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Abstract The purpose of this paper is to address the wave reflection and refraction in the rotating piezo-
electric crystals subjected to a biaxial, homogeneous stress field. Besides, utilizing the inhomogeneous wave
theory enables additional reflected and refracted surface waves to solve the problem of discrepancy between
independent wave modes and boundary equations. A set of homogeneous equations in displacements and
electric potential is derived within the rotatory coordinate system in the presence of the Coriolis and cen-
trifugal acceleration. The performed plane example shows that there is a critical point when angular velocity
equals the wave frequency, at which no quasi-longitudinal wave can be generated, reflected or refracted, and
close to which the characteristics of the quasi-longitudinal wave change sharply. In addition, the presence of
the Coriolis and centrifugal accelerations demonstrates noticeable influence upon the wave propagation and
reflection/refraction, namely the wave velocities and attenuations, the angles of the reflected/refracted bulk
waves, the reflection/refraction amplitudes and energy ratio coefficients. The analysis results also indicate that
the reflected and refracted waves can transform into the type of surface wave at some incident angles. Finally,
compared with the rotation effects, the waves are not sensitive to the initial stresses.

1 Introduction

Piezoelectrics are the most common transducers in the engineering field used in the rotary environment. For
instance, the gyroscopes of rotatingmotion sensors have important applications in automobiles, video cameras,
smart weapon systems, machine control, robotics and navigation. Piezoelectric gyroscopes can make use of
rotation-induced frequency shifts in surface acoustic wave (SAW) or bulk acoustic wave (BAW) piezoelectric
resonators to measure angular rates. On the other hand, due to the nonuniform material properties, coeffi-
cients of thermal expansion and chemical/nucleation shrinkage/growth during the manufacture processing and
cool down to operating or room temperature, the presence of initial stress is unavoidable. Also, to improve
performance or select suitable operating conditions of SAW devices, such as selection of filters, stability of
oscillators and temperature compensation, the generalized displacements or stresses are applied to establish a
biasing state. Thus, it is necessary to learn the effects of rotation and initial stresses on the piezoelectric wave
propagation, reflection and refraction.

As far as we know, the research of rotation-affected vibrations or waves was started by Huston [1] who
investigated the effect of “rigid-body” rotation on wave propagation velocities in elastic media. Later, the
rotation effect was studied in the “in-plane” vibration of rotating circular disks [2]. It was found that the
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inclusion of Coriolis and centripetal accelerations leads to the result that the medium becomes dispersive and
anisotropic [3]. Lao [4] derived the effect of rotation on surface acoustic waves in a perturbation treatment of the
Coriolis force for an isotropic medium. Chaudhuri and Debnath [5] obtained a more general dispersion relation
to determine the effects of rotation, relaxation time and the external magnetic field on the phase velocity of the
waves. The problem of wave propagation in a rotating random infinite magneto-thermo-visco-elastic medium
was studied, and a coupled dispersion relation for longitudinal and transverse waves was deduced to determine
the effect of viscoelasticity, relaxation times and rotation on the phase velocity of the coupled waves [6]. In the
workofWauer [7], the propagationofwaves in a conductingpiezoelectric solidwas studied for the casewhen the
entire medium rotates with a uniform angular velocity. Destrade and Saccomandi [8] raised and addressed two
questions related to elasticmotions and found somefinite amplitude transversewaves in rotating incompressible
elastic solids with general shear response. Destrade [9] studied the propagation of surface (Rayleigh) waves
over a rotating orthorhombic crystal, in which the secular equation for the surface wave speed was found
explicitly. In the work of Ting [10], the Stroh formalism for surface waves in an anisotropic elastic half-space
was extended to the case when the half-space rotates about an axis with a constant rotation rate. Auriault [11]
revealed that the freewave propagation in non-Galilean rotatingmedia gives rise to two dispersivewaves,which
are coupled dilatational–shear waves. Moreover, Auriault [12] investigated wave propagation in elastic porous
media which are saturated by incompressible viscous Newtonian fluids when the porous media are in rotation
with respect to aGalilean frame.Yang [13] presented a review of analyses on vibrations of rotating piezoelectric
structures for applications in piezoelectric angular rate sensors. Propagation of plane waves in a micropolar
porous elastic solid rotating with a uniform angular velocity was investigated in [14]. Sharma and Grover [15]
dealt with the propagation of body waves in a rotating, generalized thermoelastic solid by using Cardano’s
and perturbation methods. Kumar and Rupender [16] solved a two-dimensional problem in an electromagnetic
micropolar generalized thermoelastic medium subjected to mechanical forces or thermal sources. Biryukov
et al. [17] investigated the gyroscopic effect in arbitrary crystals by taking into account the medium rotation.
Recently, Sharma et al. [18] considered the propagation of body waves in a homogenous isotropic, rotating
and generalized thermoelastic solid with voids. Wegert et al. [19] analyzed theoretical upper bounds for the
size of the gyroscopic effect on the frequency of guided acoustic waves in (piezo-)elastic media, which are
valid in the regime of small rotation rates as compared to the frequency of the guided acoustic wave. Prasad
and Mukhopadhyay [20] aimed at the effects of rotation on the propagation of harmonic plane waves under
two-temperature thermoelasticity theory. Kothari and Mukhopadhyay [21] analyzed the effects of rotation on
the propagation of harmonic plane waves in an unbounded thermoelastic medium rotating with a uniform
angular velocity. Abd-Alla and Yahya [22] investigated the effect of rotation on an infinite circular cylinder
subjected to certain boundary conditions. The author [23] established an analysis of an inhomogeneous wave
in the rotating piezoelectric body. Yuan and Chen [24] presented an analysis on the effect of rotation upon
surface acoustic waves propagating in a piezoelectric half-space. Yuan [25] addressed the wave reflection
over the rotating piezoelectric boundary surface in the framework of inhomogeneous wave. Taking account of
initial stresses, Pao and Gamer [26] formulated the acoustoelasticity equations to investigate the propagation of
ultrasonic waves in orthotropic elastic solids. Simionescu-Panait [27] investigated the problem of propagation
of Love-type waves in a prestressed anisotropic layered structure. Gandhi et al. [28] considered the effect of
stress on Lamb waves apropagating in a homogeneous and initially isotropic plate subjected to a homogeneous
biaxial stress field. In the chapter 6 of Kuang’s book [29], the motion equations accounting for the initial
displacements or stresses are derived in detail, and Love-wave theory in such structure is established.

