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Abstract The main interest in this study is the crack initiation in graded orthotropic materials under sliding
contact conditions. We consider the two-dimensional sliding contact problem between a graded orthotropic
half-plane and a rigid punchwith an arbitrary profile. The orthotropic graded half-plane is modeled as a linearly
elastic and locally inhomogeneous orthotropic material with an exponentially varying Young’s modulus in the
depth direction. The principal axes of orthotropy are assumed to be parallel and perpendicular to the contact
surface. The problem is formulated under plane strain or generalized plane stress conditions. Using the standard
Fourier transform, the problem is reduced to a singular integral equation, which is solved numerically using
Jacobi polynomials. Extensive parametric study is done to determine the effect of the inhomogeneity parameter,
β, the friction coefficient between the half-plane and the stamp, η, as well as the material orthotropic elastic
parameters: the stiffness ratio, δ, the effective Poisson’s ratio, ν, and the shear parameter, κ , on the contact
stress distribution and stress intensity factors at the sharp edges of the stamps that may have a bearing on the
fatigue and fracture of the graded orthotropic half-plane.

1 Introduction

Load-bearing components are common in many engineering applications such as cylinder linings, brake disks,
disk dovetail connections, and abradable seals used in gas turbine components. The mating parts are usually
subjected to high contact stresses that may result in wear and fatigue of the components and ultimately lead
to the fracture of the machine elements. In these components, the substrate is usually coated with protective
coatings in order to reduce wear and increase fatigue life of the parts. The base material used in most of these
high-temperature applications is generally ceramic, and the state of the contact in the contact zone is frictional.
Possessing low fracture toughness, ceramics have some shortcomings such as being brittle and susceptible to
surface cracking and spallation. Lately, functionally graded materials (FGMs) have been proposed to alleviate
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some of the mentioned problems and to improve the tribological performance of the mating components.
FGMs are generally two phase composites possessing smooth spatial variations in the volume fractions of the
constituents.

Fatigue life assessment of the load-bearing components requires a complete understanding of the contact
stresses that may be responsible for components failure. Contact mechanics plays a crucial role in these
situations, and it is well established for structural components having homogeneous and isotropic material
properties [1–9]. The reader is referred to the review paper by Barber and Ciavarella [10] for an extensive
survey about contact mechanics problems. For the contact mechanics of graded materials or FGMs, the readers
are referred to [11–18]. Contact mechanics of FGMs with finite size is considerably different than the ones
with the infinite graded models. For example, a thermo-mechanical sliding contact problem for a finite graded
layer and a partial slip contact for an elastic graded solid with finite thickness are studied by Chen and Chen
[19,20], respectively. Note that, the medium is assumed to be isotropic in all mentioned studies, whereas in
this study the contacting half-plane is taken to be graded orthotropic.

In all of the studies about contactmechanics ofFGMsmentioned above, interface adhesion is not considered.
However, there are also contact mechanics models where interface adhesion is included. Giannakopoulos and
Pallot [21] considered two-dimensional plane strain adhesive contact model. For the mechanics of adhesive
contact of power-law graded materials, the readers are referred to [22,23].

Several studies have been conducted for the contact mechanics of transversely isotropic materials [24–29].
There are some studies that solve the contact problemusing an analogy to the crack problems [30], usingGreen’s
functions [31–33] or method of integral characteristics of solutions to the boundary-initial value problems [34].
Using the Fourier expansion of the Green’s function for the frictionless normal contact problem, Ciavarella et
al. [35] presented a method for solving 3D contact problem between generally anisotropic materials with any
second-order surface geometry. The Green’s function used in their method required using the Barnett–Lothe
method [36]. Shi et al. [37] solved the frictionless contact problem of a rigid ellipsoid indenting an orthotropic
half-plane, with the surface of the half-plane parallel to two of the axes of material symmetry. Swanson [38]
combined two previous solution techniques [39–41] in order to calculate the stresses due to the contact loading
in orthotropic materials. Lin and Ovaert [42] studied the two-dimensional frictional isothermal rough surface
contact problem of the general anisotropic materials. The applications of analytical methods in the solutions of
boundary value problems (BVPs) for anisotropic elasticity are given in the monograph by Rand and Rovenskii
[43]. Ning et al. [44] focused on the axisymmetric indentation of a rigid, frictionless sphere into a transversely
isotropic layer. Li andWang [45] studied the Hertzian contact of anisotropic piezoelectric bodies. Ramirez [46]
analyzed the response of an arbitrarily multilayered piezoelectric half-plane indented by a rigid frictionless
parabolic punch. Galin’s [47] original work in 1953 about the contact problems of an anisotropic half-plane
is translated into English in 2008 and mainly covers the methods developed by Muskhelishvili [3]. He and
Ovaert [48] formulated the three-dimensional rough surface contact problem for a semi-infinite anisotropic
elastic half-plane in contact with a rough, rigid sphere by applying the line integral of Barnett–Lothe tensors on
oblique planes. Batra and Jiang [49], and Jiang andBatra [50] used the Stroh formalism to study analytically the
generalized plane strain deformations of a linear elastic anisotropic layer and two-layer elastic composite with
a through-the-width rectangular void between them, respectively. Erbas et al. [51] investigated the frictionless
contact of a punch with an elastic strip. The two-dimensional frictionless sliding contact over orthotropic
piezoelectric medium indented by a rigid sliding punch was investigated by Zhou and Lee [52]. Using semi-
analytical methods, Bagault et al. [53,54] studied the effect of anisotropy orientation on the contact solution
of an anisotropic half space indented by a rigid sphere. The boundary element method (BEM) was also used
to solve the generalized plane contact problems of the anisotropic materials with possible friction contact
zones [55,56] (see Blazquez et al. [55] for 2D and Rodríguez-Tembleque et al. [56] for 3D). Recently, Guler
[57] provided a closed-form solution to the two-dimensional frictional contact problem of a homogeneous
orthotropic medium in contact with a sliding rigid stamp. In fact, this study is an extension of the problem
solved by Guler [57] and Kucuksucu et al. [58].

Concerning the literature on the contact mechanics of graded orthotropic or inhomogeneous medium, the
only closest study is the frictionless contact problem of a rigid stamp on an elastic orthotropic half-plane
considered by Bakırtaş [59]. He formulated the problem using the Fourier transform technique and solved the
resultant Fredholm integral equation of the first type. To the best of the author’s knowledge, two-dimensional
frictional contact problem of a rigid stamp on a graded orthotropic half-plane has not been solved in the open
literature. The present study provides the analytical solution of the contact stresses in terms of the orthotropic
material parameters, the coefficient of friction, and the spatial coordinates. The strength of the singularities
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Fig. 1 Geometry of the sliding frictional contact problem for graded orthotropic half-plane

and the stress intensity factors at both ends of the flat stamp are also found in terms of the orthotropic material
parameters and the coefficient of friction.

The problem under consideration consists of the sliding contact between a graded orthotropic elastic half-
plane and a rigid stamp subjected to the external loads P and Q (see Fig. 1). Themixed boundary value problem
is formulated analytically using the Fourier transform technique. The resultant Fredholm integral equation of
the second type is solved numerically using Jacobi polynomials. Therefore, the objective of the study was to
obtain a series of analytical benchmark solutions for examining the influence of material orthotropy and the
coefficient of friction on the critical stresses that may have a bearing on the fatigue and fracture of the graded
orthotropic half-plane.

This paper is organized as follows. The problem description and formulation are provided in Sect. 2. The
integral equation of the problem is detailed in Sect. 3. The analytical solution of the problem is given in Sect. 4.
The in-plane stress derivation is presented in Sect. 5. The solution of the contact problem for a flat and wedge
stamp is outlined in Sect. 6. The numerical results are then discussed in Sect. 7. Finally, concluding remarks
are given in Sect. 8.

2 Formulation of the contact problem

The geometry of the two-dimensional sliding frictional contact problem between an elastic graded orthotropic
half-plane and a rigid stamp is depicted in Fig. 1. The Cartesian coordinate system is intentionally selected in
such a way that the principal axes of orthotropy are aligned with the (x1, x2) coordinate system. The contact
surface extends from x1 = −a to x1 = b at x2 = 0. The magnitudes of the normal and tangential forces acting
on the stamp are represented by P and Q, respectively. It is assumed that Coulomb’s dry friction law governs
the sliding frictional contact problem. Thus, the relation between P and Q can be expressed as Q = ηP ,
where η is the coefficient of static friction. In the contact problem considered, ui and σi j (i, j = 1, 2) denote
the displacement and stress components and Eii , Gi j and νi j (i, j = 1, 2, 3) denote engineering elastic
parameters, respectively. We now introduce the following definitions in order to replace four independent
engineering constants E11, E22, G12, and ν12 by four elastic parameters, namely the effective stiffness (E),
the effective Poisson’s ratio (ν), the stiffness ratio (δ), and the shear parameter (κ) [60,61]:

E = √E11E22, ν = √
ν12ν21, δ4 = E11

E22
= ν12

ν21
, κ = E

2G12
− ν, (1a–d)

for generalized plane stress conditions. For plane strain conditions, Eq. (1) must be replaced by:

E =
√

E11E22

(1 − ν13ν31)(1 − ν23ν32)
, ν =

√
(ν12 + ν13ν32)(ν21 + ν23ν31)

(1 − ν13ν31)(1 − ν23ν32)
, (2a,b)
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δ4 = E11

E22

1 − ν23ν32

1 − ν13ν31
, κ = E

2G12
− ν. (2c, d)

Using the aforementioned parameters, the relationship between the strain and the stress components can
be expressed as: ⎡

⎣
ε11
ε22
2ε12

⎤

⎦ = 1

E(x1, x2)

⎡

⎣
δ−2 −ν 0
−ν δ2 0
0 0 2(κ + ν)

⎤

⎦

⎡

⎣
σ11
σ22
σ12

⎤

⎦ . (3)

