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Abstract A two-dimensional generalized plane strain micromechanical model is developed to study the
electro-elastic behavior of piezoelectric fiber-reinforced composite (PFRC) systems. The composite system
consists of long parallel piezoelectric fibers with orthotropic and/or transversely isotropic properties and per-
fectly bounded to the isotropic matrix in a square array arrangement. In addition, the constituents are assumed
to have both linear elastic and electrical behavior, whereas the matrix is piezoelectrically passive. The element-
free Galerkin (EFG) method is employed to obtain the solution for the governing system of partial differential
equations. The performance of the model is examined for both axial and transverse polarizations and various
fiber cross sections. Comparison of the presented results with other techniques available in the literature re-
veals good agreement. It is demonstrated that the piezoelectric coefficient e31 in the transverse polarization is
considerably improved in comparison with the corresponding coefficient for pure piezoelectric material. Fur-
thermore, results also show that elliptical fibers may enhance the electrical sensitivity of PFRCs for a specific
direction, which is related to the elliptical fiber orientation, in both polarization directions.

1 Introduction

Piezoelectric materials are categorized within the intelligent and/or smart materials and usually involve in-
teractions between electrical and mechanical loadings. Due to their special properties to coupled electrical
and mechanical energies, they found excellent applications in sensors and actuators. However, there are sev-
eral concerns related to pure ceramic-based piezoelectric materials, such as low piezoelectric constants, high
acoustic impedance, high weight and low ductility. To overcome these limitations in monolithic piezoelectric
materials, different types of piezoelectric composites were introduced. Details of various types of PFRCs
and their applications can be found elsewhere [1]. A few experimental [2,3], analytical [4–16] and numeri-
cal [8,17–19] studies have been proposed to investigate various characteristics of 1–3 piezoelectric composites
such as elastic, electric and thermal behavior. Odegard [7] developed a new micromechanical model using
a combination of Mori–Tanaka and self-consistent methods to predict the electromechanical properties of
piezoelectric polymer composites in axial polarization. In addition, the asymptotic homogenization method
(AHM) [4,8,14] has been employed to estimate the overall electro-elastic behavior of axially polarized piezo-
electric composites. Apart from the determination of overall electro-elastic coefficients of PFRCs, special
attention was given in [8] to establish appropriate boundary conditions (BCs) for the representative volume
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element (RVE) to ensure the periodicity condition using a combination of the AHM and finite element (FE)
methods. In the last decade,Mallik and Ray [6], Ray [9] andKumar and Chakraborty [12] reported a discussion
related to the improvement of the effective piezoelectric coefficient e31 of unidirectional piezoelectric compos-
ites in case they are transversely polarized. Using analytical models, they indicated that the e31 piezoelectric
coefficient in PFRCs is significantly improved in comparison with a pure piezoelectric material. However,
predictions of the analytical models may deviate from reality mainly due to various simplifying assumptions.
The finite element micromechanics-based model is developed to predict the overall electro-elastic properties
of PFRCs with various fiber shapes [18] and polarization directions of both constituents [17]. Very recently,
various orientations of the axis of transverse symmetry were studied on the effective permittivity properties of
fiber-reinforced composites, and the explicit formulas were developed using the AHM method [15].

As reviews imply, there are few studies in the literature related to the effects of fiber shape and polarization
direction on the electro-elastic properties of PFRCs.

In the present work, a two-dimensional generalized plane strain (GPS) micromechanical model is devel-
oped to study the electro-elastic behavior of PFRCs. The EFG method is used to obtain the solution of the
coupled electromechanical partial differential equations. Proper discretized forms of periodic BCs and dis-
placement continuity at the fiber and matrix interface in the unit cell model were discussed. The method is
used to study the overall electro-elastic properties of PFRCs with circular and elliptical fibers in both axial
and transverse polarization directions. An attempt is made to assess some potential benefits by using elliptical
fibers. Investigations revealed that the piezoelectric coefficient e31 in the PFRCs with transverse polarization
is considerably improved in comparison with pure piezoelectric materials. From the overall point of view, it
was found that elliptical fibers may enhance the electrical sensitivity of PFRCs for a specific direction in both
polarization directions.

