have been the crux of active research
in the fields of engineering where the coupling between temperature and strain fields is of importance, and
various studies have been carried out. The theories of generalized thermoelasticity remove the paradox of
infinite speed of propagation of thermal signals inherent in the classical coupled thermoelasticity introduced
by Biot [1]. Lord and Shulman [2] developed a theory modifying the Fourier law of heat conduction by
introducing the heat flux rate and a relaxation time for the special case of an isotropic body. The heat equation
associated with this theory is of wave type. This theory comes under the label of hyperbolic thermoelasticity,
see the survey of Hetnarski and Ignaczak [3].

Diffusion is one of the several naturally occurring transport phenomena. The diffusion in thermoelastic
solids is governed by Fick’s laws where diffusion is the passive movement of molecules or particles along a
concentration gradient. Thermoelastic diffusion in an elastic solid involves the coupling of the fields of tem-
perature, mass diffusion and strain. Heat and mass exchange take place during thermoelastic diffusion in an
elastic solid. The diffusion phenomenon has generated a great amount of interest due to its many applications
in geophysics and industrial applications. In particular, diffusion is used to form the base and emitter in bipo-
lar transistors, form integrated resistors, form the source/drain regions in metal oxide semiconductor (MOS)
transistors and dope poly-silicon gates in MOS transistors. The study of the phenomenon of diffusion is used
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to improve the conditions of oil extractions and is of great interest for oil extraction companies. Nowacki [4–7]
developed the theory of thermoelastic diffusion within the context of classical coupled thermoelasticity and
studied some dynamical problems of diffusion in solids. The theory of Nowacki uses Fick’s law. It has a major
drawback that it predicts infinite speed of wave propagation. Olesiak and Pyryev [8] reported the influence
of cross effects while studying thermoelastic diffusion in an elastic cylinder. They observed that the thermal
excitations result in an additional mass concentration and vice versa. Recently, Sherief et al. [9] introduced
the theory of thermoelastic diffusion in the framework of Lord–Shulman theory by introducing a thermal
relaxation time parameter and diffusion relaxation parameters governing the field equations. Sherief and Saleh
[10] and El-Maghraby [11] studied problems of thermoelastic diffusion in a half-space. Aouadi [12] discussed
thermoelastic diffusion in anisotropic media. Many researchers [13–16] studied various types of problems in
thermoelastic diffusion. Kothari and Mukhopadhyay [17] presented the Galerkin-type representation of solu-
tions for thermoelastic diffusion theory. Elhagary [18] discussed a two-dimensional generalized thermoelastic
diffusion problem for a half-space subjected to harmonically varying heating. Recently, El-Sayed [19] studied
a two-dimensional problem in generalized thermoelastic diffusion for a half-space under thermal shock.

This work is aimed at studying the thermoelastic diffusion interactions in a half-space under axisymmetric
distributions within the context of Lord–Shulman theory of generalized thermoelastic diffusion (TEDLS). The
classical coupled thermoelastic diffusion theory (TEDCT) is recovered as a special case. Analytic solutions
for temperature, concentration, chemical potential, displacement and stresses are obtained in the Laplace
transform domain using a direct approach. Numerical inversion of Laplace transform is performed using
the Gaver–Stehfast algorithm [20–22], which is considerably more stable and computationally efficient than
inversion using the discrete Fourier transform [23,24]. Convergence of the Gaver–Stehfast algorithm was
discussed by Kuznetsov [25]. All the integrals were evaluated using Romberg’s integration technique [26]
with variable step size. A mathematical model is prepared for copper material, and results are discussed along
with the graphical representation.

2 Governing equations

The field equations for the generalized thermoelastic diffusion in an isotropic medium in the absence of body
forces and heat source are given by [9]:

1. The equation of motion is given by

ρüi = μui, j j + (λ + μ) u j,i j − β1T,i −β2C,i (1)

where T is the absolute temperature,C is the concentration of the diffusivematerial, ρ is the density, λ andμ are
Lamé’s constants, and β1 and β2 are material constants given by β1 = (3λ + 2μ) αt and β2 = (3λ + 2μ) αc,
where αt is the coefficient of linear thermal expansion, and αc is the coefficient of linear diffusion equation.