Note that, the elasticity matrix is symmetric (νi j/Eii ) = (ν j i/E j j ). We use the following transformation
from the physical coordinate system (x1, x2) to transformed coordinate system (x, y) by using the parameter
δ as a scaling constant:

x = x1√
δ
, y = x2

√
δ, (4a–b)

u(x, y) = √
δu1(x1, x2), v(x, y) = 1√

δ
u2(x1, x2), (4c–d)

σxx (x, y) = σ11(x1, x2)/δ, σyy(x, y) = δσ22(x1, x2), (4e–f)

σxy(x, y) = σ12(x1, x2). (4g)

Using Eqs. (4), the stress–displacement relations in the (x, y) coordinate system become

σxx (x, y) = E∗(x, y)
1 − ν2

{
∂u(x, y)

∂x
+ ν

∂v(x, y)

∂y

}
, (5a)

σyy(x, y) = E∗(x, y)
1 − ν2

{
ν
∂u(x, y)

∂x
+ ∂v(x, y)

∂y

}
, (5b)

σxy(x, y) = E∗(x, y)
2(κ + ν)

{
∂u(x, y)

∂y
+ ∂v(x, y)

∂x

}
, (5c)

where
E∗(x, y) = E(x1, x2). (6)

The governing partial differential equations for the two-dimensional plane contact problem under con-
sideration can be found using a displacement-based formulation. By substituting Eqs. (5) into equations of
equilibrium, σi j, j = 0, (i, j = 1, 2), we obtain:

∂2u

∂y2
+ β1

∂2u

∂x2
+ β2

∂2v

∂x∂y
+ 1

E∗

[
β1

∂E∗

∂x

(
∂u

∂x
+ ν

∂v

∂y

)
+ ∂E∗

∂y

(
∂u

∂y
+ ∂v

∂x

)]
= 0, (7a)

∂2v

∂x2
+ β1

∂2v

∂y2
+ β2

∂2u

∂x∂y
+ 1

E∗

[
∂E∗

∂x

(
∂u

∂y
+ ∂v

∂x

)
+ β1

∂E∗

∂y

(
∂v

∂y
+ ν

∂u

∂x

)]
= 0, (7b)

where

β1 = 2(κ + ν)

1 − ν2
, β2 = 1 + νβ1. (8a,b)

In this study, it is assumed that the material properties vary only in x2-direction. Therefore, the graded
half-plane can be approximated by defining the function E(x1, x2):

E(x1, x2) = E(x2) = E0e
βx2 = E∗(x, y) = E∗

0e
γ y,

γ = β√
δ
,

E∗
0 =

⎧
⎨

⎩

E0, generalized plane stress conditions,

E0
1−ν20

, plane strain conditions,
(9a–c)



Mechanics of sliding frictional contact 3337

where β is the constant defining the material inhomogeneity in the physical coordinate system (x1, x2) with
a dimension of [Length−1]. Herein we use the dimensionless parameters βa and βb for the flat and wedge
stamps, respectively.
The governing system of equations can be found by substituting Eqs. (9) into Eqs. (7):

∂2u

∂y2
+ β1

∂2u

∂x2
+ β2

∂2v

∂x∂y
+ γ

(
∂u

∂y
+ ∂v

∂x

)
= 0, (10a)

∂2v

∂x2
+ β1

∂2v

∂y2
+ β2

∂2u

∂x∂y
+ β1γ

(
∂v

∂y
+ ν

∂u

∂x

)
= 0. (10b)

Note that when the material inhomogeneity parameter in the transformed coordinate system γ = 0, we
obtain the corresponding equations for an orthotropic homogeneous half-plane (see [57,58]).

The general solution of the governing field equations can be obtained by applying Fourier transformation
in x-direction. The expressions for the displacement and stress components become

u(x, y) = 1

2π

∞∫

−∞
F(α, y)eiαxdα, (11a)

v(x, y) = 1

2π

∞∫

−∞
G(α, y)eiαxdα, (11b)

σxx (x, y) = E∗
0e

γ y

1 − ν2

1

2π

⎧
⎨

⎩

∞∫

−∞

[
iαF(α, y) + ν

dG

dy
(α, y)

]
eiαxdα

⎫
⎬

⎭
, (12a)

σyy(x, y) = E∗
0e

γ y

1 − ν2

1

2π

⎧
⎨

⎩

∞∫

−∞

[
iανF(α, y) + dG

dy
(α, y)

]
eiαxdα

⎫
⎬

⎭
, (12b)

σxy(x, y) = E∗
0e

γ y

2(κ + ν)

1

2π

⎧
⎨

⎩

∞∫

−∞

[
dF

dy
(α, y) + iαG(α, y)

]
eiαxdα

⎫
⎬

⎭
, (12c)

F(α, y) =
4∑

j=1

C j (α)en j y, G(α, y) =
4∑

j=1

Dj (α)en j y, (13a,b)

where α is the transform variable, i2 = −1, C j (α), Dj (α) ( j = 1, . . . , 4) are arbitrary unknowns and
n j (α) ( j = 1, . . . , 4) are the roots of the following characteristic equation:

(
n2 + γ n − κα2 − i |α| δ1

) (
n2 + γ n − κα2 + i |α| δ1

) = 0, (14)

where
δ1 =

√
νγ 2 + (1 − κ2

)
α2. (15)

The roots of the characteristic Eq. (14) are dependent on the value of κ and are given in Appendix A.
In the formulation given above, there are a total of eight unknownsC j (α) and Dj (α) ( j = 1, . . . , 4)which

are not independent. The relationship between them can be written as

C j (α) = A j D j (α), j = 1, 2, (16a)

C j (α) = −A j D j (α), j = 3, 4. (16b)

where

A j (α) = (β1κ − 1) α2 + iβ1 |α| δ1
−iα

(
β2n j + β1γ ν

) . (17)
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One can observe that the stresses and displacements should be bounded as
∣
∣x21 + x22

∣
∣→ ∞. This regularity

condition requires that the only admissible roots are the ones with �e
(
n j
)

< 0 ( j = 2, 4) and therefore the
functions C j (α) = Dj (α) = 0 ( j = 1, 3). Finally, Eq. (13) becomes

F(α, y) = A2D2(α)en2y − A2D4(α)en2y, (18a)

G(α, y) = D2(α)en2y + D4(α)en2y . (18b)

The remaining two unknowns D2(α) and D4(α) are obtained in terms of the boundary tractions in the
transformed domain (see Fig. 2). That is:

D2(α) = − 1

E∗
00(α)

[(
1 − ν2

)
Z̄2(α)P(α) + 2 (κ + ν) Z̄1(α)Q(α)

]
, (19a)

D4(α) = 1

E∗
00(α)

[
2 (κ + ν) Z1(α)Q(α) − (1 − ν2

)
Z2(α)P(α)

]
, (19b)

where we have defined:

Z1(α) = n2 + iανA2(α), (20a)

Z2(α) = A2(α)n2 + iα, (20b)

0(α) = − [Z1(α)Z̄2(α) + Z̄1(α)Z2(α)
]
, (20c)

P(α) =
∞∫

−∞
σyy (t, 0) e−iαtdt, (20d)

Q(α) =
∞∫

−∞
σxy (t, 0) e−iαtdt . (20e)

σ

11E

22
E

FGM

( ) 2
2 0

xE x E eβ=

( )2x y

( )1x x

τ ησ=

( )22 1 , 0xσ

( )11 1 , 0xσ

( )12 1 , 0xσ

Fig. 2 Geometry of the plane contact problem for graded orthotropic half-plane for the plane stress case
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3 The integral equation of the problem

The singular integral equations of the problem can be obtained after some length algebraic manipulations (see
Appendix B and [62]) as:

−ω1σxy(x, 0) − 1

π

b/
√

δ∫

−a/
√

δ

[
1

t − x
− J11 (t, x)

]
σyy (t, 0) dt

+ 1

π

b/
√

δ∫

−a/
√

δ

J12 (t, x)σxy (t, 0) dt = λ1E
∗
0 f (x), (21a)

ω2σyy(x, 0) − 1

π

b/
√

δ∫

−a/
√

δ

[
1

t − x
− J22 (t, x)

]
σxy (t, 0) dt

+ 1

π

b/
√

δ∫

−a/
√

δ

J21 (t, x)σyy (t, 0) dt = λ2E
∗
0g(x), (21b)

with

f (x) = ∂

∂x
v(x, 0), g(x) = ∂

∂x
u(x, 0), (22a,b)

where a0,b0, c0,d0 are given in Appendix B and ω1, ω2, λ1, λ2, Ji j , Φi j , (i, j = 1, 2) are given in
Appendix C.

Note that for an orthotropic homogeneous half-plane where the inhomogeneity parameter is zero, i.e.,
γ = 0, the integral equation similar to (21a) and (21b) can be written in the form given in [57]. Observe
that, since the axes orientations defining the problem geometry are different, the sign of the Cauchy integral
is reversed. Guler [57] used the lower half-plane, whereas in this study, the upper half-plane is used as the
contacting half-plane. Hence we recover:

−ωort
1 σxy(x, 0) − 1

π

b/
√

δ∫

−a/
√

δ

σyy(t, 0)

t − x
dt = λort1 E0 f (x), − a√

δ
< x <

b√
δ
, (23a)

ωort
2 σyy(x, 0) − 1

π

b/
√

δ∫

−a/
√

δ

σxy(t, 0)

t − x
dt = λort2 E0g(x), − a√

δ
< x <

b√
δ
, (23b)

whereωort
1 , ωort

2 , λort1 , λort2 are the parameters corresponding to orthotropic homogeneous half-plane and they
are given in [57]. Note that:

λort1 =
{

λ1, generalized plane stress conditions,
λ1

1−ν20
, plane strain conditions, (24a)

λort2 =
{

λ2, generalized plane stress conditions,
λ2

1−ν20
, plane strain conditions. (24b)

The expressions (21) constitute a pair of integral equations for the unknown contact stresses σyy(x, 0) and
σxy(x, 0) provided the stamp profile, that is, u1(x1, 0) and u2(x1, 0), −a < x1 < b are prescribed.
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For a complete solution of the problem, the following equilibrium equation has to be also satisfied at the
contact surface:

b∫

−a

σ22(t1, 0)dt1 = P, (25)

where P is the resultant compressive force. The amplitude of the applied load may be given in terms of either
the load, P , or stamp displacement, u2, parallel to the x2 axis.