As stated above, it is seen that many achievements have been done on the rotation effects on waves. To
our knowledge, no systematic research exists addressing the question of inhomogeneous wave reflection and
refraction over the boundary interface accounting for rotation and initial stresses. This paper aims to further this
study by considering two bonded rotating and biaxially stressed piezoelectric crystals with the inhomogeneous
wave theory [30–33].

The paper is organized in the following manner. In the next section, the basic equations for motion in
presence of the Coriolis and centrifugal accelerations are established as well as the corresponding half plane
boundary. Next, utilizing the inhomogeneous wave theory, we recast the dispersion equations in a general
complex form that admits separable real solutions to define the phase velocity and attenuation. Further, the
boundary solution will be obtained in the following content. Finally, the numerical results and discussions of
the plane problem are presented and conclusions are inferred, respectively.
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2 Basic governing equations

2.1 The equation of motion

Let us define two frames � and �′ in relative motion as shown in Fig. 1. The frame � is inertial, with origin
at the center o, and whose axes are along directions of base vector e1, e2, e3. The frame �′ is originated at O ,
and the base vectors of its axes are E1,E2,E3. The piezoelectric body is fastened to �′, which rotates about
� with angular velocity �. The following relations of a point M in the piezoelectric body a�(M) in � and
a�′(M)in �′ may easily be obtained [34],

a�(rM ) = a�′(ρM ) + 2Ω ∧ v�′(ρM ) + Ω ∧ (Ω ∧ ρM ) + d2r0
dt2

Ω = Ω1e1 + Ω2e2 + Ω3e3, (1)

in which the term rM is the position vector in frame �, ρM is the position vector in frame �′, r0 is the vector
from origin o to O, 2Ω∧v�′(ρM ) is the Coriolis acceleration, a�′(ρM ) is the acceleration ofM in the viewpoint
of frame�′, Ω is the angular velocity of frame�′ relative to the frame�, andΩ ∧ (Ω ∧ρM ) is the centrifugal

acceleration. If the origin O stays fixed, d2r0
dt2

is equal to zero.
The momentum balance equation takes into account the above rotation-related terms and reads

ρ

[
∂2u�′

∂t2
+ 2Ω ∧ ∂u�′

∂t
+ Ω ∧ (Ω ∧ (x + u�′))

]
= ∇ · σ. (2)

In the above equation, ρ is the mass density, t is the time variable, x is the position vector of M,u�′ is the
displacement vector (hereafter we will use u for clarity), σ is the Cauchy stress tensor, ε j ik is the permutation
tensor, and the subscripts range from 1 to 3.

Equivalently, Eq. (2) can be written in the component form

ρ

[
∂2u j

∂t2
+ ε j ikεkmnΩiΩm(un + xn) + 2ε j ikΩi

∂uk
∂t

]
= σi j,i . (3)

Further, the electric field can be described by the electrostatic equation

Di,i = 0 (4)

where Di is the electric displacement vector and the Einstein summation convention is implied.
The following material equations are employed:

σi j = o
Ci jkl εkl − eki j Ek,

Di = ∈i j E j + eiklεkl (5)

where εi j are the strain and Ek the electric field vector, while
o
Ci jkl , eki j and ∈i j are the instantaneous elasticity

tensor, piezoelectricity and permittivity tensors of the material.

Fig. 1 Rotating piezoelectric body
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The instantaneous elasticity tensor can be expressed in terms of the classical moduli of the material and
on the initial applied field as follows [26,27,29]:

o
Ci jkl = Ci jkl + δk jσ

0
il (6)

where σ 0
il are the components of the initial applied symmetric (Cauchy) stress tensor.

Quasi-statically, the electric field vector can be derived from an electric potential, that is,

Ek = −ϕ,k (7)

in which ϕ is the electric potential.
The geometric relationship between the strain and the displacement tensors is defined as

εkl = 1

2

(
uk,l + ul,k

)
. (8)

Eliminating εkl and Ek from Eqs. (5), (7) and (8) yields

σi j = o
Ci jkluk,l + eki jϕ,k,

Di = − ∈i j ϕ, j + eikluk,l . (9)

Then, inserting Eq. (9) into Eqs. (3) and (4) leads to a set of wave equations for a rotating piezoelectric body,

ρ

[
∂2u j

∂t2
+ ε j ikεkmnΩiΩmun + 2ε j ikΩi

∂uk
∂t

]
− o
Ci jkluk,li − eki jϕ,ki = −ρε j ikεkmnΩiΩmxn

− ∈i j ϕ, j i + eikluk,li = 0, (10)

by which the homogeneous equations of motion in the displacement ui and electric potential ϕ are formulated
as

ρ

[
∂2u j

∂t2
+ ε j ikεkmnΩiΩmun + 2ε j ikΩi

∂uk
∂t

]
− o

Ci jkluk,li − eki jϕ,ki − (u j,kσ
0
ki ),i = 0

− ∈i j ϕ, j i + eikluk,li = 0 (11)

which contains four equations (three elastic wave equations and one electric wave equation that is associated
with the elastic waves by thematerial relationship Eq. (5) and three independent unknown variables: u1, u2, u3
and ϕ).

