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Abstract A maximum entropy-based stochastic micromechanical framework considering the inter-particle
interaction effect is proposed to characterize the probabilistic behavior of the effective properties of two-
phase composite materials. Based on our previous work, the deterministic micromechanical model of the
two-phase composites is derived by introducing the strain concentration tensors considering the inter-particle
interaction effect. By modeling the volume fractions and properties of constituents as stochastic, we extend
the deterministic framework to stochastics, to incorporate the inherent randomness of effective properties
among different specimens. A distribution-free method is employed to get the unbiased probability density
function based on the maximum entropy principle. Further, the normalization procedures are utilized to make
the probability density functions more stable. Numerical examples including limited experimental validations,
comparisons with existing micromechanical models, commonly used probability density functions and the
direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally
efficient framework in characterizing the effective properties of two-phase composites.
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1 Introduction

Thequantification of effective linear elastic properties of compositeswith complexmicrostructures iswarranted
in many areas of material sciences, such as epoxy composites, ceramic matrix composites, porous and cracked
media, concrete, polymer-blended soils and rocks [1].

To tackle this class of problems, many methods have been developed in the literature. Eshelby [2–4]
derived the elastic field inside and outside an ellipsoidal inclusion in an infinite medium and proposed the
celebrated equivalent inclusion principle to relate the elastic inclusions and inhomogeneities. Hashin and
Shtrikman [5–7] employed variational principles to obtain the lower and upper bounds for effective properties
of multiphase particulate composites. Torquato [8] presented the improved higher-order statistical bounds of
two-phase linear composites. Willis [9] proposed the nonlinear variation bounds for composites. Examples for
an application of the Willis method can be found in Beran and Molyneux [10], andWillis [11]. By introducing
the effective medium to incorporate the influence of surrounding particles, a category of micromechanical
methods was developed, such as the self-consistent method [12], the differential scheme [13], the Mori–
Tanaka method [14,15] and the generalized self-consistent method [16]. The effective medium methods were
utilized to estimate the effective properties of rocks [17–19] and concrete [20–24]. Yang et al. [25] employed
the effective medium method to predict the effective properties of composites with multi-inclusions. Garboczi
and Berryman [26] compared the results obtained by the effective mediummethod with those of finite element
computations. Another attractive methodology attempted to directly determinate the effective properties of
composites with randomly located particles by approximations or by assuming certain special configurations
for particles (inhomogeneities) dispersing inmatrixmaterials [27–30]. Thismicromechanical direct-interaction
homogenization framework by Ju et al. [31–34] was systematically employed to predict the effective properties
of fiber reinforced composites and the elastoplastic behavior of metal matrix composites. By taking the direct
interparticle interactions, imperfect interfacial bonding and particle size effects into consideration, this new
class of methodology was further developed by Ju et al. [35–38].

Due to the difficulties in detailing the exact predetermined microstructural composites, there is an inherent
randomness of microstructures even under the samemanufacturing process [39]. However, the aforementioned
approaches are deterministic in nature, and the inputs for estimating effective properties are usually the volume
average or ensemble average of microstructural features. The deterministic approach does not consider the
stochastic behavior of composites observed in actual specimens [39]. To address this shortcoming, stochastic
multi-scale analyses for heterogeneous materials had been developed in the literature [40–47]. The primary
premise is that the stochastic behavior of macroscopic properties is a result of random microstructures of
materials. As an important part of stochastic multi-scale analysis for randommaterials, some stochastic micro-
mechanical models were presented for functionally graded materials [39,48,49]. Xu and Graham-Brady [50]
presented a stochastic computational method to evaluate the global effective properties and local probabilistic
behavior of random elastic media. To quantify the size effect of RVE, the generalized variational principles
were adapted by Xu and Chen [51] to stochastic homogenization problems, which resulted in size-dependent
energy bounds and Hashin–Shtrikman bounds. The authors proposed a stochastic micromechanical frame-
work for multiphase composites to characterize the probabilistic behavior of effective properties of composite
materials [52]. Within this framework, the deterministic micromechanical models were derived by ignoring
the inter-particle interaction effect, and the probability density functions (pdfs) of the effective properties were
obtained by a new simulation framework, consisting of a univariate approximation for a function with multi-
variate random variables, Newton interpolations and Monte Carlo simulation. Furthermore, it is difficult to get
the accurate pdfs with the limited samples. The traditional approach, which is distribution-dependent, to tackle
this problem is as follows. The common pdfs such as the lognormal, normal and Weibull distributions are
employed to approximate the real distribution, and then, parameters of the assumed distributions are obtained
via the parameter estimation method [53]. As an extension of our previous works [28,29,52], on one hand,
the deterministic micromechanical models were derived by considering the inter-particle interaction effect;
on the other hand, a distribution-free method is utilized to obtain the unbiased pdfs of the effective properties
based on the maximum entropy principle, which is not subjected to the forms of assumed standard theoretical
distribution [54–56].