In this study, it is assumed that the stamp moves relative to the graded half-plane, the coefficient of friction
η in the contact region is constant and Coulomb type of the friction holds. If the direction of the forces P and
Q is taken as Fig. 1, boundary conditions become

σ22(x1, 0) =
{−p(x1), −a < x1 < b,
0 x1 < −a, x1 > b, (26a)

σ12(x1, 0) =
{−ηp(x1), −a < x1 < b,
0 x1 < −a, x1 > b. (26b)

Equations (26a, 26b) can be written in the transformed coordinate system using the transformations defined
in Eqs. (4a–e) as

σyy(x, 0) =
{−δp(x), − a√

δ
< x < b√

δ
,

0 x < −a√
δ
, x > b√

δ
,

(27a)

σxy(x, 0) =
{−ηp(x), − a√

δ
< x < b√

δ
,

0 x < −a√
δ
, x > b√

δ
.

(27b)

Using Eqs. (27a, 27b), Eqs. (21) can be obtained as follows:

ω1ηp(x) + 1

π

b/
√

δ∫

−a/
√

δ

[
δ

t − x
− δ J11 (t, x) − ηJ12 (t, x)

]
p (t) dt = λ1E

∗
0 f (x), (28a)

−ω2δp(x) + 1

π

b/
√

δ∫

−a/
√

δ

[
η

t − x
− δ J21 (t, x) − ηJ22 (t, x)

]
p (t) dt = λ2E

∗
0g(x). (28b)

In order to normalize the limits of the integrals appearing in Eqs. (28), the following change of variables
is introduced:

x = b + a

2
√

δ
r + b − a

2
√

δ
, t = b + a

2
√

δ
s + b − a

2
√

δ
,

− a√
δ

< (x, t) <
b√
δ
, −1 < (r, s) < 1, (29a,b)

p(x) = λ1E
∗
0φ(r), f (x) = F(r),

A = ω1η, B = δ. (30a–d)

Finally, the singular integral equation of the contact problem can be written in terms of normalized
variables:

Aφ(r) + B

π

1∫

−1

φ(s)

s − r
ds − 1

π

1∫

−1

[
δ J ∗

11(s, r) + ηJ ∗
12(s, r)

]
φ(s)ds = F(r),

−1 < r < 1, (31)
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where

J ∗
i j (s, r) = b + a

2
√

δ
Ji j (t, x) (i, j = 1, 2) , (32)

4 On the solution of the integral equations

For an accurate and efficient solution of the integral equation, the corresponding weight function w(s) needs
to be determined. By defining the complex potential

Φ(z) = 1

2π i

1∫

−1

φ(s)

s − z
ds (33)

and using the complex function theory [3] from the dominant part of the integral equation (31)

Aφ(r) + B

π

1∫

−1

φ(s)

s − r
ds = G(r), −1 < r < 1, (34)

the weight function of φ(s) may be determined as

w(s) = (1 − s)α (1 + s)β , −1 < s < 1, (35)

α = − θ

π
+ N0, β = θ

π
+ M0, θ = arctan

∣
∣
∣
∣
B

A

∣
∣
∣
∣ , (36)

where N0 and M0 are arbitrary (positive, zero, or negative) integers depending on the physics of the problem.
In Eq. (34), G(r) represents all the bounded terms in Eq. (31) where A and B are defined in Eq. (30c, d). After
determining w(s), the solution of Eq. (31) may be expressed as

φ(s) =
∞∑

n=0

cnw(s)P(α,β)
n (s), −1 < s < 1, (37)

where cn are the unknown coefficients and P
(α,β)
n (s) are Jacobi polynomials associatedwith theweight function

w(s). The following property of Jacobi polynomials is utilized in solving the integral equation (31)

AP(α,β)
n (r)w(r) + B

π

1∫

−1

P(α,β)
n (s)w(s)

s − r
ds = −2−χ B

sin πα
P(−α,−β)
n−χ (r),

−1 < r < 1, �(α) > 1, � (β) > 1, �(α) �= (0, 1, . . . , ) , (38)

where χ is the index of the integral equation [3,63] defined as

χ = −(α + β). (39)

By substituting (37) into (31) and using (38), it can be shown that

∞∑

n=0

cn

[
−2−χ δ

sin πα
P(−α,−β)
n−χ (r) + h1n(r) + h2n(r)

]
= F(r), −1 < r < 1, (40)

h1n(r) = − δ

π

1∫

−1

J ∗
11(s, r)P

(α,β)
n (s)w(s)ds, (41)

h2n(r) = − η

π

1∫

−1

J ∗
12(s, r)P

(α,β)
n (s)w(s)ds. (42)
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Now, Eq. (40) can be reduced into a system of algebraic equations in terms of the unknown coefficients,
cn , through a suitable collocation technique [64]. Higher accuracy is obtained in the numerical solution of
(40), if the density of the collocation points is increased near the ends by choosing the collocation points
(ri , i = 0, 1, . . . , N ) as the roots of the Jacobi polynomials depending on the index of the problem.

5 The in-plane stress component on the surface of the orthotropic medium

From the crack initiation and surface damage point of view, one of the important components of the stress
state at the surface of the medium is the in-plane stress component σ11(x1, 0). When this component of the
stress state at the surface becomes tensile, crack initiation or surface damage can occur especially at the trailing
edge of the contact [12,18]. In this section, we briefly discuss the formulation and calculation of this stress
component.

In the transformed domain (x, y), the Hooke’s law for the surface stress components can be expressed
using Eqs. (5):

σxx (x, 0) = E∗
0

1 − ν2

{
∂u(x, 0)

∂x
+ ν

∂v(x, 0)

∂y

}
, (43a)

σyy(x, 0) = E∗
0

1 − ν2

{
ν
∂u(x, 0)

∂x
+ ∂v(x, 0)

∂y

}
, (43b)

σxy(x, 0) = E∗
0

2(κ + ν)

{
∂u(x, 0)

∂y
+ ∂v(x, 0)

∂x

}
. (43c)

Also, from Eqs. (21), (22), and (43b), one can find the displacement derivatives at the surface as given
below:

∂

∂x
u(x, 0) = ω2

λ2E∗
0
σyy(x, 0) − 1

πλ2E∗
0

b/
√

δ∫

−a/
√

δ

[
1

t − x
− J22 (t, x)

]
σxy (t, 0) dt

+ 1

πλ2E∗
0

b/
√

δ∫

−a/
√

δ

J21 (t, x)σyy (t, 0) dt, (44a)

∂v(x, 0)

∂y
= 1 − ν2

E∗
0

σyy(x, 0) − ν
∂u(x, 0)

∂x
. (44b)

Now, substituting Eqs. (44b) into Eq. (43a), it can be shown that

σxx (x, 0) = E∗
0
∂u(x, 0)

∂x
+ νσyy(x, 0). (45)

Finally, substituting (44a) into (45), we have

σxx (x, 0) = σ
p
xx (x, 0) + σ

q
xx (x, 0), (46)

σ
p
xx (x, 0) =

(
ω2

λ2
+ ν

)
σyy(x, 0) + 1

πλ2

b/
√

δ∫

−a/
√

δ

J21 (t, x)σyy (t, 0) dt, (47a)

σ
q
xx (x, 0) = − 1

πλ2

b/
√

δ∫

−a/
√

δ

[
1

t − x
− J22 (t, x)

]
σxy (t, 0) dt. (47b)
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Or in the physical coordinate system, (x1, x2), the in-plane stress component can be expressed as follows:

σ11(x1, 0) = −Cp(x1) + D

π

b∫

−a

p (t1)

t1 − x1
dt1

− δ3/2

πλ2

b∫

−a

J21 (t1, x1)p (t1) dt1 − ηδ1/2

πλ2

b∫

−a

J22 (t1, x1) p (t1)dt1, (48)

where

C =
(

ω2

λ2
+ ν

)
δ2, D = ηδ

λ2
. (49a,b)

In nondimensional form, the in-plane stress component can be expressed as

σ11(r, 0) = −Cp(r) + D

π

1∫

−1

p(s)

s − r
ds

− δ

πλ2

1∫

−1

[
δ J ∗

21(s, r) + ηJ ∗
22(s, r)

]
p(s)ds. (50)

6 Examples

6.1 Flat stamp

Consider the frictional sliding contact problem for the orthotropic half-plane shown in Fig. 3a where the stamp
profile is given by

u2(x1, 0) = v0 = constant,
∂

∂x1
u2(x1, 0) = 0. (51)

(a) (b)

( )2x y

( )1x xa− a

P

η=Q P

0v

11E

22
E

FGM
( ) 2

2 0
xE x E eβ=

( )2x y

( )1x x
0v

11E

22
E

FGM
( ) 2

2 0
xE x E eβ=

a− a

P

η=Q P

Fig. 3 Flat stamp in sliding frictional contact with graded orthotropic half-plane. a η > 0, b η < 0
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Referring to Fig. 3a, and (37), the integral equation (31) and the equilibrium equation (25) become

Aφ(r) + δ

π

1∫

−1

φ(s)

s − r
ds − 1

π

1∫

−1

[
δ J ∗

11(s, r) + ηJ ∗
12(s, r)

]
φ(s)ds = 0, −1 < r < 1, (52)

1∫

−1

φ(s)ds = P

λ1a
. (53)

The function p(x) has integrable singularities at x1 = a and x1 = −a. Thus, from the physics of the
problem, we must require that both α and β in the weight function of φ(s) [see Eq. (35)] be negative. They
may then be obtained by letting N0 = −1 and M0 = 0 in Eq. (36) as follows:

η > 0: α = − θ

π
, β = θ

π
− 1,

η = 0: α = −0.5, β = −0.5,

η < 0: α = θ

π
− 1, β = − θ

π
, (54)

with

θ = arctan

∣
∣
∣
∣

δ

ηω1

∣
∣
∣
∣ , 0 < θ <

π

2
, (55)

where ω1 is given in Appendix C. Assuming a solution of the form (37), using the properties of Jacobi
polynomials, and truncating the series at N , Eq. (40) becomes

N∑

0

cn

[
− δ

2 sin (πα)
P(−α,−β)
n−1 (r) + h1n(r) + h2n(r)

]
= 0. (56)

Using the collocation technique, (56) gives N equations for N + 1 unknown constants c0, . . . , cN . The
additional equation for a unique solution is provided by the equilibrium condition (53), which becomes

N∑

n=0

c∗
n

1∫

−1

w(s)P(α,β)
n (s)ds = 1, (57)

where

c∗
n = λ1a

P
cn . (58)

Using the following orthogonality condition

1∫

−1

P(α,β)
n (t)P(α,β)

j (t)w(t)dt =
{
0 n �= j,

θ
(α,β)
j n = j,

(59)

where

θ0(α, β) =
1∫

−1

w(t)dt = 2α+β+1Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
, (60)

θ j (α, β) = 2α+β+1Γ ( j + α + 1)Γ ( j + β + 1)

(2 j + α + β + 1) j !Γ ( j + α + β + 1)
, (61)

we obtain the following N + 1 equations

c∗
0θ0 = 1,

N∑

n=1

c∗
n Fn (ri ) = 0, i = 1, . . . , N , (62a,b)
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where

Fn (ri ) = − δ

2 sin (πα)
P(−α,−β)
n−1 (ri ) + h1n (ri ) + h2n (ri ) . (63)

In (63), ri (i = 1, . . . , N ) are obtained by letting

P(α+1,β+1)
N−1 (ri ) = 0, i = 1, . . . , N . (64)

After determining cn , the contact stresses and the in-plane stress may be obtained as

σ22(x1, 0)

σ0
= − p(x1)

σ0
, (65a)

σ12(x1, 0)

σ0
= −η

p(x1)

σ0
, (65b)

σ11(r, 0)

σ0
= − C

σ0
p(r) + D

πσ0

1∫

−1

p(s)

s − r
ds − δ

πλ2σ0

1∫

−1

[
δ J ∗

21(s, r) + ηJ ∗
22(s, r)

]
p(s)ds, (65c)

σ0 = P

2a
, (65d)

where

p(x1) = 2σ0
(
1 − x1

a

)α (
1 + x1

a

)β
N∑

n=0

c∗
n P

(α,β)
n

( x1
a

)
, −a < x1 < a. (66)

Upon solving the problem, the stress intensity factors at the end points x1 = ±a of the flat stamp may be
defined as and evaluated from

kp(a) = lim
x1→a

p(x1)

2β(a − x1)α
= Paβ

N∑

n=0

c∗
n P

(α,β)
n (1), (67a)

kp(−a) = lim
x1→−a

p(x1)

2α(x1 + a)β
= Paα

N∑

n=0

c∗
n P

(α,β)
n (−1), (67b)

or in nondimensional form:

k∗
p(a) = kp(a)

Paβ
=

N∑

n=0

c∗
n P

(α,β)
n (1), (68a)

k∗
p(−a) = kp (−a)

Paα
=

N∑

n=0

c∗
n P

(α,β)
n (−1). (68b)

6.2 Wedge stamp

Consider the frictional sliding contact problem for the graded orthotropic half-plane indented by a wedge
stamp shown in Fig. 4a where the stamp profile is given by

u2(x1, 0) = −mx1 + C,
d

dx1
u2(x1, 0) = −m, (69)

where m is a positive constant. The following definitions are used in normalizing the integral equation:

x = b

2
√

δ
(r + 1), t = b

2
√

δ
(s + 1), p(s) = λ1E

∗
0φ(s), (70)
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b0

( )2x y

( )1x x

FGM
( ) 2

2 0
xE x E eβ=

11E

22
E

P

η=Q P

FGM
( ) 2

2 0
xE x E eβ=

11E

22
E

b0

( )2x y

( )1x x

P

η=Q P

(a) (b)

Fig. 4 Wedge stamp in sliding frictional contact with graded orthotropic half-plane. a η > 0, b η < 0

where E∗
0 is given in Eq. (9c). Referring to Fig. 4a, the integral equation (31) and the equilibrium equation

(25) become

Aφ(r) + B

π

1∫

−1

φ(s)

s − r
ds − δ

π

1∫

−1

J ∗
11(s, r)φ(s)ds − η

π

1∫

−1

J ∗
12(s, r)φ(s)ds = −m, (71)

1∫

−1

φ(s)ds = 2P

λ1E∗
0b

. (72)

Since the wedge stamp has a sharp corner at x1 = 0 and a smooth contact at x1 = b from the physics of
the problem, it is obvious that α must be positive and β must be negative in the weight function of φ(s). They
can be found by letting M0 = N0 = 0 in Eq. (36) as

η > 0: α = 1 − θ

π
, β = −1 + θ

π
,

η = 0: α = 0.5, β = −0.5,

η < 0: α = θ

π
, β = − θ

π
, (73)

where θ is given by Eq. (55). Assuming a solution of the form (37) and using the properties of Jacobi
polynomials, and truncating the series at N , Eq. (40) becomes

N∑

0

c∗
n

[
− δ

sin (πα)
P(−α,−β)
n (r) + h1n(r) + h2n(r)

]
= −1, −1 < r < 1, (74a)

c∗
n = cn

m
. (74b)

In this problem, after the application of the load P , one end of the contact length, namely b, is unknown.
However, for a given value of the contact length, Eq. (74) provides N + 1 equations for N + 1 unknown
constants (c∗

0, . . . , c
∗
N ) as follows:

N∑

0

c∗
n

[
− δ

sin (πα)
P(−α,−β)
n (ri ) + h1n (ri ) + h2n (ri )

]
= −1,

i = 1, . . . , N + 1, −1 < r < 1, (75)

where (ri , i = 0, 1, . . . , N + 1) are defined by
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P(α−1,β+1)
N+1 (ri ) = 0 (ri , i = 0, 1, . . . , N + 1) . (76)

The relationship between the applied load P and the contact length b can be found from the equilibrium
equation (72) as:

c∗
0θ0 = 2P

λ1E∗
0mb

, (77)

where θ0 can be computed from Eq. (55) as

θ0 = 2πα

sin πα
. (78)

The relation between the applied load P and the contact length b then becomes

P

E∗
0m

= c∗
0θ0λ1

2
b. (79)

The contact stresses in nondimensional form at the surface of the graded orthotropic half-plane can then
be expressed as

σ22(x1, 0)

E∗
0m

= − p(x1)

E∗
0m

, (80a)

σ12(x1, 0)

E∗
0m

= −η
p(x1)

E∗
0m

, (80b)

σ11(r, 0)

E∗
0m

= − C

E∗
0m

p(r) + D

πE∗
0m

1∫

−1

p(s)

s − r
ds − δ

πλ2E∗
0m

1∫

−1

[
δ J ∗

21(s, r) + ηJ ∗
22(s, r)

]
p(s)ds, (80c)

where

p(x1) = E∗
0mλ1

(
b − x1
x1

)α N∑

n=0

c∗
n P

(α,β)
n

(
2x1
b

− 1

)
. (81)

After determining c∗
n , the stress intensity factor at x1 = 0 may be defined as

kp(0) = lim
x1→0

(x1)
α p(x1) = λ1mE∗

0b
α

N∑

n=0

c∗
n P

(α,β)
n (−1), (82)

or in nondimensional form

k∗
p(0) = kp (0)

mE∗
0b

α
= λ1

N∑

n=0

c∗
n P

(α,β)
n (−1). (83)

7 Results and discussion

This section introduces the numerical results of the problem described in Figs. 3 and 4 where the graded
orthotropic half-plane is loaded by a sliding rigid flat and wedge stamp, respectively. Note that, depending on
the direction of the lateral force Q, the friction coefficient is taken to be positive (Figs. 3a, 4a) or negative
(Figs. 3b, 4b) in the remaining figures. The material properties of the orthotropic medium are defined with
four effective elastic parameters, namely the effective stiffness, E , the effective Poisson’ s ratio, ν, the stiffness
ratio, δ, and the shear parameter, κ , given in Eqs. (1–2).

As described in the paper by Ozturk and Erdogan [65,66], the physically acceptable solution is only
available when the elastic parameters have the following range (−1 < κ < ∞, 0 < ν < 1, κ + ν > 0).
Therefore, in this study, the results are obtained for the following range of elastic parameters (−0.1 ≤ κ ≤
5.0, 0.2 ≤ δ4 ≤ 5.0, 1/7 ≤ ν ≤ 5/7,−0.9 ≤ η ≤ 0.9, 0.0 ≤ βa ≤ 3.0, 0.0 ≤ βb ≤ 6.0, ). In all of the
results given herein, the plane strain assumption is used.

Table 1 shows the comparison of homogeneous and graded orthotropic elastic parameters appearing in
Eqs. (21) and (23) for the nonhomogeneity parameter, βa = 0.001. In the limiting case, as the coefficient of
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friction, η → 0, approaches zero, θ → π/2, α → −1/2, and β → −1/2 (see Eq. 36 or 54), we recover the
known square-root singularity for the frictionless sliding flat stamp (see the results in Tables 2, 3). Note that
as the stiffness ratio, δ, tends to 1 from the right or left, isotropic results are recovered as shown in Table 2.
Similarly as the shear parameter, κ , tends to 1 from right or left, we recover the isotropic results given in
Table 3 for (κ = 1 and δ4 = 1).

Tables 4 and 5 list the strength of stress singularity α and β, respectively, for a flat stamp. As the magnitude
of the coefficient of friction increases, the strength of stress singularity at the trailing edge, α, increases for
η < 0. And as η becomes very large, θ → 0, α → −1, and β → 0. However, for η > 0, as the magnitude of
the coefficient of friction increases, the strength of stress singularity at the trailing edge, β, increases and as
η becomes very large, θ → 0, β → −1, and α → 0 (see Table 5). Note that Tables 4 and 5 for η < 0 are
exactly the same as Tables 2 and 3 of Ref. [57].