2.2 Two-dimensional case

For easily handling the boundary condition and governing equations, in this paper, it is preferable to define all
the equations in the rotating�′ frame. Thus, any quantities involving the base vectors e1, e2, e3 like the angular
velocity can be converted into E1,E2,E3, and the components of � in the �′ frame can be obtained. Finally,
all the functions like u, ϕ, � in Eq. (11) should also be expressed with the same coordinates X1, X2, X3, t .

As the case of the half plane problem, assuming the origins of inertial and rotating frame is coincident,
thus X1X2 and x1x2 are parallel, and the piezoelectric plane is rotating about X3 with the angular velocity
� = Ω3E3; consequently, Eq. (11) takes the form

ρ

[
∂2u1
∂t2

− Ω2
3u1 − 2Ω3

∂u2
∂t

]
− o
Ci1kluk,li − eki1ϕ,ki = 0,

ρ

[
∂2u2
∂t2

− Ω2
3u2 + 2Ω3

∂u1
∂t

]
− o
Ci2kluk,li − eki2ϕ,ki = 0

− ∈i j ϕ, j i + eikluk,li = 0, (12)

which are the governing equations of the rotating half plane problem accompanied by the boundary condition
of Eq. (23).
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2.3 The inhomogeneous wave solution

Generally, the wave equations of Eq. (11) or (12) can be solved by introducing the complex monochromatic
plane wave functions,

ui = Uie
I(k j x j−ωt),

ϕ = Ψ eI(k j x j−ωt) (13)

where k j is the complexwave vector,ω is thewave circular frequency, I is the imaginary unit equal to
√−1, t is

the time variable, and (Ui , Ψ ) are the complex amplitudes of displacements and electric potential, respectively.
Inserting Eq. (13) into (10) gives

ρω2
[
−Uj + ε j ikεkmn

Ωi

ω

Ωm

ω
Un − 2Iε j ik

Ωi

ω
Uk

]
+ o
Ci jklklkiUk + eki j kkkiΨ = 0

∈i j k j kiΨ − eiklUkklki = 0. (14)

A nontrivial solution of these four linear homogeneous equations forU1,U2,U3, Ψ exists only if the determi-
nant of the coefficients vanishes, which yields the governing dispersion relation

detG = 0 (15)

in which the elements gi j (i, j = 1, 2, 3, 4) of the matrix G are

⎡
⎢⎣
g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

⎤
⎥⎦

⎧⎪⎨
⎪⎩
U1
U2
U3
Ψ

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩
0
0
0
0

⎫⎪⎬
⎪⎭ (16)

where

g1s = ρω2
[
−δ1s + ε1ikεkms

Ωi

ω

Ωm

ω
− 2Iε1is

Ωi

ω

]
+ o
Ci1slklki , s = 1, 2, 3,

g14 = eki1kkkiΨ,

g2s = ρω2
[
−δ2s + ε2ikεkms

Ωi

ω

Ωm

ω
− 2Iε2is

Ωi

ω

]
+ o
Ci2sl klki , s = 1, 2, 3,

g24 = eki2kkkiΨ,

g3s = ρω2
[
−δ3s + ε3ikεkms

Ωi

ω

Ωm

ω
− 2Iε3is

Ωi

ω

]
+ o
Ci3slklki , s = 1, 2, 3,

g34 = eki3kkkiΨ,

g41 = −ei1l klki , g42 = −ei2l klki g43 = −ei3l klki , g44 =∈i j k j ki . (17)

In the case of the plane problem, inserting Eq. (13) into Eq. (12) gives
⎡
⎣Γ11 − ρ(ω2 + Ω2

3 ) Γ12 + 2ρ IωΩ3 e∗
1

Γ21 − 2ρ IωΩ3 Γ22 − ρ(ω2 + Ω2
3 ) e∗

2
e∗
1 e∗

2 − ∈∗

⎤
⎦

⎧⎨
⎩
U1
U2
Ψ

⎫⎬
⎭ =

⎧⎨
⎩
0
0
0

⎫⎬
⎭ (18)

where

Γik = o
Ci jklk j kl , e∗

i = eki j kkk j , ∈∗=∈ jk kkk j .