An outline of this paper is as follows. Section 2 introduces the representative volume element (RVE)
description for the microstructures of engineering composite materials. In Sect. 3, the solutions for the strain
concentration tensors considering the inter-particle interaction effect are obtained for a spherical inhomogene-
ity, which form our deterministic formulas for estimating the effective moduli of two-phase composites. In
Sect. 4, a stochasticmicromechanical model is presented to incorporate the inherent fluctuations of the effective
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properties. A distribution-free method is employed to attain the unbiased probability density function based
on the maximum entropy principle. Further, the normalization procedures are utilized to make the results more
stable. In Sect. 5, numerical examples including limited experimental validations, comparisons with exist-
ing micromechanical models, commonly used probability density functions and the Monte Carlo simulations
indicate that the proposed new models provide both accurate and computationally efficient frameworks to
characterize the effective properties of specific two-phase composites.

2 Description by a representative volume element (RVE)

The representative volume element (RVE) is based on a “mesoscopic” length scale which is much larger than
the characteristic length scale of particles (inhomogeneities) but smaller than the characteristic length scale of
a macroscopic specimen [28]. The RVE is developed based on the assumption that the microstructure of the
heterogeneous material is known. The input for the RVE for the deterministic micromechanical framework is
usually volume average or ensemble average of the descriptors of the microstructures. For example, when a
group of blocks made under the same process is considered, the volume average or ensemble average of the
volume fraction can be defined as below [57]:

〈c(x)〉 = lim
N→∞

1

N

N∑

α=1

c(x, α) and c(α) = lim
M→∞

1

V

M∑

i=1

c(xi , α)Vi . (1)

Here, c(x, α) is the local particle volume fraction of the sample α at x; N is the number of the samples;
c(xi , α) is the local volume fraction of the αth block which is divided into M subdomains of volume Vi ,
where

∑M
i=1 Vi = V , with V being the total volume of the block; xi signifies the coordinate of a representative

point for subdomain Vi . Further, c(α) and 〈c(x)〉 are the volume average and ensemble average of the volume
fraction, respectively. For statistically homogeneous materials, the volume average and the ensemble average
are equal to each other.

In reality, the microstructures of engineering materials are complex and often random in nature. Stochastic
descriptions are introduced to reflect the influence of the inherent random microstructures on the macroscopic
properties [39,48,49,52]. By changing the input into random fields or random variables from the volume
average or ensemble average of the descriptors for microstructures, the probabilistic behavior of effective
properties of the composites can be characterized by the stochasticmicromechanical framework [39,48,49,52].

3 Deterministic micromechanical framework for a two-phase composite considering
the inter-particle interaction

The deterministic micromechanical model in this section is derived based on the RVE description for the
microstructure [28–38]. In thismodel, all particles are assumed to be spherical, non-intersecting (impenetrable)
and embedded firmly into a homogeneous matrix material; i.e., perfect interfacial bonding is assumed. Further,
the composite and all its constituents are supposed to be elastic and isotropic.

3.1 Definition for effective properties and strain concentration tensors

When a two-phase composite is considered, the “strain concentration tensor” B can be defined for the inho-
mogeneity by [57]

ε̄1 = B : ε̄ (2)

where ε̄1 is the volume average strain on the inhomogeneity and ε̄ is the volume average strain of the composite.
The effective stiffness tensor of the two-phase composite can be derived by [28–38,57]

C∗ = [C0 + φ1 (C1 − C0) : B] (3)

where C∗ is the effective elastic stiffness tensor of the composite; C0 and C1 are the elastic stiffness tensor of
the matrix phase and the inhomogeneity, respectively; φ1 is the volume fraction of the inhomogeneity.