2 Analysis

2.1 Micromechanical model

In a real PFRC, fibers are distributed in a random arrangement. In order to reduce computational cost, similar
to most of analytical and numerical micromechanical models, the geometry of the system was simplified by
considering unidirectional piezoelectric fibers to be arranged in a square array packing periodically distributed
within the matrix. The next step was to consider the smallest and informative repeating area of the geometry as
the representative volume element (RVE) for the whole system. In the present study, normal mode sensing and
normal mode actuation are assumed. Normal mode sensing occurs when a piezoelectric material is subjected
to normal stresses or strains in any of the three spatial directions, which induces an electric field along the
polarization direction. Moreover, normal mode actuation occurs when a piezoelectric material is subjected
to an electrostatic field parallel to the polarization direction. This causes normal strains in any of the three
directions [20]. Therefore, a quarter of piezoelectric fiber surrounded by the corresponding matrix, as shown
in Fig. 1, is enough to model the composite behavior. Furthermore, the matrix and fibers are assumed to
have linear elastic behavior and are fully bonded to each other. In addition, both constituents of the RVE are
assumed to have isotropic and transversely isotropic properties, respectively, while the matrix is supposed to
be piezoelectrically passive. Figure 1 also shows a radial nodal distribution within the RVE which is used in
this study. As reviews indicated [21], a better accuracy can be found in EFG using a regular distribution of
nodes in comparison with irregular ones.

2.1.1 Generalized plane strain (GPS) assumption

In the micromechanical modeling of composites with long and parallel fibers, the GPS is an appropriate
assumption for the analysis of fibrous composites. As shown in Fig. 1, the x3 axis is parallel to the fiber
direction, while the x1 − x2 axes are oriented in the transverse directions. The x1 − x2 is a plane of symmetry
which means both stress and strain fields are invariant with respect to the longitudinal axis. Furthermore, based
on the GPS assumptions, the strain field along the fiber direction is an unknown nonzero constant, ε0, to be
determined. The displacement field within the RVE can be considered as

u1 = u1(x1, x2),
u2 = u2(x1, x2),
u3 = ε0x3

(1)
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Fig. 1 Representative volume element (RVE) for a square array of fibers with radial nodal distribution; (a) circular fiber; (b)
elliptical fiber

where ui is a displacement component corresponding to the xi axis. In addition, the kinematic relations within
the RVE based on the linear theory of elasticity and GPS conditions are

ε11 = ∂u1
∂x1

; ε22 = ∂u2
∂x2

,

ε33 = ∂u3
∂x3

= ε0; ε13 = ∂u1
∂x3

+ ∂u3
∂x1

= 0,

ε12 = ∂u1
∂x2

+ ∂u2
∂x1

; ε23 = ∂u3
∂x2

+ ∂u2
∂x3

= 0.

(2)

As can be observed, the out of plane shear strains, ε13 and ε23, are zero due to the GPS conditions, which lead
to zero shear stresses, σ13 = σ23 = 0.

2.2 Basic relations of piezoelectric materials

A continuummediumwith domainΩ as shown inFig. 1,which is in staticmechanical and electrical equilibrium
conditions, is considered. For stationary behavior of the piezoelectricmaterial in the absence of body forces, the
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weak form of the mechanical equilibrium equation [20,22] can be derived by considering the GPS conditions
as ∫

Ω

(
δεTσ

)
dΩ +

∫

Ω

(δε0σaxial) dΩ −
∫

Γt

δuT t̄dΓ −
∫

Ω

δε0taxialdΩ = 0 (3)

where ε, σ,u and t̄ are vectors of in-plane strains, stresses, displacements and traction loads acting upon the
boundary Γt , which can be defined, respectively, as

σ = 〈σ11 σ22 σ12
〉T; ū = 〈u1 u2

〉T
,

ε = 〈 ε11 ε22 ε12
〉T; t̄ = 〈 t1 t2

〉T
,

(4)

in which ε0, σaxial and taxial are the constant axial strain, axial stress and traction load along the fiber direction,
respectively. In this study, piezoelectric fibers within the RVE are polarized in the x3 direction. Consequently,
it is assumed that the electric field is confined just to the E3 component, and the other two components vanish.
The variational form of Maxwell’s equation in the presence of electric charge upon a surface Ω ′ which is
perpendicular to the polarization direction, i.e., x3 can be derived as

∫

Ω

δE3D3dΩ −
∫

Ω ′
δE3q3dΩ = 0 (5)

in which E3, D3 and q3 are components of electric field, electric flux density and electric charge density vectors
in the x3 direction, respectively. The electric flux density is occasionally denoted as electric displacement. In
addition, for the case of longitudinal polarization, in which the x1 − x2 plane would be the solution domain,
σaxial = σ33, taxial = t3 and Ω ′ = Ω . The constitutive equations of piezoelectric materials with polarization
along the x3 direction which describe the coupled interaction between electrical and mechanical variables are
expressed as