2. The energy equation is given by

kT,ii =
(

∂

∂t
+ τ0

∂2

∂t2

)
(ρCET + T0β1e + T0aC) (2)

where k is the thermal conductivity of the medium, CE is the specific heat at constant strain, τ0 is the thermal
relaxation time, T0 is the reference temperature chosen such that |(T − T0)/T0| << 1, a is the measure of
thermoelastic diffusion effect, and e = ui,i is the cubical dilatation where ui , i = 1, 2, 3 are the components
of the displacement vector.

3. The equation of mass diffusion is given by

Dβ2e,i i +DaT,i i +
(

∂

∂t
+ τ

∂2

∂t2

)
C = DbC,i i (3)

where D is the diffusion coefficient, b is a measure of the diffusive effect and τ is the diffusion relaxation time.

4. The constitutive equations are

σij = 2μei j + δi j (λe − β1 (T − T0) − β2C) , (4)

P = −β2e + bC − a(T − T0) (5)

where σi j , i, j = 1, 2, 3 are the components of stress tensor, P is the chemical potential of the material per
unit mass, and ei j , i, j = 1, 2, 3 are the components of the strain tensor, given by
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ei j = 1

2

(
ui, j + u j,i

)
, i, j = 1, 2, 3. (6)

3 Formulation of the problem

We shall consider a homogeneous isotropic thermoelastic solid occupying the region z ≥ 0. The z-axis is taken
perpendicular to the bounding plane pointing inward. The problem is consideredwithin the context of the theory
of generalized thermoelastic diffusion with one relaxation time. We shall assume that the initial state of the
medium is quiescent at a temperature T0. The surface of the medium is traction free and subjected to a known
axisymmetric temperature distribution, and chemical potential is a known function of time. Axisymmetric heat
sources permeate the medium. Cylindrical polar coordinates (r, ϕ, z) are used.

The problem is thus two-dimensional with all functions considered depending on the spatial variables r
and z as well as on the time variable t .

The displacement vector, thus, has the form �u = (u, 0, w).
For the two-dimensional problem, the components of the strain tensor in Eq. (6) can be written in the

form

err = ∂u

∂r
, eϕϕ = u

r
, ezz = ∂w

∂z
, erz = 1

2

(
∂u

∂z
+ ∂w

∂r

)
, (7)

and e is the cubical dilatation given by

e = u

r
+ ∂u

∂r
+ ∂w

∂z
= 1

r

∂

∂r
(ru) + ∂w

∂z
.

The Laplacian operator is given by

∇2 ≡ ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
.

In addition, the governing Eqs. (1)–(5) will take the form

μ∇2u − μ

r2
u + (λ + μ)

∂e

∂r
− β1

∂T

∂r
− β2

∂C

∂r
= ρ

∂2u

∂t2
, (8)

μ∇2w + (λ + μ)
∂e

∂z
− β1

∂T

∂z
− β2

∂C

∂z
= ρ

∂2w

∂t2
, (9)

k∇2T =
(

∂

∂t
+ τ0

∂2

∂t2

)
(ρCET + β1T0div�u + aT0C) , (10)

Dβ2∇2(div�u) + Da∇2T +
(

∂

∂t
+ τ0

∂2

∂t2

)
C − Db∇2C = 0, (11)

σϕϕ = 2μeφφ + λe − β1 (T − T0) − β2C, (12.1)

σrr = 2μerr + λe − β1 (T − T0) − β2C, (12.2)

σzz = 2μezz + λe − β1 (T − T0) − β2C, (12.3)

σr z = μerz, (12.4)

σrϕ = σzϕ = 0, (12.5)

P = −β2e + bC − a(T − T0). (13)