The existence of nontrivial solutions of Eq. (18) requires its corresponding characteristic equation to be equal
to zero, that is the dispersion equation

det

⎡
⎣Γ11 − ρ(ω2 + Ω2

3 ) Γ12 + 2ρ IωΩ3 e∗
1

Γ21 − 2ρ IωΩ3 Γ22 − ρ(ω2 + Ω2
3 ) e∗

2
e∗
1 e∗

2 − ∈∗

⎤
⎦ = 0. (19)
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Fig. 2 Illustrations of wave vectors in reflection problem in X1 − X2 plane. k(0) is the incident wave, and kI(1). . .kI(s) are the
wave vectors of the reflected wave modes, and kII(1). . .kII(s) are the wave vectors of the refracted wave modes

Further, the inhomogeneous wave theory [30,32] allows the complex wave vector to be decomposed in terms
of the wave propagation direction as

k j = Pj + I A j = Pn j + I Am j (20)

where Pj is the propagation vector with its magnitude of P = √
Pj Pj , and A j is the attenuation vector with

its magnitude of A = √
A j A j . And the unit vectors (n j ,m j ) can be expressed in terms of the angle θ between

n j and X2, and the attenuation angle γ between n j and m j as shown in Fig. 2. Via Eq. (20), we obtain

{n1, n2} = {sin θ, cos θ}T ,

{m1,m2} = {sin (θ + γ ) , cos (θ + γ )}T ,

n jm j = cos γ. (21)

Inserting Eq. (20) into the dispersion equation, we can obtain P and A, and thus, the wave phase velocity can
be defined as

cp = ω

P
, (22)

and A is the corresponding wave attenuation.

3 The reflection/refraction waves over the interface between two piezoelectric materials

In the case of ideal contact, the boundary conditions for the stress tensor are reduced to the requirements for the
continuity of the interface tractions and displacement vectors along the interface between the two piezoelectric
crystals, respectively.

The boundary conditions at stress-free and electrically shorted/charge-free surface are(
σ(I) − σ(II)

)
· N = 0,

u(I) = u(II) (23)

where N is the unit direction vector of the boundary surface, and apparently, it will not change its form in the
�′ frame. Alternatively, for a rotating body in the inertial � frame, this direction vector is associated with the
angular velocity � by

n = � ∧ N
‖� ∧ N‖ . (24)
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Thus, the boundary condition (23) can also be formulated in the inertial � frame, which is
(
σ(I) − σ(II)

)
· n = 0,

u(I) = u(II). (25)

As to the electric boundary conditions, the conditions for the continuity of the tangential components of the
electric field vector at the interface and the continuity of the normal components of the electric displacement
can be stated as

ϕ(I) = ϕ(II),

D(I)
2 = D(II)

2 (26)

which amounts to two boundary conditions. Thus, there are six boundary conditions altogether for the general
reflection and refraction problems.

Assuming that the incidentwave is inmedium I (BaTiO3) X2 < 0with the propagation (incident) angle θ(0)

and the attenuation angle γ (0), propagating toward medium II (Ba2NaNb5O15) with the interface on X2 = 0.
Here, the superscript (0) represents the incident wave. The incident waves can be either quasi-longitudinal (L)
or quasi-transverse (T) waves in medium I.

In medium I, based on the assumption in Eq. (13), the reflected waves can be

uI(i)s = cI(i)U I(i)
s e

j
(
kI(i)m xm−ωt

)
, ϕI(i)

s = cI(i)ψ I(i)
s e

j
(
kI(i)m xm−ωt

)
, (27)

so are refracted waves in domain II

uII(i)s = dII(i)U II(i)
s e

j
(
kII(i)m xm−ωt

)
, ϕII(i)

s = dII(i)ψ II(i)
s e

j
(
kII(i)m xm−ωt

)
(28)

where i indicates the wave mode, and c the reflection wave amplitude coefficients and d the refraction wave
amplitude coefficients.

Substituting Eqs. (27)–(28) into the boundary condition, Eqs. (23) and (26) will lead to a set of nonlinear
equations. Due to the phase match requirement on the interface of X2 = 0, first we can obtain the general
Snell’s law for the inhomogeneous waves,

k(0)
1 = k(1)

1 = · · · = k(S)
1 , (29)

alternatively

P(0) sin θ(0) = P(1) sin θ(1) = · · · = P(S) sin θ(S),

A(0) sin
(
θ(0) + γ (0)

)
= A(1) sin

(
θ(1) + γ (1)

)
= · · · = A(S) sin

(
θ(S) + γ (S)

)
, (30)

which can be illustrated in Fig. 2.
Equation (29) implies that the reflected and refracted waves have the samewave vector components parallel

to the boundarywith the incident wave. The normal component k2 of thewave vector can be obtained by solving
the dispersion Eq. (15) when k1 is given, and the wave amplitude vector Uj can be acquired by Eq. (16) or
(18).

Further, the phase match requirement on the boundary leads to the simultaneous equations about the wave
reflection coefficient c(r) and refraction coefficient d(r):

GI(0)
i =

S∑
r=1

(
d(r)GII(r)

i − c(r)GI(r)
i

)
,

H I(0)
j =

S∑
r=1

(
d(r)H II(r)

j − c(r)H I(r)
j

)
,

L I(0) =
S∑

r=1

(
d(r)L II(r) − c(r)L I(r)

)
(31)
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where

GI(0)
i = I

(
o
Ci2klklUk + emi2kmΨ

)I(0)

,

GI,II(r)
i = I

(
o
Ci2klUkkl + eki2Ψ kk

)I,II(r)

,

H I(0)
j = I [U1,U2, Ψ ]I(0)j ,

H I,II(r)
j = I [U1,U2, Ψ ]I,II(r)j ,

L I(0) = I
(
e2k j k jUk− ∈2 j k jΨ

)I(0)
,

L I,II(r) = I
(
e2k j k jUk− ∈2 j k jΨ

)I,II(r)
. (32)

Apparently, there are six equations in the boundary conditions of Eq. (31), which require six reflected and
refracted wave modes at the interface inherently. In the two-dimensional case, there are only two bulk wave
modes in each medium, and thus seemingly there emerges a mismatching problem in the linear piezoelectricity
theory due to the quasi-static approximation of the electric field. As shown in Sect. 4, the inhomogeneous wave
theory can allow a reflected or refracted surface wavemode by obeying Snell’s law. Accordingly, the additional
wave mode can be described in the same way as those elastic wave modes in Eqs. (2)–(28). Thus, Eq. (31)
becomes resolved mathematically. Rather than the regular surface wave, the reflected or refracted surface wave
satisfies the boundary condition with other bulk waves together.