σ = Cε + �

Cε0 − �
eE3,

σ33 = �

C
T
ε + c33ε0 − e33E3,

D3 = �
e
T
ε + e33ε0 + κ33E3

(6)

where C,
�

C and
�
e are defined as

C =
⎛
⎝ c11 c12 0
c12 c22 0
0 0 c66

⎞
⎠ ; �

C = 〈 c13 c23 0
〉T

,

�
e = 〈 e31 e32 0

〉T
.

(7)

It should be noted that in the aforementioned constitutive relations, the quantities Ci j , ei j and κi j denote
components of stiffness, piezoelectric and permittivity matrices, respectively.

2.3 Element-free Galerkin (EFG) method

The mesh-free methods have attracted considerable attention for the solution and simulation of physical
problems. Several researchers employed various mesh-free methods to obtain solutions for the governing
equations in themicromechanics of heterogeneousmaterials [23–25]. Lack ofmesh structure, which eliminates
the difficulty ofmesh generation, can be considered as a significant feature ofmesh-freemethods. EFGmethod,
which was developed by Belytschko et al. [26,27], is one of the well-known techniques in the field of mesh-free
methods. Among mesh-free methods, the EFG provides high convergence rate and more accurate results in
comparison with other techniques [22,26]. In addition, the derivatives of the primary-dependent variables,
such as stress fields, are already very smooth, whereas in the FE method various types of post-processing, such
as L2 norm, are used to smooth secondary variables, e.g., stress and/or strain contour plots [27].
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2.3.1 The Moving Least-Square (MLS) approximation

Consider an unknown field variable u(x), e.g., displacement in an elasticity problem, defined on the domainΩ ,
and x is a vector of spatial coordinates that in the case of 2D problems has two components, i.e., xT = 〈 x y

〉
.

Suppose that uh(x) is the approximate function of u(x) as

u(x) ≈ uh(x) =
m∑
i=1

pi (x) · ai (x) = PT(x) · a(x) (8)

where P(x) is a vector of basis functions, which is often built from monomials. In addition, m is a number of
basis functions and a(x) is a vector of unknown coefficients given by

aT(x) = 〈a1(x) a2(x) · · · am(x)
〉
. (9)

The vector of the coefficients can be obtained by minimizing the following functional [22]:

J =
n∑

i=1

�
w(x − xi )

(
PT(xi )a(x) − ui

)2
(10)

wheren is a number of nodes in the neighborhoodof the point x and �
w(x−xi ) is aweight function, corresponding

to the distance between the sampling point x and the nodal coordinates xi . In addition, ui is the nodal parameter
of u. The optimum values of coefficients a(x) which minimize the J parameter are given by the solution of

∂ J

∂ai
= 0; i = 1, . . . ,m. (11)

This gives the following set of linear equations [22]:

A(x) · a(x) = B(x) · Us (12)

whereUs is a vector of the nodal parameter ui within the support domain of point x. Moreover,A(x) and B(x)
are defined as

A(x) =
n∑

i=1

�
w(x − xi )p(xi )pT(xi ),

B(x) = 〈 �
w(x−x1)p(x1) · · · �

w(x−xn)p(xn)
〉
.

(13)

Solving the system of Eq. (13) for the unknown vector of coefficients a(x) and substituting it into Eq. (8) yields

uh(x) = ΦT(x)Us, (14)

in which Φ(x) denotes a vector of MLS shape functions as

ΦT(x) = 〈φ1(x) · · · φn(x)
〉 = PT(x) · A−1(x) · B(x). (15)

It should be noted that the MLS shape functions satisfy global continuity within the problem domain. The
order of continuity of the shape function is corresponding to the order of basis functions and order of weight
functions [22]. In this study, linear basis functions and a cubic spline weight function are employed as

PT(x) = 〈
1 x y

〉
,

w(x − xi ) =
⎧⎨
⎩
2/
3 − 4r̄2i + 4r̄3i r̄i ≤ 0.5

4/
3 − 4r̄i + 4r̄2i − 4/

3r̄
3
i 0.5 ≤ r̄i ≤ 1

0 r̄i > 1
(16)

where r̄i = di
/
rw is a non-dimensional parameter in which di = ‖x − xi‖2 and rw is known as radius of the

support domain. More details about weight functions of MLS approximation can be found elsewhere [21,22].
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2.4 Boundary conditions