The strain concentration tensor is the only unknown in typical engineering applications. In the next section,
the strain concentration tensor will be derived considering the inter-particle interaction effect.
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3.2 Solution for the strain concentration tensors considering the inter-particle interaction effect

According to Eshelby’s equivalence principle [2–4], the perturbed strain field ε′ (x) induced by an inhomo-
geneity can be related to specified eigenstrains ε∗ (x) by replacing the inhomogeneity with the matrix material
(or vice versa). It is noted that ε∗ (x) is nonzero in the particle domain and zero in the matrix domain. For the
domain of the particles with elastic stiffness tensor C1, we have

C1 : [ε0 + ε′ (x)
] = C0 : [ε0 + ε′ (x) − ε∗ (x)

]
(4)

where ε0 is the uniform strain field induced by far-field loads for a homogeneous matrix material only.
Let us define ε̄∗0as the volume average of the “noninteracting” solution for the eigenstrains and ε̄∗0

1 as its
value in the particle domain. According to the work of Ju and Chen [28], Eq. (4) can be rephrased as follows:

− A1 : ε̄∗0
1 = ε0 + S : ε̄∗0

1 (5)

with

A1 ≡ (C1 − C0)
−1 : C0, (6)

Si jkl = 1

15(1 − ν0)

[
(5ν0 − 1)δi jδkl + (4 − 5ν0)(δikδ jl + δilδ jk)

]
(7)

We refer to reference [58] for details.
Further, let ε∗p denote the solution for the eigenstrains considering the inter-particle interaction effect.

According to the work of Ju and Chen [29], the volume average of this eigenstrains ε̄∗p can be given by

ε̄∗p = � : ε̄∗0 (8)

with

�i jkl = γ1δi jδkl + γ2
(
δikδ jl + δilδ jk

)
, (9)

γ1 = 5φ

96β2

{
12ν0 (13 − 14ν0) − 96α

3α + 2β
(1 − 2ν0) (1 + ν0)

}
, (10)

γ2 = 1

2
+ 5φ

96β2

{
6(25 − 34ν0 + 22ν20 ) − 36α

3α + 2β
(1 − 2ν0) (1 + ν0)

}
, (11)

α = 2(5ν0 − 1) + 10(1 − ν0)

(
K0

K1 − K0
− μ0

μ1 − μ0

)
, (12)

β = 2(4 − 5ν0) + 15(1 − ν0)
μ0

μ1 − μ0
. (13)

The “strain concentration tensor”B for the spherical inhomogeneity of the two-phase composite can be obtained
by [29]

B = �A1(A1 + S − φ1S�)−1. (14)

The effective stiffness tensor can be characterized as

C∗ = C0
{
I − φ�(−A1 − S + φ1S�)−1} . (15)

We follow Ju et al. [28–38] to conduct analytical examples using the proposed micromechanical framework.
K ∗, μ∗ and E∗ represent the effective bulk modulus, shear modulus and Young’s modulus of the two-phase
composite, respectively. When the inter-particle interaction effect is considered, the effective bulk modulus
and shear modulus of the two-phase composite are as follows:

K ∗ = K0

{
1 + 30 (1 − ν0) φ1(3γ1 + 2γ2)

3α + 2β − 10(1 + ν0)φ1(3γ1 + 2γ2)

}
, (16)

μ∗ = μ0

{
1 + 30(1 − ν0)φ1γ2

β − 4 (4 − 5ν0) φ1γ2

}
(17)
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where K0, μ0, ν0 are the bulk modulus, shear modulus and Poisson’s ratio of the matrix, respectively, and
K1, μ1, ν1 are those of the inhomogeneity, respectively. Moreover, φ1 is the volume fraction of the inhomo-
geneity. Therefore, the effective Young’s modulus for the two-phase composite can be simply computed from
the following well-known expression:

E∗ = 9K ∗μ∗

3K ∗ + μ∗ . (18)

4 Maximum entropy-based stochastic micromechanical framework for two-phase composites

Based on the deterministic micromechanical framework in the above section, the effective properties of the
two-phase composites can be estimated with the volume average or ensemble average of the descriptors for
microstructures. However, in real engineering problems, there is an inherent randomness of the specimen
even under the same manufacturing process. To consider these fluctuations, the input of the micromechanical
predicting model should be random [39,57]. Therefore, in this section, the volume fraction and the material
properties of the constituents in the two-phase composites are described by appropriate random variables.
Accordingly, our proposed micromechanical model is readily extended to a stochastic framework.