Based on the reflection and refraction theory in Eq. (29) or (30), the amplitude coefficients of Eqs. (27)
and (28) can be obtained in the following steps: first, specify the propagation angle θ , attenuation angle γ and
angular velocity � and then substitute them into Eqs. (20) and (21) to obtain (P, A), wave vector ki and its
component k1 parallel to the boundary according to Eq. (20). Since all the reflection waves obey Snell’s law,
viz. Eq. (29), all the reflected and refracted waves share the same K 1 with the incident wave. Substituting k1
into Eq. (15) leads to an equation in k2,

det� (k2; k1, ω, �) = 0, (33)

which can be solved for k2 without any difficulty given k1, ω and �. The conditions to determine whether the
wave vector k2 belongs to the reflection domain are

{
Re[k2] < 0
Im[k2] ≤ 0 for reflected waves (34)

and
{
Re[k2] > 0
Im[k2] ≥ 0 for refracted waves. (35)

Thus, all the wave vectors including incident, reflected and refracted waves k(0),kI(1), . . . ,kI(S) kII(1), . . . ,
kII(S) can be found, and their polarization of Ui can be determined by Eq. (18). Finally, one can solve the
amplitude coefficients c(i) and d(j): i, j = 1. . .S by the boundary conditions specified in Eq. (31).

Once all reflected and refracted waves are determined, they should be validated to ensure that the energy
of incident waves is equal to the energy sum of reflected and refracted waves, i.e., the sum of energy flux
component along the normal direction of the boundary should be conserved,

S∑
i=1

P(i)
2 = P(0)

2 , (36)

and

Pi = −σ j i u̇ j + ϕ Ḋi = − o
C jiklεk,l u̇ j + ϕ Ḋi (37)
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Table 1 Material properties of BaTiO3 (indicated by Ti) and Ba2NaNb5O15 (indicated by Na) crystals

Elasticity tensor Ci j (GPa) C11 C22 C55
BaTiO3 150.4 146.0 44.0
Ba2NaNb5O15 239 135 66
Piezoelectricity tensor ei j (C/m2) e22 e21 e15
BaTiO3 17.50 −4.35 11.40
Ba2NaNb5O15 4.3 −0.4 2.8
Normalized permittivity tensor εi j /ε0 ε11/ε0 ε22/ε0
BaTiO3 115.0 8.4
Ba2NaNb5O15 222.0 32.0
Vacuum permittivity ε0 (F/m) 8.854 × 10−12

Density ρ (kg/m3) (BaTiO3) 5700
(Ba2NaNb5O15) 5300

where P(i)
2 is the energy flux component of reflection or refraction wave along the normal direction to the

boundary [31], and i indicates the i-th wave mode. Normalizing Eq. (36) with respect to the incident wave
yields the dimensionless energy conservation equation

S∑
i=1

κ(i) = 1 (38)

where κ(i) = P(i)
2 /P(0)

2 is the energy coefficient of the i-th wave mode.

4 Results and discussion

4.1 WAVE modes in a two-dimensional infinite medium

In order to conduct the investigation of wave reflection and refraction between the piezoelectric crystals, we
should know the wave vectors of an infinite piezoelectric crystal. Consider two typical piezoelectric crystals
of BaTiO3 and Ba2NaNb5O15 with material properties given in Table 1 [30,33].

According to the inhomogeneous wave theory outlined in the previous section, the wave velocities of two
bulk waves, quasi-longitudinal (L) and quasi-transverse (T) waves, are calculated, given θ, γ,�, initial stresses
σ0
il and the circular frequency ω = 2π × 106 s−1.
Let us start from examining the bulk waves that lie on the X1X2, on which the piezoelectric planes rotate

about X3 (thus, � = �3E3). According to Eq. (12) and inhomogeneous wave solution in Sect. 3, there are
two bulk waves in the piezoelectric plane: one quasi-longitudinal wave indicated by L, and the other is the
quasi-transverse wave T.

4.1.1 The bulk waves of BaTiO3

(i) Quasi-longitudinal wave: L

Because there is no viscous item considered in the governing equations, namely Eq. (10) or (12), the attenuation
angle γ is found to be ignorable to the wave velocity. Figure 3 depicts the quasi-longitudinal wave velocities of
varying angular velocities in BaTiO3, which significantly affect the wave velocity. Because of the anisotropic
property of the piezoelectric body, the wave velocity performs differently at different propagation angle.
Obviously, the relationship between velocity and angular velocity is not linearly dependent. For making clearer
the relationship between phase velocity and rotation velocity, we present Fig. 4 showing that there exists a
singular point when rotation velocity is equal to the wave frequency; the velocity curve is characterized
by an abrupt change near the singular point. Before this point, the wave velocity is increasing with the
rotation velocity; surpassing this point, the wave velocity is declining sharply. At this singular point, no
quasi-longitudinal wave can be obtained for any propagation angle θ as seen in Fig. 3.