Table 6 displays the stress intensity factor results for an orthotropic inhomogeneous medium loaded by a
flat stamp as shown in Fig. 3b (η < 0) for various values of the inhomogeneity parameter βa. Observe that
when βa → 0, we recover the homogeneous orthotropic results given by Ref. [57].

Stress intensity factors for various values of the coefficient of friction and inhomogeneity parameter are
given in Tables 7, 8, and 9 for fixed values of the shear parameter and the effective Poisson’s ratio while
varying the stiffness parameter at δ4 = 0.5, 2, 8, respectively. As the stiffness parameter increases, the stress
intensity factors increase. And in general, as the inhomogeneity parameter increases, the stress intensity factors
decrease.

Table 1 Comparison of homogeneous and graded orthotropic elastic parameters appearing in Eqs. (21) and (23) for ν = 3/7

κ ω1 ωort
1 ω2 ωort

2 λ1 λort1 λ2 λort2

−0.25 0.4666 0.4670 0.4666 0.4661 0.8165 0.8163 0.8165 0.8160
0 0.4040 0.4044 0.4040 0.4043 0.7070 0.7067 0.7070 0.7065
0.5 0.3300 0.3302 0.3300 0.3297 0.5775 0.5775 0.5775 0.5775
1.0 0.2857 0.2857 0.2857 0.2857 0.5000 0.5000 0.5000 0.5000
2.0 0.2332 0.2338 0.2332 0.2330 0.4082 0.4076 0.4082 0.4080
5.0 0.1650 0.1629 0.1650 0.1682 0.2887 0.2916 0.2887 0.2882

Table 2 Stress intensity factors at the sharp edges of the flat stamp with the parameters κ = 0.99, ν = 3/7, η = 0.0, α = −0.5,
β = −0.5

βa
kp(−a)

Paα = kp(a)

Paβ

δ4 = 0.9 δ4 = 0.99 δ4 = 1.0 δ4 = 1.01 δ4 = 1.1

0.0 0.3183 0.3183 0. 3183 0.3183 0.3183
0.01 0.3159 0.3159 0.3159 0.3159 0.3160
0.1 0.2972 0.2976 0.2976 0.2977 0.2981
0.4 0.2543 0.2554 0.2554 0.2556 0.2565
0.7 0.2258 0.2272 0.2272 0.2274 0.2286
1.0 0.2049 0.2063 0.2064 0.2066 0.2079
2.0 0.1617 0.1632 0.1633 0.1635 0.1649

Table 3 Stress intensity factors at the sharp edges of the flat stamp with the parameters, δ4 = 1.0, ν = 3/7, η = 0.0, α = −0.5,
β = −0.5

βa
kp(−a)

Paα = kp(a)

Paβ

κ = 0.9 κ = 0.99 κ = 1.0 κ = 1.01 κ = 1.1

0.0 0.3183 0.3183 0. 3183 0.3183 0.3183
0.01 0.3160 0.3159 0.3159 0.3159 0.3159
0.1 0.2979 0.2977 0.2976 0.2976 0.2973
0.4 0.2562 0.2555 0.2554 0.2448 0.2440
0.7 0.2282 0.2273 0.2272 0.2063 0.2053
1.0 0.2075 0.2065 0.2064 0.1631 0.1621
2.0 0.1645 0.1634 0.1633 0.1387 0.1377
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The effect of the shear parameter on the stress intensity factors for the flat stamp can be seen by comparing
Tables 7 and 10 for κ = 0.5 vs. κ = 2.0, respectively. As the shear parameter increases, the stress intensity
factors decrease at both ends of the flat stamp.

Table 11 demonstrates the stress intensity factor results for an orthotropic inhomogeneous medium loaded
by a wedge stamp as shown in Fig. 4b for various values of the inhomogeneity parameter βb. Observe that
when we recover the homogeneous orthotropic results given by Ref. [58].

The effect of the inhomogeneity on the stress intensity factor for the wedge stamp for various values of the
shear parameter for the frictionless and frictional contact cases is shown in Table 12. As the shear parameter
κ gets larger, the stress intensity factor decreases in all cases. The same table in terms of the variation of the
stiffness ratio, δ, is presented in Table 13. As the stiffness ratio δ gets larger, the stress intensity factor decreases
in all cases.

Figures 5, 6, 7, 8, 9, and 10 illustrate contact pressure distribution obtained for a flat stamp configuration
as shown in Fig. 3a or b depending on the direction of the lateral force Q. The contact pressure is normalized
with σ0 = P

2a . The numerical results of this study are first validated by the results obtained by Ref. [67] where
the same problem is considered for a graded isotropic graded half-plane. In order to capture the isotropic
behavior from an orthotropic formulation, the material elastic parameters are set at κ = 0.99 and δ4 = 1.
An excellent match is obtained for the flat stamp as depicted in Fig. 5a, b for the coefficient of friction
η = 0 and η = 0.5, respectively. The next validation is done with Ref. [57] where the same problem
is considered for a homogeneous orthotropic half-plane (see the red dots in Fig. 6 for the inhomogeneity
parameter βa = 0). Again an excellent match is observed. Figure 6 demonstrates how the material property
grading affects the contact pressure distribution. As the inhomogeneity parameter increases, the curves at
the center of the contact becomes more flatter for frictionless contact (η = 0) where the strength of power
singularities α = β = −1/2. For the frictional contact where η �= 0, the distribution is not symmetric.
Depending on the shear parameter, the contact pressure slants toward either to the leading or to the trailing edge
of the contact. Similarly, Fig. 7 depicts the contact pressure results when the direction of the lateral force Q is
changed.

Contact pressure distribution for various values of the stiffness ratio, δ4 = E11
E22

, is plotted in the range

0.2 ≤ δ4 ≤ 5.0 for different values of the shear parameter, κ , and the coefficient of friction (η > 0) as shown
in the insert in Fig. 7. As the coefficient of friction increases, the curves slant toward the leading edge when
the shear parameter κ is less than one and to the trailing edge when the shear parameter is greater than one.
Observe that as the stiffness ratio δ increases, the contact pressure distribution becomes more symmetric even
for the frictional contact (see Fig. 7).

In Fig. 8a, b, contact pressure is plotted for a graded orthotropic half-plane where the inhomogeneity
parameter βa = 1 and the friction coefficient is η = 0.5 for various values of the shear parameter κ . Note that
as the shear parameter κ increases, the stress distribution is slanted toward the trailing edge for δ4 = 0.25. As
the shear parameter gets smaller, the stress distribution is slanted toward the leading edge. The effect of the
effective Poisson’s ratio ν, on the contact pressure distribution, can be seen in Fig. 8c, d. The direction of slant
in these curves moves from the leading edge to the trailing edge as ν increases when stiffness ratio δ4 = 0.25
for the graded orthotropic half-plane with an inhomogeneity parameter βa = 1. The same set of figures is
drawn for δ4 = 2 in Fig. 8d for comparison. Note that the contact pressure in the middle of the stamp is higher
for δ4 = 2 as compared to δ4 = 0.25.

Figure 9 shows the effect of the coefficient of friction on the contact pressure distribution for various
values of the shear parameter and the stiffness ratio. Note that there is not a significant change in the contact
pressure as the shear parameter gets larger for higher values of the stiffness ratio (see Fig. 9f). The curves
slant toward the leading edge for small shear parameter and to the trailing edge as the shear parameter gets
larger.

As mentioned in Sect. 5, the in-plane component of the stress component σ11(x1, 0)may lead to the surface
damage or crack initiation when it becomes tensile at the surface. Figures 10 and 11 depict the distribution of
this stress component in the case of negative and positive values of the coefficient of friction for orthotropic
homogeneous materials. Note that when η < 0, the direction of the lateral component of the applied force
to the stamp is toward right, and when η > 0, it is toward left. In Fig. 10, the in-plane stress is tensile at the
trailing region (r > 1, or x1 > a) for η < 0. Observe that the in-plane stress is tensile at r < 1, or x1 < −a
when the direction of the lateral force, Q, is changed (η > 0).

The stress results for a wedge stamp are also validated by the results obtained by Guler [67] as depicted in
Fig. 12a, b by setting the elastic parameters δ4 = 1 and the shear parameter is almost equal to 1 (κ = 0.99).
To make these validations, contact stresses are normalized with P/b, the same convention used in [67]:
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Table 6 Stress intensity factors at the sharp edges of the flat stamp (see Fig. 3b) with the parameters, δ4 = 0.2, η = −0.5,
ν = 3/7

βa κ = −0.1 κ = 0.99 κ = 5.0

α = −0.5981
β = −0.4019

α = −0.5672
β = −0.4328

α = −0.5391
β = −0.4609

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

0.0* 0.3033 0.3033 0.3113 0.3113 0.3159 0.3159
0.01 0.3069 0.2962 0.3140 0.3030 0.3162 0.3058
0.1 0.3055 0.2628 0.3077 0.2629 0.2965 0.2551
0.4 0.2782 0.2074 0.2725 0.1974 0.2469 0.1761
0.7 0.2556 0.1765 0.2460 0.1625 0.2191 0.1375
1.0 0.2381 0.1554 0.2262 0.1400 0.2009 0.1142
2.0 0.2002 0.1155 0.1845 0.1005 0.1668 0.0767
* Reference [57]

Table 7 Stress intensity factors at the sharp edges of the flat stamp (see Fig. 3a) with the parameters, κ = 0.5, δ4 = 0.5, ν = 3/7

βa η = 0.0 η = 0.1 η = 0.3 η = 0.5

α = −0.5000
β = −0.5000

α = −0.4875
β = −0.5125

α = −0.4627
β = −0.5373

α = −0.4383
β = −0.5617

kp(−a)