4.1 Stochastic description for microstructures of two-phase composites

Let (�, ξ, P) be a probability space, where � is the sample space, ξ is the σ -algebra of subsets of �, and
P is the probability measure, and RN be an N -dimensional real vector space. Further, we define φ0, E0, ν0
as the volume fraction, the elastic modulus and Poisson’s ratio of the matrix phase, respectively. Then φ0 =
1− φ1, which means that the volume fractions of the components are not independent. Therefore, the random
vector {E0, E1, ν0, ν1}T ∈ R4 describes stochastic elastic properties of the composite. The probability density
function of constituent material properties is either assumed or derived from available material characterization
data. Hence, an input random vector {E0, E1, ν0, ν1, φ1}T ∈ R5 characterizes uncertainties from all sources
in a two-phase composite based on our proposed micromechanical model. The characterization of effective
properties of a two-phase composite containing spherical inhomogeneity becomes aproblemof characterization
of a random function with multivariate random variables. In the next section, the maximum entropy principle is
employed to get the unbiased probability density function of the effective properties. Further, the normalization
procedures of the random function with multivariate random variables are utilized to make the results more
stable.

4.2 Maximum entropy-based probability density function for effective properties

4.2.1 Maximum entropy principle

In information theory, entropy is a measure of the uncertainty associated with a random variable. In mathe-
matical terms, let us consider a continuous random variable x with the probability density function f (x) in
the domain of variable definition R. The entropy H is defined as

H = −
∫

R
f (x) ln[ f (x)]dx . (19)

Themaximum entropy principle was developed by Jaynes [54] on the basis of the concept of statistical entropy,
as a rational approach for choosing a consistent probability distribution among all possible distributions. The
principle states that the minimally prejudiced probability distribution is the one that maximizes the entropy
subject to constraints, for example, the moments of a random variable.

Assume that mi is the i th origin moment of random variable x . Then
∫ f (x)

R
dx − 1 = 0, (20)

∫

R
xi f (x)dx − mi = 0. (21)
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Equations (20) and (21) represent the normalization condition and the moment conditions, respectively. The
Euler–Lagrange equation can be applied to solve the function maximum problem, and the solution can be
expressed as follows [55]:

f (x) = exp

[
a0 +

N∑

i=1

ai x
i

]
(22)

where ai , i = 0, 1, 2, . . . , n are the Lagrangianmultipliers. According to the work of [55,59], these parameters
can be obtained by solving the following equations:

⎡

⎢⎢⎣

1 m1 · · · mn−1
m1 m2 · · · mn
...

...
. . .

...
mn−1 mn · · · m2n−2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a1
2a2
...
nan

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

0
−1
−2m1
...
−(n − 1)mn−2

⎤

⎥⎥⎥⎥⎦
, (23)

a0 = ln

(
1

∫ +∞
−∞ ea1x+a2x2+···anxndx

)
. (24)

It is noted that the moment matrix in Eq. (23) usually becomes singular, when the number of parameters
becomes large. It will lead to distorted results for unknown parameters [59]. In such situation, the nonlinear
optimization program is usually utilized due to the mathematical difficulties in solving analytic relations
between the moments and distribution parameters [55]. Fortunately, good predicting results can be reached in
most cases when the fourth- or sixth-order moments are considered according to [59]. Therefore, instead of
adopting the nonlinear optimization program, normalization procedures are employed to make the predicting
results more stable.