2.4.1 Periodicity and symmetry conditions of the RVE

In this study, the composite system is considered under normal mode electromechanical loading. In order to ob-
tain the local and/or overall behavior of the composite from the micromechanical model, proper considerations
should be taken particularly in definition of boundary conditions (BCs) on the RVE to ensure periodicity and
symmetry of the model. Therefore, the left and bottom sides of the model should satisfy symmetry conditions.
Moreover, to guarantee periodic BCs, the nodes on the top and right edges of the RVE should be constrained to
have equal displacements along the x2 and the x1 axes, respectively. Consequently, the symmetric and periodic
BCs yield the following set of equations [28]:

u1(0, x2) = 0,
u1(a, x2) = aε̄11,
u2(x1, 0) = 0,
u2(x1, a) = aε̄22

(17)

where ε̄11 and ε̄22 denote the average normal strains along the x1 and x2 axes, respectively, and the a parameter
is the width of the RVE, as seen in Fig. 1. Due to a lack of the Kronecker delta function of the MLS shape
functions, it is not trivial to impose essential BCs. Therefore, a number of different ideas are presented to impose
essential BCs, see for example [29]. The most frequently used techniques are the Lagrange multiplier [27]
and the penalty [30] approaches. Both penalty and Lagrange multiplier methods are used to enforce different
essential BCs. The penalty method is used to ensure displacement continuity condition at the interface of
fiber–matrix, while the Lagrange multiplier method is imposed to enforce the periodic and symmetric BCs
of the RVE. For the prescribed displacement ū on the boundary Γu , e.g., left edge of the RVE, the following
expression must be added to Eq. (3): ∫

Γu

δλT(u − ū)dΓ +
∫

Γu

δuTλdΓ (18)

where λ denotes a vector of Lagrange multipliers. In addition, the nodes on the top and right edges of the
model are constrained to the specific node, which is called “master node,” as shown in Fig. 1, to ensure the
periodicity condition of the RVE. To this end, the following expression must be added to Eq. (3):∫

Γt

δλT (u − uk) dΓ +
∫

Γt

δ(u − uk)TλdΓ (19)

where the subscript k indicates the master node number.

2.4.2 Interface condition

The other issue in the mesh-free method is an appropriate treatment of the material discontinuity at the fiber–
matrix interface. This is due to the fact that in the mesh-free method there is no mesh of elements, and therefore
the interface of fiber–matrix cannot be defined based on the elements. In this study, a fully bonded fiber–matrix
interface is considered. To this end, the continuity of the nodal displacements on the fiber–matrix interface
must be satisfied. It should be noted that once the continuity of the displacements are satisfied, the continuity
of the tractions on the interface boundary will be approximately satisfied [31],

u f = um, (20)

where um and u f denote displacement parameters of the fiber and the matrix, respectively, on the interface
boundary.
In this study, the penalty method was used to deal with the material discontinuity problem. A set of nodes is
assigned on the interface boundary, which participate in both of the fiber and matrix domains. Consequently,
the continuity of the fiber–matrix interface can be imposed by means of a penalty formulation as [32]∫

Γc

δ
(
u f − um

)T
α
(
u f − um

)
dΓ (21)
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where α is the 2× 2 diagonal matrix of the penalty factor. It should be noted that the success of this method is
directly associated with the usage of a large number for α. The advantages of the penalty method are that the
size of the system of linear equations is constant and the possibility of the positive definiteness of the global
stiffness matrix remains for large enough α.

2.5 Numerical integration

Using weighted residuals approaches, one may obtain the weak form of the governing partial differential
equation (PDE) of the problem. This weak form of the PDEs contains integration terms, which should be
assessed numerically. The Gauss quadrature numerical integration is frequently used for the integration in
the mesh-free methods. This needs quadrature points within the solution domain, which are distributed based
on the roots of Legendre polynomials. Therefore, a global background cell structure is employed to perform
integrations. Moreover, it should be noted that the fourth-order Gauss quadrature integration is used in this
study.