Further, the influence of the initial stresses on wave velocities is examined with the velocity variation ratio
from natural states to stressed state as indicated by

(
�v/vnatural

)
% on the right vertical axis depicted in

Fig. 4. �v = vstressed − vnatural and vnatural is the state without initial stresses. The ratio curve reveals that
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Fig. 3 Phase velocity of the quasi-longitudinal wave (indicated by L) versus propagation angle θ ranging from 0◦ to 360◦ with
γ = 0, σ11 = σ22 = 109 Pa and varied angular velocity Ω3 (0, 0.5, 1 or 2 represent the ratios between Ω3 and wave frequency
ω) in case of the two-dimensional piezoelectric crystal of BiTiO3

Fig. 4 Phase velocity of the quasi-longitudinal wave (indicated by L), velocity variation ratio versus angular velocity Ω3 for
θ = 45◦ and γ = 0 in case of the two-dimensional piezoelectric crystal of BiTiO3

the velocity has a weak dependence on the initial stresses. All the ratios are below 1%. Besides, the ratio is
related to the angular velocity and gets its maximum value at about the singular point (when the angular
velocity is equal to the wave frequency). In the angular velocity’s range between 0∗ω and 1∗ω, the variation
is large and away from the singular point, and the curve becomes stable.

(ii) Quasi-transverse wave: T

Figure 5 presents the dependency of the quasi-transverse wave velocity on the propagation angle. Other than
the L wave, there is no singular point for T wave velocity, which is approximately decreasing monotonously
with the angular velocity as seen in Fig. 6. Likewise, it is found that the attenuation angle γ almost does not
influence T’s wave velocity. The initial stresses also show slight contribution to the velocity variation ratio
below 1% and gets to its bottom, when the angular velocity is equal to the wave frequency.
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Fig. 5 Phase velocity of the quasi-transverse wave (indicated by T) versus propagation angle θ ranging from 0◦ to 360◦ with
γ = 0, σ11 = σ22 = 109 Pa and varied angular velocity Ω3 (0, 0.5, 1 or 2 represent the ratios between Ω3 and wave frequency
ω) in case of the two-dimensional piezoelectric crystal of BiTiO3

Fig. 6 Phase velocity of the quasi-transversewave (indicated by T), velocity variation ratio versus angular velocityΩ3 for θ = 45◦
and γ = 0 in case of the two-dimensional piezoelectric crystal of BiTiO3

4.1.2 The bulk waves of Ba2NaNb5O15

(i) Quasi-longitudinal wave: L

Likewise, we investigate the bulkwave ofBa2NaNb5O15 and obtain similar results as BiTiO3. The relationships
between the quasi-longitudinal wave velocities and propagation angle/angular velocity are plotted respectively
in Figs. 7 and 8. The figures show that the singular point of the equality between the angular velocity and
wave frequency exists for the quasi-longitudinal wave, close to which the velocity has a sharp modification,
at which the velocity cannot be obtained. Away from this point, the velocities drop quickly.

Figure 8 shows the phase velocity of the quasi-longitudinal wave (indicated by L), velocity variation ratio
versus angular velocity Ω3 for θ = 45◦ and γ = 0 in case of the two-dimensional piezoelectric crystal of
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Fig. 7 Phase velocity of the quasi-longitudinal wave (indicated by L) versus propagation angle θ ranging from 0◦ to 360◦ with
γ = 0, σ11 = σ22 = 109 Pa and varied angular velocity Ω3 (0, 0.5, 1 or 2 represent the ratios between Ω3 and wave frequency
ω) in case of the two-dimensional piezoelectric crystal of Ba2NaNb5O15

Fig. 8 Phase velocity of the quasi-longitudinal wave (indicated by L), velocity variation ratio versus angular velocity Ω3 for
θ = 45◦ and γ = 0 in case of the two-dimensional piezoelectric crystal of Ba2NaNb5O15

Ba2NaNb5O15. Also, the initial stresses have slight impact on the velocity and at the same time are associated
with the angular velocity whose trend is of the kind of the velocity curve indicated on the left vertical axis.

(ii) Quasi-transverse wave: T

Distinctly, the quasi-transverse wave T does not have a singular point in the angular velocity, which can be
revealed in Fig. 10. In addition, the velocity declines with the angular velocity, i.e., in Figs. 9 and 10. The initial
stresses still play a small role in the wave velocity, and the effects are changing with the angular velocity.

4.2 The wave reflection/refraction over the boundary interface

Considering the boundary condition in Eq. (25), we can see that there are six equations. At the same time, the
former section indicates that there are two bulk wave modes in each two-dimensional piezoelectric crystal in
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Fig. 9 Phase velocity of the quasi-transverse wave (indicated by T) versus propagation angle θ ranging from 0◦ to 360◦ with
γ = 0, σ11 = σ22 = 109 Pa and varied angular velocity Ω3 (0, 0.5, 1 or 2 represent the ratios between Ω3 and wave frequency
ω) in case of the two-dimensional piezoelectric crystal of Ba2NaNb5O15

Fig. 10 Phase velocity of quasi-transverse wave (indicated by T), velocity variation ratio versus angular velocity Ω3 for θ = 45◦
and γ = 0, in case of the two-dimensional piezoelectric crystal of Ba2NaNb5O15

the biaxial stressed states. It seemingly produces a contradictory situation of the inequality between equation
number and the wave modes, while it can be resolved in the framework of inhomogeneous wave theory as
revealed later.