4.2.2 Normalization procedures

Let us define μx and σx as the mean and standard deviation of x , respectively. The normalized variable x̄ is
obtained as follows:

x̄ = x − μx

σx
. (25)

f̄ (x̄) is taken as the pdf of the normalized variable x̄ , which can be reached by solving the following equations
according to the maximum entropy principle:

⎡

⎢⎢⎣

1 0 · · · m̄n−1
0 1 · · · m̄n
...

...
. . .

...
m̄n−1 m̄n · · · m̄2(n−1)

⎤

⎥⎥⎦

⎧
⎪⎪⎨

⎪⎪⎩

ā1
2ā2
...
nān

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

0
−1
...
−(n − 1)m̄n−2

⎫
⎪⎪⎬

⎪⎪⎭
, (26)

ā0 = ln

(
1

∫ +∞
−∞ eā1x+ā2x2+···ān xndx

)
(27)

where āi , i = 0, 1, 2, . . . , n are the Lagrangian multipliers for the normalized variable x̄; m̄i , i = 1, 2, . . . , n
are the different order moments for x̄ . With the pdf f̄ (x̄) of normalized variable x̄ , the pdf f (x) of variable x
can be obtained as follows:

f (x) = 1

σx
f̄

(
x − μx

σx

)
. (28)
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4.2.3 The application of the maximum entropy principle in the stochastic micromechanical models

The unbiased pdfs of the effective properties can be calculated with the maximum entropy principle. By the
stochastic descriptions of the microstructures, the effective properties of the two-phase composite turn to a
random function with multivariate random variables based on our proposed deterministic micromechanical
model. Hence, the effective moduli, such as K ∗, μ∗ or E∗, can be regarded as random variables, which can
be represented by x .

With Eqs. (26)–(27), the maximum entropy-based pdfs f̄ (x̄) for the normalized random variable x̄ can
be calculated with its different order moments. The corresponding pdfs f (x) for the random variable x can
be obtained by Eq. (28) with the means, standard deviations of x . The Monte Carlo simulation and statistical
analysis are adopted to obtain statistical characteristics of x̄ and x , which represent the (normalized) effective
properties in our stochastic micromechanical framework.

According to our proposed determined micromechanical model, the effective properties corresponding to
a random input of microstructures can be calculated by Monte Carlo simulation on Eqs. (16)–(18). The mean
and standard deviation of the effective bulk modulus, shear modulus and Young’s modulus can be obtained by
the following statistical analysis:

mean
(
K ∗) = 1

M

M∑

m=1

(
K ∗
m

)
, sd

(
K ∗) =

√√√√√
(

1

M

M∑

m=1

(
K ∗
m − mean (K ∗)

)2
)1/2

, (29)

mean
(
μ∗) = 1

M

M∑

m=1

(
μ∗
m

)
, sd

(
μ∗) =

√√√√√
(

1

M

M∑

m=1

(
μ∗
m − mean (μ∗)

)2
)1/2

, (30)

mean
(
E∗) = 1

M

M∑

m=1

(
E∗
m

)
, sd

(
E∗) =

√√√√√
(

1

M

M∑

m=1

(
E∗
m − mean (E∗)

)2
)1/2

(31)

where M is the sample size; mean () and sd () denote the mean and standard deviation, respectively; K ∗
m, μ∗

m,
E∗
m are the mth sample of the effective bulk modulus, shear modulus, and Young’s modulus. With the mean

and standard deviation obtained above, the i th moment of the effective properties after the normalization
procedures can be reached using the following formulas. Specifically, we have

m̄K ∗
i = 1

M

M∑

m=1

[
K ∗
m − mean (K ∗)

sd (K ∗)

]i
, (32)

m̄μ∗
i = 1

M

M∑

m=1

[
μ∗
m − mean (μ∗)

sd (μ∗)

]i
, (33)

m̄E∗
i = 1

M

M∑

m=1

[
E∗
m − mean (E∗)

sd (E∗)

]i
(34)

where m̄K ∗
i , m̄μ∗

i and m̄E∗
i stand for the i th moments of the normalized effective bulk modulus, shear modulus

and Young’s modulus, respectively.
By replacing m̄i in Eq. (26) with m̄K ∗

i , m̄μ∗
i , m̄E∗

i obtained by Eqs. (32)–(34), the coefficients for the pdfs
of the normalized effective properties can be obtained, with which the pdfs of the non-normalized properties
can be calculated with Eqs. (28)–(31).