We shall use the following nondimensional variables:

r′ = c1ηr, z′ = c1ηz, u′ = c1ηu, w′ = c1ηw, τ ′
0 = c21ητ0, t′ = c21ηt, τ ′

1 = c21ητ,

P′ = P

β2
, σ ′

i j = σi j

λ + 2μ
, θ ′ = β1 (T − T0)

(λ + 2μ)
, C ′ = β2C

λ + 2μ

where η = ρCE
k is the dimensionless characteristic length, and c1 = √

λ + 2μ/ρ is the speed of propagation
of isothermal elastic waves.
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Using the above nondimensional variables, the governing Eqs. (8)–(13) take the form (dropping the primes
for convenience)

∇2u − 1

r2
u + (

β2 − 1
) ∂e

∂r
− β2 ∂T

∂r
− β2 ∂C

∂r
= β2 ∂2u

∂t2
, (14)

∇2w + (
β2 − 1

) ∂e

∂z
− β2 ∂T

∂z
− β2 ∂C

∂z
= β2 ∂2w

∂t2
, (15)

∇2θ =
(

∂

∂t
+ τ0

∂2

∂t2

)
(θ + εe + εα1C) , (16)

∇2e + α1∇2θ + α2

(
∂

∂t
+ τ0

∂2

∂t2

)
C − α3∇2C = 0, (17)

σϕϕ = 2

β2

u

r
+

(
β2 − 2

)
β2 e − θ − C, (18.1)

σrr = 2

β2

∂u

∂r
+

(
β2 − 2

)
β2 e − θ − C, (18.2)

σzz = 2

β2

∂w

∂z
+

(
β2 − 2

)
β2 e − θ − C, (18.3)

σr z = 1

β2

(
∂u

∂z
+ ∂w

∂r

)
, (18.4)

P = −e + α3C − α1θ (19)

where α1 = a(λ+2μ)
β1β2

, α2 = (λ+2μ)

Dηβ2
2

, α3 = b(λ+2μ)

β2
2

, ε = β2
1T0

ρCE (λ+2μ)
.

The boundary conditions of the problem at z = 0 are taken as

θ(r, 0, t) = f1(r, t), 0 < r < ∞, (20)

σzz(r, 0, t) = 0, 0 < r < ∞, (21)

σr z(r, 0, t) = 0, 0 < r < ∞, (22)

P(r, 0, t) = H(t) f2(r), 0 < r < ∞ (23)

where f1(r, t)and f2(r) are known functions and H(t) is the Heaviside unit step function.

4 Analytical solution

We use the Laplace transform defined by the relation

f̄ (r, z, s) = L [ f (r, z, t)] =
∫ ∞

0
e−st f (r, z, t)dt

where s is the Laplace transform parameter.
The Hankel transform of order zero with respect to r of a function f̄ (r, z, s) is defined by the relation

f̄ ∗(α, z, s) = H
[
f̄ (r, z, s)

] =
∞∫
0

f̄ (r, z, s)r J0(αr)dr

where α is the Hankel transform parameter and J0 is the Bessel’s function of the first kind of order zero.
The inverse Hankel transform is given by the relation

f̄ (r, z, s) = H−1 [
f̄ ∗(α, z, s)

] =
∫ ∞

0
f̄ ∗(α, z, s)α J0(αr)dα.
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Applying the Laplace transform to Eqs. (14)–(19) and using the homogeneous initial conditions, we get

∇2ū − 1

r2
ū + (

β2 − 1
) ∂ ē

∂r
− β2 ∂θ̄

∂r
− β2 ∂C̄

∂r
= β2s2ū, (24)

∇2w̄ + (
β2 − 1

) ∂ ē

∂z
− β2 ∂θ̄

∂z
− β2 ∂C̄

∂z
= β2s2w̄, (25)

∇2θ̄ = (
s + τ0s

2) (
θ̄ + εē + εα1C̄

)
, (26)

∇2ē + α1∇2θ̄ + α2
(
s + τ0s

2) C̄ − α3∇2C̄ = 0, (27)