Considering that the angular velocity is below the wave frequency, hereafter we will handle computation
examples, typically Ω3 = 0.5ω and stressed state σ11 = σ22 = 109 Pa.

4.2.1 Incident wave of wave mode L

Assume the incident wave is the quasi-longitudinal wave propagating in the half plane of BiTiO3. Definitely,
there will be two reflected bulk wave modes within it and two refracted bulk wave modes in the half plane
Ba2NaNb5O15 as outlined previously. In addition to the normal L and T wave modes, the computation results
also exhibit that there exists the reflected surface wave always moving over the interface for all incident angles
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Fig. 11 Reflection and refraction angle versus incidence angle θ . The incident wave is L mode with the attenuation angle γ = 0,
angular velocity Ω3 = 0.5∗ω, σ11 = σ22 = 109 Pa

Fig. 12 Reflected/refracted wave attenuations versus propagation angle θ . The incident wave is L mode with the attenuation angle
γ = 0, angular velocity Ω3 = 0.5∗ω, σ11 = σ22 = 109 Pa

ranging from 0◦ to 90◦ and vanishing quickly perpendicular to the interface, which can be called surface wave
mode accordingly.

Figure 11 shows the variation of reflection/refraction angles of three reflected waves in BaTiO3 and three
refractedwaves in Ba2NaNb5O15 as functions of incident angle θ , the attenuation angle γ = 0, angular velocity
Ω3 = 0.5∗ω, and biaxial stress σ11 = σ22 = 109 Pa. As expected, the reflection/refraction angle obeys Snell’s
law and is defined as arctan[Re(k1)/Re(k2)], which can be associated with velocity plots in Figs. 3, 4, 5, 6, 7,
8, 9 and 10. Evidently, fast velocity implies large reflection/refraction angle, vice versa. A larger refraction
angle occurs in case of refracted L wave in Ba2NaNb5O15, and it comes to move parallel to the interface from
about 50◦ of the incidence angle. At the same time, its attenuation has an abrupt change from zero as seen
from Fig. 12. Meanwhile, the refracted wave of T in Na is below the incident angle and so is the reflected T
wave in BiTiO3.
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Fig. 13 Variations of energy coefficients with incident angle. The incident wave is L mode with the attenuation angle γ = 0,
angular velocity Ω3 = 0, 0.5∗ω, σ11 = σ22 = 109 Pa

Notably, there is a reflected wave in BiTiO3 and a refracted wave Ba2NaNb5O15 both always propagating
parallel to the interface. Further, Fig. 12 presents the attenuations of the reflection surface wave and refraction
surface wave perpendicular to the interface, respectively, which are always nonzero at any incidence angle.
Meanwhile, the attenuation rises with the incidence angle, and the angular velocity can affect the attenuation
as well. Thus, it is reasonable to call these waves as surface mode according to their propagation directions
and attenuations.

Finally, it should be remarked that the initial stresses could change the reflection/refraction angle somehow
considering their effects on wave velocities is slight, while the angular velocity has a bigger impact, which can
be interpreted by their association with wave velocity discussed above.

From the point of view of power flow, the above-mentioned wave field should follow the well-known
conservation of energy flux requiring that the sum of energy coefficients is unity, which can be utilized as a
validation method on the analysis and a tool to estimate whether the reflected and refracted waves are right
physically.

The energy transfer between the incident and reflected/refracted waves is shown in Fig. 13 at distinct
angular velocities Ω3 = 0, 0.5∗ω, respectively. Evidently, both results satisfy the energy conservation law. At
the normal incidence, there is only a refracted L Na wave. As the incident angle increases, other wave modes
start to gain energy gradually. At the critical angle of 53◦, there is an abrupt change in energy distribution, where
the QL Na wave drops to zero quickly, which can be linked to its attenuation as seen in Fig. 12. At the same
time, the reflected L Ti wave becomes the dominant wave mode. In all cases, the energy fluxes of the surface
waves are almost zero, which indicates that the introduction of the reflected/refracted surface wave modes does
not modify the energy law between the incident, reflected and refracted waves. In addition, the figure shows
that the energy coefficients also depend on the angular velocity which makes the energy conversion between
different wave modes more sharply than the nonrotating case.

4.2.2 Incident wave of wave mode T

Here we turn to investigate the reflected and refracted waves incurred by the incident quasi-transverse wave
(T mode). Similar to the incident L wave, there are six reflected wave modes comprising L and T bulk wave
modes as well as the surface wave (Surface) both in BiTiO3 and in Ba2NaNb5O15.