5 Numerical simulations and verifications

The proposed stochastic micromechanical framework is made up of the deterministic one that we summa-
rized in this paper (following [28–38]), the stochastic description of the microstructures and the maximum
entropy-based probability density function. The verifications can be mainly classified into three categories.
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Fig. 1 Comparison among the results obtained with different micromechanical models and those obtained experimentally [60]
for the effective Young’s modulus

As to the deterministic micromechanical framework, the estimations of our proposed model are compared
with the existing micromechanical models and available experimental data. The commonly used probability
distributions, including the normal distribution, lognormal distribution andWeibull distribution, are utilized to
prove the effectiveness of the maximum entropy-based probability density function. To verify the stochastic
micromechanical model, our predictions are compared with the existing experimental data and the Monte
Carlo simulation.

5.1 Verifications for the deterministic micromechanical models

Apart from the comparison with the Voigt upper bound, Reuss lower bound, Hashin–Shtrikman (H–S) bounds
and the non-interaction solutions [28,52], the experiments conducted by Smith [60] and Walsh et al. [61] are
employed to verify our deterministic micromechanical models.

Based on Eqs. (16)–(18), the effective Young’s modulus of the composite can be obtained considering the
inter-particle interaction. As exhibited in Fig. 1, the predictions obtained from the micromechanical model
for the Young’s modulus correspond well with those obtained experimentally by Smith [60]. Meanwhile,
the predicted E∗ lie between the upper and lower bounds reasonably. Compared with the non-interaction
solutions [28,52], which coincide with Mori–Tanaka results and the H–S lower bound here [62,63], the results
considering the inter-particle interaction meet better with the experimental data when the volume fraction of
the particles increases.

Figure 2 shows comparisons of shear moduli between the experimental data by Smith [60] and estimations
obtained by different models. Similarly, it can be found that the effective shear modulus considering the
inter-particle interaction corresponds better with those obtained experimentally by Smith [60] than those non-
interaction solutions [28,52], with the increase in the volume fraction of the particles. At the same time, the
predicted results lie between all upper and lower bounds reasonably, including the two bounds obtained by Xu
and Chen [51] for infinitely large RVE.

As to the effective bulk modulus, similar conclusions can be reached. As displayed in Fig. 3, the effective
bulk modulus considering the inter-particle interaction corresponds better to the experimental data obtained
by Walsh et al. [61] when the volume fraction of the particles becomes higher. Similarly, our predictions are
always lower than the upper bounds (Voigt upper bound and H–S upper bound) and higher than lower bounds
(Reuss lower bound and H–S lower bound).

5.2 Verifications for the effectiveness of the maximum entropy-based probability density function

Since it is hard to get the accurate pdfs of the macroscopic properties of materials, common distribution types,
such as the normal distribution, lognormal distribution and Weibull distribution, are employed to approximate
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for the effective shear modulus
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Fig. 3 Comparison among the results obtained with different micromechanical models and those obtained experimentally [61]
for the effective bulk modulus

the real distribution with certain prior assumptions [52,53]. Our proposed distribution-free method is capable
of representing all these distributions without any premise. In this section, these commonly used probability
distributions are utilized to test the effectiveness of our maximum entropy-based pdfs.

Table 1 shows all the distribution types we employed. Figure 4a–e represents comparisons between our
maximum entropy- based probability density function and those commonly used probability distributions. In
these cases, to get the moments of the random variables, 103 sample points are used. It can be found that our
maximum entropy-based probability density function can approximate those distributions well when fourth-
order moments are considered. Further, the approximations become better when the sixth-order moments are
utilized.

The sample size will influence the accuracy of our maximum entropy-based pdfs. To address this issue,
moments obtained by different sample sizes are used to get the pdfs, which are compared with the theoretical
solution. Figure 5 shows the comparisons between the pdfs obtained by different sample sizes and the theoretical
value for the normal distribution. It can be seen that the approximations become better with the increase in the
number of sample points. When 103 sample points are adopted, the maximum entropy-based pdf corresponds
well to the theoretical solution. As to the lognormal distribution, similar conclusions can be reached from
Fig. 6.