Paα = kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

0.0 0.3183 0.3181 0.3181 0.3161 0.3161 0.3123 0.3124
0.01 0.3157 0.3147 0.3163 0.3114 0.3160 0.3065 0.3140
0.1 0.2961 0.2927 0.2992 0.2849 0.3045 0.2762 0.3084
0.4 0.2520 0.2462 0.2577 0.2342 0.2686 0.2220 0.2784
0.7 0.2232 0.2166 0.2298 0.2034 0.2425 0.1903 0.2545
1.0 0.2023 0.1953 0.2091 0.1817 0.2227 0.1684 0.2358
2.0 0.1595 0.1525 0.1665 0.1391 0.1806 0.1264 0.1946

Table 8 Stress intensity factors at the sharp edges of the flat stamp (see Fig. 3a) with the parameters, κ = 0.5, δ4 = 2.0, ν = 3/7

βa η = 0.0 η = 0.1 η = 0.3 η = 0.5

α = −0.5000
β = −0.5000

α = −0.4912
β = −0.5088

α = −0.4736
β = −0.5264

α = −0.4561
β = −0.5439

kp(−a)

Paα = kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

0.0 0.3183 0.3182 0.3182 0.3172 0.3172 0.3153 0.3153
0.01 0.3165 0.3159 0.3168 0.3142 0.3167 0.3116 0.3157
0.1 0.3019 0.2999 0.3038 0.2954 0.3069 0.2903 0.3094
0.4 0.2667 0.2630 0.2703 0.2553 0.2772 0.2474 0.2835
0.7 0.2418 0.2374 0.2461 0.2286 0.2544 0.2197 0.2624
1.0 0.2226 0.2180 0.2273 0.2086 0.2364 0.1992 0.2453
2.0 0.1809 0.1759 0.1859 0.1661 0.1958 0.1565 0.2060

Table 9 Stress intensity factors at the sharp edges of the flat stamp (see Fig. 3a) with the parameters, κ = 0.5, δ4 = 8.0, ν = 3/7

βa η = 0.0 η = 0.1 η = 0.3 η = 0.5

α = −0.5000
β = −0.5000

α = −0.4938
β = −0.5062

α = −0.4813
β = −0.5187

α = −0.4689
β = −0.5311

kp(−a)

Paα = kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

0.0 0.3183 0.3182 0.3182 0.3178 0.3178 0.3168 0.3168
0.01 0.3170 0.3167 0.3172 0.3158 0.3172 0.3144 0.3167
0.1 0.3064 0.3052 0.3074 0.3026 0.3093 0.2996 0.3108
0.4 0.2788 0.2765 0.2810 0.2717 0.2853 0.2668 0.2893
0.7 0.2580 0.2552 0.2607 0.2495 0.2661 0.2437 0.2713
1.0 0.2412 0.2382 0.2443 0.2319 0.2503 0.2257 0.2561
2.0 0.2023 0.1988 0.2057 0.1919 0.2126 0.1851 0.2194
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Table 10 Stress intensity factors at the sharp edges of the flat stamp (see Fig. 3a) with the parameters, κ = 2.0, δ4 = 0.5, ν = 3/7

βa η = 0.0 η = 0.1 η = 0.3 η = 0.5

α = −0.5000
β = −0.5000

α = −0.4912
β = −0.5088

α = −0.4736
β = −0.5264

α = −0.4561
β = −0.5439

kp(−a)

Paα = kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

kp(−a)

Paα

kp(a)

Paβ

0.0 0.3183 0.3182 0.3182 0.3172 0.3172 0.3153 0.3153
0.01 0.3151 0.3142 0.3157 0.3118 0.3163 0.3087 0.3161
0.1 0.2910 0.2878 0.2941 0.2809 0.3000 0.2736 0.3052
0.4 0.2396 0.2339 0.2453 0.2227 0.2565 0.2115 0.2675
0.7 0.2079 0.2015 0.2145 0.1888 0.2277 0.1765 0.2409
1.0 0.1858 0.1790 0.1927 0.1658 0.2069 0.1532 0.2213
2.0 0.1429 0.1360 0.1500 0.1229 0.1650 0.1108 0.1807

Table 11 Stress intensity factors for the wedge stamp (see Fig. 4b) with the parameters δ4 = 0.2, η = −0.5, ν = 3/7

βb κ = −0.1 κ = 0.99 κ = 5.0
α = 0.4019
β = −0.4019

α = 0.4328
β = −0.4328

α = 0.4609
β = −0.4609

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

0.0* 1.0621 0.7330 0.4285
0.2 1.2267 0.8684 0.5312
1.0 1.6528 1.2461 0.8474
2.0. 2.0854 1.6416 1.1989
4.0 2.8231 2.3049 1.8051
* Reference [58]

Table 12 Stress intensity factors for the wedge stamp (see Fig. 4a) with the parameters, δ4 = 2.0, ν = 3/7

βb η = 0.0 η = 0.9

κ = −0.25 κ = 0.5 κ = 2.0 κ = −0.25 κ = 0.5 κ = 2.0
α = 0.5000
β = −0.5000

α = 0.5000
β = −0.5000

α = 0.5000
β = −0.5000

α = 0.6080
β = −0.6080

α = 0.5779
β = −0.5779

α = 0.5556
β = −0.5556

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

0.0 0.6866 0.4855 0.3433 0.6474 0.4710 0.3381
0.2 0.7188 0.5120 0.3668 0.6359 0.4664 0.3401
1.0 0.8250 0.6013 0.4456 0.6764 0.5053 0.3802
2.0 0.9356 0.6968 0.5297 0.7334 0.5581 0.4271
4.0 1.1210 0.8611 0.6728 0.8324 0.6527 0.5053

Table 13 Stress intensity factors for the wedge stamp (see Fig. 4a) with the parameters, βb = 1.0, ν = 3/7

δ4 η = 0.0 η = 0.9

κ = −0.25 κ = 0.5 κ = 2.0 κ = −0.25 κ = 0.5 κ = 2.0
kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

kp(0)
mE∗

0b
α

0.25 1.5173 1.1230 0.8478 0.9712 0.7676 0.5978
1.0 1.0076 0.7377 0.5499 0.7755 0.5880 0.4470
3.0 0.7349 0.5343 0.3947 0.6208 0.4606 0.3447
5.0 0.6361 0.4612 0.3394 0.5546 0.4084 0.3037
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(a)

(b)

Fig. 5 Contact pressure distribution, σ22(x1, 0), at the surface of graded orthotropic half-plane loaded by a flat stamp for various
values of the inhomogeneity parameter, βa, with the parameters κ = 0.99, δ4 = 1.0, ν = 3/7, σ0 = P

2a , a η = 0.0, b η = 0.5

σ22(x1, 0)

P/b
= − 2

c0θ0

(
b − x1
x1

)α N∑

n=0

cn P
(α,β)
n (2x1/b − 1) (84)

Again an excellent match is observed in the validation study.
Figures 13, 14, and 15 present the results for the contact stresses σ22(x1, 0) for the wedge-shaped punch.

The contact pressure σ22(x1, 0) is bounded at the smooth edge x1 = b and singular at the sharp edge x1 = 0.
In Fig. 13, contact pressure distribution for different values of the inhomogeneity parameter is plotted in the
range 0 ≤ βb ≤ 4 for different values of the shear parameter, κ , and the coefficient of friction η. When the
inhomogeneity parameter βb approaches to zero, we should recover the orthotropic homogeneous results of
Ref. [58]. This validation can be seen in Fig. 13a. In order to be consistent with the direction of the lateral force
Q taken in Ref. [58], the coefficient of friction is taken to be negative. Note that the effect of the coefficient of
friction, η, is significant for small values of the shear parameter κ . For reference, one can see the effect of the
inhomogeneity parameter on the contact stresses for fixed values of the coefficient of friction (η = 0,−0.9)
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 Contact pressure distribution, σ22(x1, 0), at the surface of graded orthotropic half-plane loaded by a flat stamp for various
values of the inhomogeneity parameter, βa, with the parameters ν = 3/7, δ4 = 0.2, σ0 = P

2a , a η = 0.0, κ = −0.1, b η = 0.0,
κ = 0.99, c η = 0.0, κ = 5.0, d η = −0.5, κ = −0.1, e η = −0.5, κ = 0.99, f η = −0.5, κ = 5.0
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(a) (d)

(b) (e)

(c) (f)

Fig. 7 Contact pressure distribution, σ22(x1, 0), at the surface of graded orthotropic half-plane loaded by a flat stamp for various
values of the stiffness ratio, δ, with the parameters βa = 1.0, ν = 3/7, σ0 = P

2a , a η = 0.0, κ = −0.25, b η = 0.0, κ = 0.5,
c η = 0.0, κ = 2.0, d η = 0.9, κ = −0.25, e η = 0.9, κ = 0.5, f η = 0.9, κ = 2.0
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(a) (b)

(c) (d)

Fig. 8 Contact pressure, σ22(x1, 0), distribution at the surface of graded orthotropic half-plane loaded by a flat stamp for various
values of the shear parameter, κ , and the effective Poisson’ s ratio, ν, with the parameters βa = 1.0, η = 0.5, σ0 = P

2a ,
a δ4 = 0.25, ν = 3/7, b δ4 = 2.0, ν = 3/7, c δ4 = 0.25, κ = 0.5, d δ4 = 2.0, κ = 0.5

in Fig. 14. The effect of the stiffness ratio for various values of the coefficient of friction and shear parameter
can be seen in Fig. 15.

The distribution of the in-plane stress component for wedge-shaped stamp is shown in Fig. 16 for η <
0. It can be seen that the in-plane stresses have a tensile peak at the trailing edge of the contact which
might be responsible for crack initiation or surface damage. Figure 17 shows the behavior of the in-plane
stress component when η > 0 and note that the in-plane stresses are tensile at the trailing region of the
contact.