σ̄ϕϕ = 2

β2

ū

r
+

(
β2 − 2

)
β2 ē − θ̄ − C̄, (28.1)

σ̄rr = 2

β2

∂ ū

∂r
+

(
β2 − 2

)
β2 ē − θ̄ − C̄, (28.2)

σ̄zz = 2

β2

∂w̄

∂z
+

(
β2 − 2

)
β2 ē − θ̄ − C̄, (28.3)

σ̄r z = 1

β2

(
∂ ū

∂z
+ ∂w̄

∂r

)
, (28.4)

P̄ = −ē + α3C̄ − α1θ̄ . (29)

On simplifying Eqs. (24) and (25), we get
(∇2 − s2

)
ē = ∇2θ̄ + ∇2C̄ . (30)

On applying the Hankel transform to Eqs. (26), (27) and (30) we get
(
D2 − α2) θ̄∗ = (

s + τ0s
2) (

θ̄∗ + εē∗ + εα1C̄
∗) , (31)(

D2 − α2) ē∗ + α1
(
D2 − α2) θ̄∗ + α2

(
s + τ0s

2) C̄∗ − α3
(
D2 − α2) C̄∗ = 0, (32)(

D2 − α2 − s2
)
ē∗ = (

D2 − α2) θ̄∗ + (
D2 − α2) C̄∗ (33)

where D ≡ ∂/∂z.
Eliminating the transformed strain ē∗ and concentration C̄∗ from Eqs. (31), (32) and (33), we obtain the

following sixth-order differential equation for the transformed temperature θ̄∗:
(
D6 − a1D

4 + a2D
2 − a3

)
θ̄∗ = 0 (34)

where the coefficients a1, a2, a3 are given by

a1 = − s

(α3 − 1)
{(sτ0 + 1) (α1ε (α1 + 2) + α3 (ε + 1) − 1) + α2 (sτ + 1) + α3s} ,

a2 = s2

(α3 − 1)

{
(sτ0 + 1)

(
α2
1εs + α3s + α2 (sτ + 1) (ε + 1)

) + α2s (sτ + 1)
}
,

a3 = s4α2

(α3 − 1)
(sτ0 + 1) (sτ + 1) .

Similarly, we can show that the transformed strain ē∗ and concentration C̄∗ satisfy the ordinary differential
equations

(
D6 − a1D

4 + a2D
2 − a3

)
ē∗ = 0, (35)(

D6 − a1D
4 + a2D

2 − a3
)
C̄∗ = 0. (36)
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Equation (34) can also be written as

(
D2 − k21

) (
D2 − k22

) (
D2 − k23

)
θ̄∗ = 0 (37)

where ±k1, ±k2 and ±k3 are the roots of the characteristic equation given by

k6 − a1k
4 + a2k

2 − a3 = 0. (38)

The roots k1, k2 and k3 are given by

k1 =
√
1

3
(2p1 sin(p2) + a1),

k2 =
√
1

3

[
a1 − p1

(√
3 cos(p2) + sin(p2)

)]
,

k3 =
√
1

3

[
a1 + p1

(√
3 cos(p2) − sin(p2)

)]

where p1 =
√
a21 − 3a2, p2 = sin−1(γ )

3 , and γ = −
(

2a31−9a1a2+27a3
2p3

)

The solution of Eq. (37) is of the form

θ̄∗ =
3∑

i=1

Ai (α, s)e−qi z (39)

where Ai (α, s), i = 1, 2, 3 are parameters depending on α and s.
Similarly, the transformed strain ē∗ and concentration C̄∗ can be obtained from Eqs. (35) and (36) as

ē∗ =
3∑

i=1

A′
i (α, s)e−qi z, (40)