The normalization procedures can make the maximum entropy-based pdfs more stable when higher-order
moments are utilized. Table 2 shows the coefficients obtained using the maximum entropy principle with and
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Table 1 Common distribution types employed in this paper

Number Distribution type Probability density function Parameter values

1 Normal f (x) = 1
σ
√
2π

e− (x−μ)2

2σ2 μ = 100, σ = 15

2 Lognormal f (x) = 1
xσ

√
2π

e− (ln x−μ)2

2σ2 μ = 10, σ = 1

3 Weibull f (x) =
{

k
λ

( x
λ

)k−1 e−(x/λ)k x ≥ 0

0 x < 0
λ = 3, k = 6

4 Gamma f (x) =
{

1
ba�(a)

xa−1x− x
b x ≥ 0

0 x < 0
a = 15, b = 3

5 Extreme value f (x) = 1
σ
e

(
x−μ
σ

)

e−e

(
x−μ
σ

)

μ = −2, σ = 2

without the normalization procedure. It can be found that all the coefficients are still stable when the sixth-
order moments are used with the normalization procedure. However, without the normalization procedures,
the coefficient a0 will not exist at such situation. Similar conclusions can be reached when the lognormal
distribution is considered, which is exhibited by Table 3.

5.3 Verifications for the stochastic micromechanical framework

The stochastic micromechanical models can be applied to evaluate the effective properties of functionally
graded materials (FGM) [39,49,52]. To verify our stochastic model, the high–low experimental data of Para-
meswaran and Shukla [64] are employed. The properties of constituent materials are independent lognormal
random variables whose means and coefficients of variation are defined in [49]. Since the range of the vol-
ume fraction is between 0 and 1, the distribution type is considered to be a beta distribution [49]. Hence, the
probability density function f (φ) takes the form:

f (φ) =
{

1
B(α,β)

φα−1 (1 − φ)β−1 , 0 ≤ φ ≤ 1

0, otherwise
(35)

with

B(α, β) = � (α) � (β)

�(α + β)
, (36)

�(τ) =
∫ ∞

0
exp (−η)ητ−1dη , with τ = α orβ for�(α) or�(β) (37)

where α andβ are distribution parameters. Moreover, B(α, β) is the beta function, and �(τ) is the gamma
function. According to the work of [49], the means mean(φ) and the standard deviations SD(φ) for the volume
fraction of particles at different places can be expressed as follows:

mean(φ) = 0.109x + 4.25x2 − 9.762x3 + 8.629x4 − 2.748x5, (38)

SD(φ) = 0.178x − 0.309x2 + 0.155x3 (39)

where x = X/T is the relative position along the direction of the length. Here, T = 25cm is the total length,
and X is the length from the end point, where the volume fraction of the particle is almost 0, to the point we are
interested in. Further, the distribution parameters of beta distribution for different positions can be determined
based on the following relationships:

{
mean (φ) = α

α+β

SD (φ) =
√

αβ

(α+β)2(α+β+1)

. (40)

Figure 7 shows the means and standard deviations of the effective Young’s modulus predicted by our proposed
stochastic micromechanical framework. The high–low experimental data of Parameswaran and Shukla [64],
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Fig. 4 Comparisons between our maximum entropy-based probability density function with different order moments and those
commonly used probability distributions, where n = 2, n = 3, n = 4 means that second-, fourth-, sixth-order moments
are used to predict the pdf. a The normal distribution. b The lognormal distribution. c The Weibull distribution. d The Gamma
distribution. e The extreme value distribution

displayed in Fig. 7, indicate good agreement between the experimental and the predicted results. Similarly,
as Fig. 8 shows, the means and standard deviations of the effective shear modulus can be obtained by our
proposed stochastic micromechanical framework.