Finally, Fig. 18 depicts the load versus the contact length distributions, P , for various values of the
coefficient of friction. The figure shows that the effect of coefficient of friction η on the P is quite
significant.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9 Contact pressure, σ22(x1, 0), distribution at the surface of graded orthotropic half-plane loaded by a flat stamp for various
values of the friction coefficient, η, with the parameters βa = 1.0, ν = 3/7, σ0 = P

2a , a κ = −0.25, δ4 = 0.25, b κ = 0.5,
δ4 = 0.25, c κ = 2.0, δ4 = 0.25, d κ = −0.25, δ4 = 2.0, e κ = 0.5, δ4 = 2.0, f κ = 2.0, δ4 = 2.0
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(a)

(b)

Fig. 10 In-plane stress, σ11(x1, 0), distribution at the surface of homogeneous orthotropic half-plane loaded by a flat stamp for
various values of the stiffness ratio, δ, with the parameters ν = 3/7, η = −0.5, σ0 = P

2a , a κ = −0.1, b κ = 5.0

8 Concluding remarks

In this study, analytical and numerical methods are developed to determine contact stress distributions in
orthotropic graded materials that are subjected to frictional contact by a rigid stamp with arbitrary profile.
Two different profiles (flat and wedge type) are used for the numerical results presented in Sect. 6. Below, we
summarize the major findings of this study.

• The results obtained in this study are in excellent agreement with the limiting cases (isotropic graded results
of Ref. [67], orthotropic homogeneous results of Ref. [57] for flat stamp, and orthotropic homogeneous
results of Ref. [58] for wedge stamp. Therefore, this study can be used as benchmark results for the contact
stresses involving orthotropic graded materials.

• The weight functions describing the asymptotic behavior of the contact stresses are dependent on the
coefficient of friction and the value of effective Poisson’s ratio and the shear parameter only, and are
independent of all other material constants and length parameters. As shown in the formulation section,
the leading term in the asymptotic solution is evaluated in closed form.
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(a)

(b)

Fig. 11 In-plane stress, σ11(x1, 0), distribution at the surface of homogeneous orthotropic half-plane loaded by a flat stamp for
various values of the stiffness ratio, δ, with the parameters ν = 3/7, η = 0.5, σ0 = P

2a , a κ = −0.1, b κ = 5.0

• As the coefficient of friction increases, the contact pressure curves slant toward the leading edge when the
shear parameter, κ , is less than one and to the trailing edge when the shear parameter is greater than one.

• As in the crack problems for graded materials (see [65]), the shear parameter, κ , has a significant effect
on the contact pressure distribution, especially when κ < 0.

• For wedge-shaped stamp, the in-plane stress component has a tensile peak at the trailing edge of the
component and may be responsible for surface damage and crack initiation at trailing edge of the contact.

• Orthotropic graded materials are shown to possess the potential to be used to lower the stress levels in the
contact surfaces that are susceptible for crack initiation due to frictional contact.

The theory proposed in this paper possesses application to several contact problems related to orthotropic
materials. For example, the theory can be further extended to cover the contact mechanics of orthotropic
magneto-electro-elastic materials (MEEMs) or orthotropic functionally graded magneto-electro-elastic mate-
rials (FGMEEMs). Sensors, actuators, optoelectronic devices, storage devices, and electronic instrumentations
are among the current applications of MEEMs. In order to characterize the mechanical, electric, and mag-
netic performance, the mechanics of contact for these materials has to be fully understood (see, for example,
[68,69]).
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(b)

(a)

Fig. 12 Contact pressure, σ22(x1, 0), distribution at the surface of graded orthotropic half-plane loaded by a wedge stamp for
various values of the inhomogeneity parameter, βb, with the parameters, κ = 0.99, δ4 = 1.0, ν = 3/7, σ0 = P

b , a η = 0.0, b
η = 0.5
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(a)

(b) (c)

(d) (e)

Fig. 13 Contact pressure, σ22(x1, 0), distribution at the surface of graded orthotropic half-plane loaded by a wedge stamp for
various values of the friction coefficient, η, with the parameters δ4 = 0.2, κ = −0.1, ν = 3/7, a βb = 0.0, b βb = 0.2,
c βb = 1.0, d βb = 2.0, e βb = 4.0, where E∗

0 is given in Eq. (9c)
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(a) (b)

(c) (d)

Fig. 14 Contact pressure, σ22(x1, 0), distribution at the surface of graded orthotropic half-plane loaded by a wedge stamp for
various values of the inhomogeneity parameter, βb, with the parameters ν = 3/7, δ4 = 0.2, a η = 0.0, κ = −0.1, b η = −0.9,
κ = −0.1, c η = 0.0, κ = 0.99, d η = −0.9, κ = 0.99 where E∗

0 is given in Eq. (9c)
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 15 Contact pressure, σ22(x1, 0), distribution at the surface of graded orthotropic half-plane loaded by a wedge stamp for
various values of the stiffness ratio, δ, with the parameters βb = 1.0, ν = 3/7, a κ = −0.25, η = 0.0, b κ = 0.5, η = 0.0,
c κ = 2.0, η = 0.0, d κ = −0.25, η = 0.9, e κ = 0.5, η = 0.9, f κ = 2.0, η = 0.9, where E∗

0 is given in Eq. (9c)
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(a)

(b)

Fig. 16 In-plane stress, σ11(x1, 0), distribution at the surface of homogeneous orthotropic half-plane loaded by a wedge stamp
for various values of the coefficient of friction, η ≤ 0, with the parameters ν = 3/7, δ4 = 0.2, a κ = −0.1, b κ = 5.0, where E∗

0
is given in Eq. (9c)
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(a)

(b)

Fig. 17 In-plane stress, σ11(x1, 0), distribution at the surface of homogeneous orthotropic half-plane loaded by a wedge stamp
for various values of the coefficient of friction, η ≥ 0, with the parameters ν = 3/7, δ4 = 0.2, a κ = −0.1, b κ = 5.0, where E∗

0
is given in Eq. (9c)
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(a)

(b) (c)

(d) (e)

Fig. 18 Load versus the contact length distributions, P , for graded orthotropic half-plane loaded by a wedge stamp for various
values of the coefficient ratio, η, with the parameters δ4 = 0.2, κ = −0.1, ν = 3/7, a βb = 0.0, b βb = 0.2, c βb = 1.0,
d βb = 2.0, e βb = 4.0, where E∗

0 is given in Eq. (9c)
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Appendix A: The roots of the characteristic equation (14)

Depending on the values of κ , there are three cases of the characteristic roots of Eq. (14):

Case A: −1 < κ <

√
1 + ν

( γ
α

)2, two pairs of complex conjugate roots:

n1 = |α|
⎛

⎝− γ

2 |α| +
√(

γ

2 |α|
)2

+ κ + iχ1

⎞

⎠ = n3, �e (n1, n3) > 0, (A.1)

n2 = |α|
⎛

⎝− γ

2 |α| −
√(

γ

2 |α|
)2

+ κ + iχ1

⎞

⎠ = n4, �e (n2, n4) < 0, (A.2)

χ1 =
√

1 − κ2 + ν
(γ

α

)2; (A.3)

Case B: κ >

√
1 + ν

( γ
α

)2, four distinct real roots:

n1 = |α|
⎛

⎝− γ

2 |α| +
√(

γ

2 |α|
)2

+ κ − χ1

⎞

⎠ , �e (n1) > 0, (A.4)

n2 = |α|
⎛

⎝− γ

2 |α| −
√(

γ

2 |α|
)2

+ κ − χ1

⎞

⎠ , �e (n2) < 0, (A.5)

n3 = |α|
⎛

⎝− γ

2 |α| +
√(

γ

2 |α|
)2

+ κ + χ1

⎞

⎠ , �e (n3) > 0, (A.6)

n4 = |α|
⎛

⎝− γ

2 |α| −
√(

γ

2 |α|
)2

+ κ + χ1

⎞

⎠ , �e (n4) < 0, (A.7)

χ1 =
√

κ2 − 1 − ν
(γ

α

)2; (A.8)

Case C: κ =
√
1 + ν

( γ
α

)2, two real double roots:

n1 = |α|
⎛

⎝− γ

2 |α| +
√(

γ

2 |α|
)2

+ κ

⎞

⎠ = n3, �e (n1, n3) > 0, (A.9)

n2 = |α|
⎛

⎝− γ

2 |α| −
√(

γ

2 |α|
)2

+ κ

⎞

⎠ = n4, �e (n2, n4) < 0. (A.10)

Note that when κ → 1 and δ4 → 1, we must recover the isotropic infinitely graded half-plane formulation.

Observe that this situation corresponds to case 1 where −1 < κ <

√
1 + ν

( γ
α

)2. Therefore, for this special
case of the problem, the roots become
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niso1 = |α|
⎛

⎝− γ

2 |α| +
√(

γ

2 |α|
)2

+ 1 + i
|γ |
|α| δ0

⎞

⎠ , �e (n1) > 0, (A.11)

niso2 = |α|
⎛

⎝− γ

2 |α| −
√(

γ

2 |α|
)2

+ 1 + i
|γ |
|α| δ0

⎞

⎠ , �e (n2) < 0, (A.12)

niso3 = |α|
⎛

⎝− γ

2 |α| +
√(

γ

2 |α|
)2

+ 1 − i
|γ |
|α| δ0

⎞

⎠ , �e (n3) > 0, (A.13)

niso4 = |α|
⎛

⎝− γ

2 |α| −
√(

γ

2 |α|
)2

+ 1 − i
|γ |
|α| δ0

⎞

⎠ , �e (n4) < 0, (A.14)

where

δ0 =
⎧
⎨

⎩

√
ν0 generalized plane stress conditions

√
1

1−ν0
plane strain conditions

(A.15)

and ν0 being the Poisson’s ratio of the corresponding isotropic half-plane.