C̄∗ =
3∑

i=1

A′′
i (α, s)e−qi z (41)

where Ai , A′
i and A′′

i , i = 1, 2, 3 are parameters depending on α and s. Substituting from Eqs. (39), (40) and
(41) into Eqs. (32) and (33), the parameters A′

i (α, s) and A′′
i (α, s), i = 1, 2, 3 can be expressed in terms of

Ai (α, s) as

A′
i (α, s) = fi Ai (α, s), A′′

i (α, s) = di Ai (α, s) (42)

where fi =
{
k4i −

[(
s+τ0s2

)
(1−α1ε)

]
k2i

}
ε(s+τ0s2)

{
k2i (1+α1)−α1s2

} , di =
{
k4i −

[(
s+τ0s2

)
(1+ε)+s2

]
k2i +

(
s+τ0s2

)
s2

}
ε(s+τ0s2)

{
k2i (1+α1)−α1s2

} .

Applying the inverse Hankel transform to Eqs. (39), (40) and (41), we get

θ̄ =
∞∫
0

{
3∑

i=1

Ai (α, s)e−qi z

}
α J0(αr)dα, (43)

ē =
∞∫
0

{
3∑

i=1

A′
i (α, s)e−qi z

}
α J0(αr)dα, (44)

C̄ =
∞∫
0

{
3∑

i=1

A′′
i (α, s)e−qi z

}
α J0(αr)dα. (45)
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Inserting Eqs. (43)–(45) into Eqs. (24)–(25), solutions for the displacement components in the Laplace
transform domain are obtained as

ū(r, z, s) =
∫ ∞

0
−α2 J1 (αr)

[
B(α, s)e−qz +

3∑
i=1

λi(
q2i − q2

)e−qi z

]
dα, (46)

w̄(r, z, s) =
∫ ∞

0
α J0 (αr)

[
C(α, s)e−qz +

3∑
i=1

λi qi(
q2i − q2

)e−qi z

]
dα (47)

where the parameters B(α, s) and C(α, s) depend on α and s only.

Also q2 = α2 + β2s2, C(α, s) = α2B(α,s)
q , λi = {(

1 − β2
)
fi + β2 (1 + di )

}
Ai .

Using Eqs. (28.1)–(29) and the solutions given in Eqs. (46)–(47), we obtain the stress components and the
chemical potential in the Laplace transform domain,

σ̄ϕϕ = − 2

β2r

∫ ∞

0
α2 J1 (αr)

[
B(α, s)e−qz +

3∑
i=1

λi(
q2i − q2

)e−qi z

]
dα + Ḡ, (48)

σ̄rr = − 2

β2

∫ ∞

0
α3

[
1

αr
J1 (αr) − J0 (αr)

][
B(α, s)e−qz,

+ ∑3
i=1

λi(
q2i −q2

)e−qi z,

]
dα + Ḡ, (49)

σ̄zz = 2

β2

∫ ∞

0

[
−qC(α, s)e−qz −

3∑
i=1

λi q2i(
q2i − q2

)e−qi z

]
α J0 (αr) dα + Ḡ, (50)

σ̄r z = 1

β2

∫ ∞

0

[(
α2 + q2

q

)
B(α, s)e−qz +

3∑
i=1

λi qi (1 + qi )(
q2i − q2

) e−qi z

]
α2 J1 (αr) dα, (51)

P̄(r, z, s) = 2

β2

∫ ∞

0

[
3∑

i=1

μi Ai e
−qi z

]
α J0 (αr) dα,

Ḡ =
∫ ∞

0
α J0 (αr)

(
3∑

i=1

ξi e
−qi z

)
dα (52)

where μi = (− fi + α3di − α1) , ξi =
((

β2−2
)

β2 fi − di − 1

)
Ai .