Figure 14 shows the variation of reflection angles of three reflected waves (L, T bulk wave modes and
surfacewave (Surface)) as functions of the incident angle θ in the case of attenuation angle γ = 0,Ω3 = 0.5∗ω
and biaxial stressed state. It is observed that the reflection angle of the L wave is always larger than the T
wave because the L wave travels faster than the T wave. Apparently, the Surface wave moves at the X1X3
plane, weakening perpendicular to the plane in any incidence angle as depicted in Fig. 15. The reflected L
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Fig. 14 Reflection and refraction angle versus incidence angle θ . The incident wave is T mode with the attenuation angle γ = 0,
angular velocity Ω3 = 0.5∗ω, σ11 = σ22 = 109 Pa

Fig. 15 Reflected/refracted wave attenuations versus propagation angle θ . The incident wave is T mode with the attenuation angle
γ = 0, angular velocity Ω3 = 0.5∗ω, σ11 = σ22 = 109Pa

wave in BiTiO3 from about 15◦ acts the same way as the surface wave due to its propagation direction in Fig.
14 and its attenuation in Fig. 15, and so do the refracted L and T waves in Ba2NaNb5O15 as shown in Fig.
14. Obviously, the attenuation of reflected L waves jumps from zero to a large number. The rotation effects
on the wave velocity are depicted in Fig. 3, which shows the phase velocity of a quasi-longitudinal wave
(indicated by L) versus propagation angle θ ranging from 0◦ to 360◦ with γ = 0, σ11 = σ22 = 109Pa and
varied angular velocity Ω3 (0, 0.5, 1 or 2 represent the ratios between Ω3 and wave frequency ω) in case of the
two-dimensional piezoelectric crystal of BiTiO3. Figure 10 shows the phase velocity of the quasi-transverse
wave (indicated by T), velocity variation ratio versus angular velocity Ω3 for θ = 45◦ and γ = 0, in case of
the two-dimensional piezoelectric crystal of (Ba2NaNb5O15); the angular velocity can also play a role in the
reflected and refracted angles.

Figure 14 presents the nonzero attenuation of reflected and refracted waves, which should be compared
with the angle figure of Fig. 13. It is observed that when the abrupt change of wave attenuation is associated
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Fig. 16 Variations of energy coefficients with incidence angle. The incident wave is T mode with the attenuation angle γ = 0,
angular velocity Ω3 = 0, 0.5∗ω, σ11 = σ22 = 109 Pa

with its propagation angle along the interface, the surface wave attenuations are always high in any incidence
angle.

The energy coefficients between the incident and reflected/refracted waves in Fig. 16 evidently show the
energy conservation law. Starting at the normal incidence, there are three reflected waves in BiTiO3 including
T Ti, L Ti and Surface Ti waves and three refracted waves in Ba2NaNb5O15, i.e., T Na, L Na and Surface
Na waves. The energy of the incident wave is transferred into the refracted T Na mode wave nearly 100% at
zero incidence angle. As the incidence angle increases, the other wave modes, L Ti, L Na, T Ti, start to be
excited. As the incidence angle approaches to and exceeds some points, the reflected L Ti wave at roughly
25◦ and refracted L Na wave at roughly 35 degrees become the surface wave (propagating parallel to the
interface, see Fig. 14), and its attenuation increases dramatically as shown Fig. 15. The energy associated with
the reflected L Na wave mode reduces to almost zero. Similar phenomena occur for the refracted T Na wave
at the corresponding critical angle 56◦. After 56◦, the T Ti wave takes over all the incident energy. Physically,
it implies that there will exist only a Q Ti wave beyond the critical incident angle of 56◦. There is almost no
energy associated with two surface waves Surface Ti and Surface Na in all cases.

Figure 16 shows that the summation of the energy coefficients of all these waves equals almost unity
in the case of angular velocity Ω3 = 0 or 0.5∗ω. This indicates that the model is reasonable in physics,
and the introduction of the surface wave does not violate the energy transmission between the incident and
reflected/refracted waves while avoiding the mathematical difficulty in solving the boundary problem of quasi-
static wave reflection/refraction in a piezoelectric medium. Thus, the inhomogeneous wave is an advisable
approach in dealingwith the inconsistent boundary condition problem caused by the quasi-static approximation
in the electric field. On account of the small effects of initial stresses on velocity, the energy curves of natural
state and stressed state are quite similar.

5 Conclusions

In this paper, we developed an approach to deal with the wave reflection and refraction problem in two
half planes of rotating and biaxial stressed piezoelectric crystals using the inhomogeneous wave theory. The
piezoelectric crystals are taken to be at equilibriumwith initial biaxial stresses.Hence, the dynamics is examined
under the assumption of a small motion superimposed to the equilibrium configuration. In contrast to the
initial stresses shown in the computation results, the presence of the Coriolis and centrifugal acceleration
demonstrates more obvious influence upon the wave propagation and reflection/refraction, i.e., the wave
velocities and attenuations, the angles of the reflected/refracted bulk waves and energy ratio coefficients. The
examples show that there is a singular point when angular velocity equals the wave frequency, close to which



3260 X. Yuan, L. Li

the quasi-longitudinal wave shows an abrupt change, and at which the quasi-longitudinal wave cannot be
obtained. Instead, the quasi-transverse wave does not have such a singular point in case of rotation. Besides,
no quasi-longitudinal wave can be reflected or refracted whatever the incident wave mode is at the point. Apart
from this point, there are two reflected and two refracted bulk wave modes as well as the incurred surface wave
modes to address the issue of the elastic and electric boundary conditions mismatching the number of wave
modes due to the quasi-static assumption in the linear piezoelectricity theory. Unlike the regular surface wave,
the pseudo-surface wave satisfies the boundary conditions together with the incident and reflected waves. The
analysis results also indicate that the reflected and refracted bulk waves can turn into the type of surface wave
at some incidence angle in the case of incident quasi-longitudinal and quasi-transverse waves. Rather than
the rotation, the initial stresses show slight effects on the waves. The methodology and computation results
presented in this paper may be helpful in the application of oscillators and mechanical sensors or in designing
the controlling devices of acoustoelectronics from the practical point of view.
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