Appendix B: The asymptotic analysis of the kernels in the integral equation

In Sect. 2, the formulation of the ordinary stress boundary value problem shown in Fig. 2 is described. The
frictional contact problems given in Fig. 1 are mixed boundary value problems in which the contact stresses
σ, τ are zero outside the contact region, x1 < −a, x1 > b, and displacement components are defined in the
contact region −a < x1 < b through the given stamp profile. Taking the x-derivative of Eqs. (11a) and (11b),
the displacement derivatives on the surface of the orthotropic graded half-plane can be expressed as:

lim
y→0

πE∗
0
d

dx
v(x, y),

= lim
y→0

∞∫

−∞
K11(x, y, t)σyy (t, y) dt + lim

y→0

∞∫

−∞
K12(x, y, t)σxy (t, y) dt, (B.1)

lim
y→0

πE∗
0
d

dx
u(x, y)

= lim
y→0

∞∫

−∞
K21(x, y, t)σyy (t, y) dt + lim

y→0

∞∫

−∞
K22(x, y, t)σxy (t, y) dt, (B.2)

where the kernels Ki j (x, y, t) (i, j = 1, 2) are known functions (see [62] for details), and to dictate the nature
of singularity coming from the Cauchy singularities and delta functions, Eqs. (B.1) and (B.2) are expressed
in terms of displacement derivatives rather than displacements. The kernels Ki j (x, y, t) (i, j = 1, 2) can be
expressed as:

Ki j (x, y, t) =
∞∫

−∞
Hi j (α, y)e−iα(t−x)dα (i, j = 1, 2) , (B.3)
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where

H11(α, y) = − iα

0(α)

[(
1 − ν2

)

2

(
Z̄2(α)en2y + Z2(α)en4y

)
]

, (B.4)

H21(α, y) = − iα

0(α)

[(
1 − ν2

)

2

(
A2 Z̄2(α)en2y − Ā2Z2(α)en4y

)
]

, (B.5)

H12(α, y) = − iα

0(α)

[
(κ + ν)

(
Z̄1(α)en2y − Z1(α)en4y

)]
, (B.6)

H22(α, y) = − iα

0(α)

[
(κ + ν)

(
A2(α)Z̄1(α)en2y + Ā2(α)Z1(α)en4y

)]
. (B.7)

Singularities in the kernels are dictated by the asymptotic behavior of integrands. Asymptotic analy-
sis as α → ∞ must be done to extract the singularities. As α → ∞, asymptotic behavior of
H11(α, y), H12(α, y), H21(α, y) and H22(α, y) can be obtained as:

H11(α, y) = iα

|α|
[
a10 + a11

γ

|α| + O

(
1

α2

)]
e−r1|α|y

+ iα

|α|
[
a20 + a21

γ

|α| + O

(
1

α2

)]
e−r2|α|y, (B.8)

H21(α, y) =
[
b10+b11

γ

|α| + O

(
1

α2

)]
e−r1|α|y

+
[
b20+b21

γ

|α| + O

(
1

α2

)]
e−r2|α|y, (B.9)

H12(α, y) =
[
c10+c11

γ

|α| + O

(
1

α2

)]
e−r1|α|y

+
[
c20+c21

γ

|α| + O

(
1

α2

)]
e−r2|α|y, (B.10)

H22(α, y) = iα

|α|
[
d10 + d11

γ

|α| + O

(
1

α2

)]
e−r1|α|y

+ iα

|α|
[
d20 + d21

γ

|α| + O

(
1

α2

)]
e−r2|α|y, (B.11)

where

a10 + a20 = a0 = κ1
r1r2

r1 − r2
, (B.12)

b10 + b20 = b0 = 1

2

r2r3 − r1r4
r1 − r2

, (B.13)

c10 + c20 = c0 = 1

2

r1r4 − r2r3
r1 − r2

, (B.14)

d10 + d20 = d0 = κ1

r1 − r2
, (B.15)

κ1 = i
√
1 − κ2, (B.16)

r1 = √
κ − κ1, (B.17)

r2 = √
κ + κ1, (B.18)

r3 = κ + ν − κ1, (B.19)

r4 = κ + ν + κ1. (B.20)
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Examining the asymptotic behavior of Hi j (α, y) (i, j = 1, 2), the asymptotic terms in Eq. (B.3) can be
obtained as (see [62] for details)

K11∞ = ia10

∞∫

−∞

α

|α|e
−r1|α|ye−iα(t−x)dα + ia20

∞∫

−∞

α

|α|e
−r2|α|ye−iα(t−x)dα

= a10
2 (t − x)

r21 y
2 + (t − x)2

+ a20
2 (t − x)

r22 y
2 + (t − x)2

, (B.21)

K21∞ = b10

∞∫

−∞
e−r1|α|ye−iα(t−x)dα + b20

∞∫

−∞
e−r2|α|ye−iα(t−x)dα

= b10
2y

r21 y
2 + (t − x)2

+ b20
2y

r22 y
2 + (t − x)2

, (B.22)

K12∞ = c10

∞∫

−∞
e−r1|α|ye−iα(t−x)dα + c20

∞∫

−∞
e−r2|α|ye−iα(t−x)dα

= c10
2y

r21 y
2 + (t − x)2

+ c20
2y

r22 y
2 + (t − x)2

, (B.23)

K22∞ = id10

∞∫

−∞

α

|α|e
−r1|α|ye−iα(t−x)dα + id20

∞∫

−∞

α

|α|e
−r2|α|ye−iα(t−x)dα

= d10
2 (t − x)

r21 y
2 + (t − x)2

+ d20
2 (t − x)

r22 y
2 + (t − x)2

. (B.24)

Taking the limit as y → 0, Eqs. (B.21–B.24) become

K11∞ = lim
y→0

[

a10
2 (t − x)

r21 y
2 + (t − x)2

+ a20
2 (t − x)

r22 y
2 + (t − x)2

]

= 2a0

t − x
, (B.25)

K21∞ = lim
y→0

[

b10
2y

r21 y
2 + (t − x)2

+ b20
2y

r22 y
2 + (t − x)2

]

= 2b0πδ (t − x) (B.26)

K12∞ = lim
y→0

[

c10
2y

r21 y
2 + (t − x)2

+ c20
2y

r22 y
2 + (t − x)2

]

= 2c0πδ (t − x) (B.27)

K22∞ = lim
y→0

[

d10
2 (t − x)

r21 y
2 + (t − x)2

+ d20
2 (t − x)

r22 y
2 + (t − x)2

]

= 2d0

t − x
. (B.28)

For the rest of the terms in the asymptotic expansion, the reader is referred to [62].

Appendix C: Functions appearing in the integral equations (21)

ω1 = c0
a0

, (C.1)

ω2 = −b0

d0
, (C.2)

λ1 = − 1

2a0
, (C.3)

λ2 = − 1

2d0
, (C.4)
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where a0,b0, c0,d0 are given in Appendix B;

J11 (t, x) = − 1

a0

∞∫

0

Φ11(α) sin [α (t − x)] dα, (C.5)

J21 (t, x) = − 1

d0

∞∫

0

Φ21(α) cos [α (t − x)] dα, (C.6)

J12 (t, x) = − 1

a0

∞∫

0

Φ12(α) cos [α (t − x)] dα, (C.7)

J22 (t, x) = − 1

d0

∞∫

0

Φ22(α) sin [α (t − x)] dα, (C.8)

Φ11(α) = − α

0(α)

[(
1 − ν2

)

2

(
Z̄2(α) + Z2(α)

)
]

− a0
α

|α| , (C.9)

Φ21(α) = − iα

0(α)

[(
1 − ν2

)

2

(
A2 Z̄2(α) − Ā2Z2(α)

)
]

− b0, (C.10)

Φ12(α) = iα

0(α)

[
(κ + ν)

(−Z̄1(α) + Z1(α)
)]− c0, (C.11)

Φ22(α) = α

0(α)

[
(κ + ν)

(−A2(α)Z̄1(α) − Ā2(α)Z1(α)
)]− d0

α

|α| . (C.12)
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59. Bakırtaş, I.: The contact problem of an orthotropic non-homogeneous elastic half-space. Int. J. Eng. Sci. 22, 347–359 (1984)
60. Krenk, S.: On the elastic constants of plane orthotropic elasticity. J. Compos. Mater. 13, 108–116 (1979)
61. Cinar, A., Erdogan, F.: The crack and wedging problem for an orthotropic strip. Int. J. Fract. 19, 83–102 (1983)
62. Kucuksucu, A.: Contact Mechanics Analysis of Orthotropically GradedMaterials. Ph.D.Dissertation. Mechanical Engineer-

ing Department, Selçuk University, Konya, Turkey (2011)
63. Erdogan, F.: Mixed boundary value problems in mechanics. In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 4, pp 1–86.

Pergamon Press, Oxford (1978)
64. Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Q. Appl. Math. 29, 525–534 (1972)



3374 A. Kucuksucu et al.

65. Ozturk,M., Erdogan, F.:Mode I crack problem in an inhomogeneous orthotropicmedium. Int. J. Eng. Sci. 35, 869–883 (1997)
66. Ozturk, M., Erdogan, F.: The mixed mode crack problem in an inhomogeneous orthotropic medium. Int. J. Fract. 98, 243–

261 (1999)
67. Guler, M.A.: The Problem of a Rigid punch with Friction on a Graded Elastic Medium. MS Thesis, Mechanical Engineering

Department, Lehigh University, Bethlehem (1996)
68. Elloumi, R., Guler, M.A., Kallel-Kamoun, I., El-Borgi, S.: Closed-form solutions of the frictional sliding contact problem

for a magneto-electro-elastic half-plane indented by a rigid conducting punch. Int. J. Solids Struct. 50, 3778–3792 (2013)
69. Elloumi, R., Kallel-Kamoun, I., El-Borgi, S., Guler, M.A.: On the frictional sliding contact problem between a rigid circular

conducting punch and a magneto-electro-elastic half-plane. Int. J. Mech. Sci. 87, 1–17 (2014)


	Mechanics of sliding frictional contact for a graded orthotropic half-plane
	Abstract
	1 Introduction
	2 Formulation of the contact problem
	3 The integral equation of the problem
	4 On the solution of the integral equations
	5 The in-plane stress component on the surface of the orthotropic medium
	6 Examples
	6.1 Flat stamp
	6.2 Wedge stamp

	7 Results and discussion
	8 Concluding remarks
	Acknowledgments
	Appendix A: The roots of the characteristic equation (14)
	Appendix B: The asymptotic analysis of the kernels in the integral equation
	Appendix C: Functions appearing in the integral equations (21)
	References