Applying Laplace and Hankel transform to the boundary conditions given in Eqs. (20)–(23) and making
use of Eqs. (43)–(52), we get

3∑
i=1

Ai (α, s) − f̄ ∗
1 (α, s) = 0, (53)

2

β2

[
α2B(α, s) +

3∑
i=1

λi q2i(
q2i − q2

)
]

= 0, (54)

(
α2 + q2

q

)
B(α, s) + 2

3∑
i=1

λi qi (1 + qi )(
q2i − q2

) = 0, (55)

2

β2

[
3∑

i=1

μi Ai

]
= f ∗

2 (α). (56)

Equations (53)–(56) are a system of linear equations with A1, A2, A3 and B as unknown parameters.
Solving the above system of linear equations, the complete solution of the problem is obtained in the Laplace
transform domain.
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5 Inversion of double transforms

The Laplace transform of a continuous function f (t) is given by

f̄ (s) =
∞∫
0

e−st f (t)dt (57)

for t > 0 and s = x + iy.
If the solution is given in the Laplace domain, the inversion integral is used to find the original function

f (t),

f (t) =
γ+i∞∫
γ−i∞

e−st f̄ (s)dt, (58)

where the contour must be taken to the right of any singularities of f̄ (s). The direct integration of Eq. (58) is
usually difficult and in many cases analytically not possible.

A detailed discussion on application of Gaver–Stehfast algorithm can be found in [24,25]. Only the final
formula for the inverse of the Laplace transform as obtained by Gaver [20] and Stehfast [21,22] is given below.

By this method, the inverse f (t) of the Laplace transform f̄ (s) is approximated by

f (t) = ln 2

t

K∑
j=1

D( j, K )F

(
j
ln 2

t

)
(59)

with

D( j, K ) = (−1) j+M
min( j,M)∑

n=m

nM (2n)!
(M − n)!n!(n − 1)!( j − n)!(2n − j)! (60)

where K is an even integer, whose value depends on the word length of the computer used. M = K/2 andm is
the integer part of ( j +1)/2. The optimal value of K was chosen as described in Gaver–Stehfast algorithm, for
the fast convergence of results with the desired accuracy. This method is easy to implement and very accurate
for functions of the type e−αt . The Romberg numerical integration technique [26] with variable step size was
used to evaluate the integrals involved. All the programs were made in mathematical software MATLAB.

6 Numerical results and discussion

The function f1(r, t) considered in the problem is

f1(r, t) = θ0H(a − r)H(t) (61)

where θ0 is a constant. This means that the surface of the half-space is suddenly heated to the temperature θ0 at
the start inside a circle of radius “a” and center at the origin. The rest of the surface is kept at zero temperature.

Thus on applying Laplace and Hankel transforms to Eq. (61) we get

f̄ ∗
1 (α, s) = aθ0 J1(αa)

sα
.

The chemical potential is taken as
f2(r) = P0H(a − r) (62)

where P0 is constant.
On applying Hankel transform to Eq. (62), we get

f ∗
2 (α) = aP0

α
J1(α).
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Fig. 1 Temperature θ distribution along the radial direction

Fig. 2 Radial displacement component u distribution along the radial direction

The mathematical model is prepared with copper material for purposes of numerical computations. The
material constants of the problem are thus given in S.I. units [10]:

T0 = 293K, ρ = 8954 kgm−3, τ0 = 0.02, τ = 0.2, k = 386 JK−1 m−1 s−1, αt = 1.78 × 10−5 K−1

αC = 1.78 × 10−5 K−1, cE = 383.1 JKg−1 K−1, μ = 3.86 × 1010 Nm−2, λ = 7.76 × 1010 Nm−2

c1 = 4.158 × 103 ms−1, a = 1.2 × 104 m2/s2k, b = 0.9 × 106m5/kg s2, D = 0.88 × 10−8 kg s/m3.

Using these values, it was found that η = 8886.73 sm−2, ε = 0.0168Nm J−1, β2 = 4, α1 = 5.43, α2 =
0.533 and α3 = 36.24. It should be noted that a unit of nondimensional time corresponds to 6.5 × 10−12s,
while a unit of nondimensional length corresponds to 2.7 × 10−8m. The computations were carried out for
time t = 0.07, 0.1.