With the moments of the effective properties obtained by Monte Carlo simulation, the probability density
functions of effective FGM properties can be obtained by the maximum entropy principle. Figure 9 exhibits
the probability density function of the Young’s modulus calculated by direct Monte carlo method and our
proposed simulation framework at the position x = X/t = 0.5. It can be observed that the estimations of our
presented framework are quite accurate comparedwith the directMonte carlo simulationwhen the fourth-order
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Fig. 6 Comparison between the maximum entropy-based pdfs with different sample size and the theoretical values for the
lognormal distribution

Table 2 Comparison between solutions for the coefficients of the maximum entropy-based pdf for the normal distribution with
and without normalization procedures

Coefficients
of the pdf

n = 2 n = 3 n = 4

Non-normalized Normalized Non-normalized Normalized Non-normalized Normalized

a1 4.44E−01 −4.68E−13 4.42E−01 −1.38E−03 4.22E+02 −8.33E−04
a2 −2.22E−03 −5.00E-01 −2.19E−03 −5.00E−01 6.58E+00 −5.00E−01
a3 −9.75E−08 4.61E−04 −4.46E−02 2.78E−04
a4 1.11E−04 5.52E−05
ea0 = c 6.13E−12 3.99E−01 6.38E−12 3.99E−01 Inexistence 3.99E−01

Table 3 Comparison between solutions for the coefficients of the maximum entropy-based pdf for the lognormal distribution
with and without normalization procedures

Coefficients
of the pdf

n = 2 n = 3 n = 4

Non-normalized Normalized Non-normalized Normalized Non-normalized Normalized

a1 9.98E+00 4.17E−13 2.48E+01 −1.47E−01 −4.99E+04 −1.56E−01
a2 −4.99E−01 −5.00E−01 −1.97E+00 −5.22E−01 7.39E+03 −4.97E−01
a3 4.83E−02 4.89E−02 −4.81E+02 5.36E−02
a4 1.16E+01 4.30E−03
ea0 = c 8.24E−23 3.99E−01 4.02E−44 4.05E−01 Inexistence 4.00E−01
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Fig. 10 Probability density functions of effective Young’s modulus of cenosphere–polyester composite [64] at position x = 0.5,
with n = 2, n = 3, n = 4 denoting results obtained by our method with the second-, fourth-, sixth-order moments, respectively

moments (n = 3) or the sixth-order moments (n = 4) are considered. No meaningful difference between the
results of n = 3 and n = 4 is observed in this particular example. When we only consider the second-order
moments (n = 2), the predicted pdf is still acceptable compared with the direct Monte carlo simulation. It is
noted that the iterative times in solving the micromechanical equations by direct Monte carlo method is 106.
However, the iterative times in our numerical computing can be dramatically reduced to 103 when our proposed
simulation framework is used. Similar conclusions can be reached from the probability density function of the
shear modulus, which are exhibited in Fig. 10.

6 Conclusions

Emanating from our previous work [28–38], a stochastic micromechanical framework, consisting of the pro-
posed deterministic micromechanical model, stochastic description for the microstructures and maximum
entropy-based probability density function for the random function, is presented to characterize the probabilis-
tic behavior of the effective elastic properties of two-phase composites considering the inter-particle interac-
tions. The normalization procedure for the random function is introduced to make the maximum entropy-based
probability density more stable. To verify our proposed stochastic micromechanical framework, the predicting
results are compared with the existing micromechanical models, available experimental data, commonly used
probability distributions and the direct Monte Carlo simulation. Some significant conclusions can be reached
as follows:

(i) The comparisons among our estimations, the results obtained by the existingmicromechanicalmodels and
available experimental data show that the proposed deterministic micromechanical model can predict the
effective properties of a two-phase composite well, especially when the volume fraction of the inclusion
is not dilute.

(ii) The comparisons among our proposed maximum entropy-based pdfs, the commonly used pdfs and the
maximumentropy-basedpdfswithout normalization show that the proposedmaximumentropy-basedpdfs
can approximate the commonly used pdfs well when the fourth- or sixth-order moments are considered.
The results become more stable after the normalization of the random variables. Further, the number
of the sample points will influence the accuracy of our proposed maximum entropy-based pdfs. Good
approximations can be obtained when this number reaches 103 according to our simulations.

(iii) The comparisons among our estimations, the results obtained by the Monte Carlo simulation and avail-
able experimental data illustrate that the proposed stochastic micromechanical model can predict the
probabilistic behavior of elastic two-phase composites, including the means, standard deviations and
probability density function. Further, our proposed new simulation framework can dramatically reduce
the iterative times in solving micromechanical equations with good accuracy.
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