Figures1, 2, 3, 4, 5 and 6 exhibit the variations of temperature θ , radial displacement component u,
axial displacement component w, chemical potential P , concentration C and axial stress component σzz with
distance r. The variations of the various components with distance r are shown as (a) solid line for TEDCT
theory and (b) dotted line for TEDLS theory. The numerical simulations are done at the bounding plane, i.e.,
z = 0.
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Fig. 3 Axial displacement component w distribution along the radial direction

Fig. 4 Chemical potential P distribution along the radial direction

Fig. 5 Concentration C distribution along the radial direction



Two-dimensional generalized thermoelastic diffusion 3273

Fig. 6 Axial stress σzz distribution along the radial direction

Figure 1 exhibits the variation of temperature θ as a function of radius. It is observed that the temperature
decays to zero as distance r increases. At large value of time t = 0.1, TEDLS and TEDCT theories show
similar results; however, large variation is seen in the values of temperature for TEDLS and TEDCT theories
at small time t = 0.07. It is observed that the behavior and trend of variations in values of temperature for
TEDCT and TEDLS are almost similar except for the difference in magnitudes. In the region 3 ≤ r ≤ 6 there
is an increase in the values of temperature, and it follows a sinusoidal pattern afterward. As the disturbance
travels through the medium, it encounters sudden changes, resulting in a nonuniform pattern of the curves
which shows the effect of coupling of the fields of temperature, diffusion and strain.

In Fig. 2, the radial displacement component u increases and attains a maximum value near r = 4, and
then, it decreases to zero. It is observed that the behavior and trend of variations in values of displacement for
TEDCT and TEDLS are almost similar except that the magnitude of radial displacement in TEDCT is more
as compared to TEDLS.

From Fig. 3, we observe that the axial displacement component w decreases with the increase in the radial
distance. The axial displacement under TEDCT theory shows large variations as compared to TEDLS theory
for small time t = 0.07, whereas for large time t = 0.1, the axial displacement shows small variations in
magnitudes for both the theories.

From Fig. 4, we observe that the chemical potential P distribution along the radial direction shows oscil-
latory behavior throughout the medium. At time t = 0.07, the values of chemical potential for TEDCT theory
is more than TEDLS theory in the regions 0 ≤ r ≤ 3 and 7 ≤ r ≤ 9, whereas for the region 3 ≤ r ≤ 7 the
magnitude of chemical potential for TEDLS theory is more than TEDCT theory. It is also observed that the
values of chemical potential for TEDCT and TEDLS are similar in magnitudes for time t = 0.1.

In Fig. 5, the concentration C shows an oscillatory behavior throughout the medium. For time t = 0.07, the
magnitude of concentration for TEDLS theory is more than TEDCT theory till r ≤ 1.5, and then onward, the
magnitude of concentration for TEDCT theory is more than TEDLS. For large time t = 0.1, the magnitudes
of TEDCT are more than TEDLS throughout the medium.

Figure 6 exhibits the variation of axial stress σzz along the radial direction. One can observe that the
variation in values of axial stress is more for small time t = 0.07 as compared to the values for large time
t = 0.1. The axial stress values are compressive in the medium and gradually increase to zero. It is also
observed that the behavior and trend of variations in values of axial stress for TEDCT and TEDLS are almost
similar except for the magnitudes.

7 Conclusions

In this work, a two-dimensional problem for a half-space with a permeating substance was investigated.
The transform method was used to obtain the analytical solution for the temperature, displacement, stress,
concentration and chemical potential of the diffusive material. The method used in this study provides quite a
successful approach in dealing with thermoelastic diffusion problems without any assumed restriction on the
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field variables. Coupling of the diffusion field, temperature and strain plays an important role in the deformation
of an elastic body. As the disturbance travels through the medium, it encounters sudden changes, resulting in
a nonuniform pattern of the curves. It was observed that the temperature and concentration of the diffusive
material converge to a steady state with the passage of time. The results of this problem are very useful in
the two-dimensional problems in axisymmetric half-space, which have various geophysical and industrial
applications.
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