2.6 Numerical discretization

Based on the EFG method, the weak form of equilibrium equations, i.e., Eqs. (3) and (5), is approximated by
the MLS shape functions. Therefore, the approximated displacement field can be written as

uh(x) =
{
uh

vh

}
=

n∑
I=1

(
φI 0
0 φI

){
uI
vI

}
=

n∑
I=1

Φ̃IuI (22)

where Φ̃I (x) is the diagonal matrix of the shape function of node I, and uI and uh(x) are the nodal parameter
of the displacement and approximate displacement at sampling point x, respectively. Furthermore, n is the
number of nodes in the support of sampling point x, which participates in the approximation scheme. The
discretized form of Eq. (3) is

N∑
I=1

N∑
J=1

δuTI

⎛
⎝
∫

Ω

BT
ICBJdΩ

⎞
⎠uJ +

N∑
I=1

δuTI

⎛
⎝
∫

Ω

BT
I

�

CdΩ

⎞
⎠ ε0 −

N∑
I=1

δuTI

⎛
⎝
∫

Ω

BT
I

�
edΩ

⎞
⎠ E3 +

+
N∑
I=1

δε0

⎛
⎝
∫

Ω

�

C
T
BIdΩ

⎞
⎠ uI + δε0

⎛
⎝
∫

Ω

c33dΩ

⎞
⎠ ε0 − δε0

⎛
⎝
∫

Ω

e33dΩ

⎞
⎠ E3 −

−
N∑
I=1

δuTI

⎛
⎜⎝
∫

Γt

Φ̃T
I t̄dΓ

⎞
⎟⎠− δε0

∫

Ω

t3dΩ = 0 (23)

where N is the number of nodes in the global domain and BI is defined as

BI =
⎛
⎝φI,1 0
0 φI,2
φI,2 φI,1

⎞
⎠ . (24)

It is possible to rewrite Eq. (23) in a compact form as

δUT (KU + F1ε0 − F2E3 − ft)
+δε0

(
FT
1U + X1ε0 − X2E3 − faxial

) = 0 (25)
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in which

KI J =
∫

Ω

BT
ICBJdΩ,

F1 I =
∫

Ω

BT
I

�

CdΩ; F2 I =
∫

Ω

BT
I

�
edΩ,

ft I =
∫

Γt

Φ̃T
I t̄dΓ ; faxial =

∫

Ω

t3dΩ,

X1 =
∫

Ω

c33dΩ; X2 =
∫

Ω

e33dΩ.

(26)

The next step is related to the enforcement of the essential BCs. As mentioned before, the Lagrange multiplier
method is an appropriate way to enforce essential BCs. To this end, a new type of shape functions, which is
used in conventional FE method, is considered to discretize the Lagrange multipliers. Linear interpolation is
used to approximate the Lagrange multipliers between two nodes on the essential BCs. The Lagrange linear
shape functions for two adjacent nodes are defined as

N0(s) = s − s1
s0 − s1

, N1(s) = s − s0
s1 − s0

(27)

where s is the parameter of arc-length. For the left and bottom edges of the RVE, the final discretized form of
expression (18) can be written as

N1
λ∑

I=1

N∑
J=1

δλTI

⎛
⎜⎝
∫

Γu

NT
I Φ̃JdΓ

⎞
⎟⎠uJ −

N1
λ∑

I=1

δλTI

⎛
⎜⎝
∫

Γu

NT
I ūdΓ

⎞
⎟⎠

+
N1

λ∑
I=1

N∑
J=1

δuTJ

⎛
⎜⎝
∫

Γu

Φ̃T
JNIdΓ

⎞
⎟⎠ λI (28)

where NI is the diagonal matrix of Lagrange shape functions and N 1
λ is the number of nodes on the left and/or

bottom edges of the RVE. In the compact form, expression (28) can be written as

δΛT
1 (GU − P) + δUTGTΛ1 (29)

where Λ1 is a vector of Lagrange multipliers associated with each node on the prescribed boundary andG and
P matrices are

GI J =
∫

Γu

NT
I Φ̃JdΓ ,

PI =
∫

Γu

NT
I ūdΓ .

(30)

Moreover, the final discretized form of expression (19) can be written as

N2
λ∑

I=1

N∑
J=1

δλTI

⎛
⎜⎝
∫

Γt

NT
I Φ̃JdΓ

⎞
⎟⎠ uJ −

N2
λ∑

I=1

N∑
J=1

δλTI

⎛
⎜⎝
∫

Γt

NT
I dΓ

⎞
⎟⎠δJ KuJ

+
N2

λ∑
I=1

N∑
J=1

δuTJ

⎛
⎜⎝
∫

Γt

Φ̃T
JNIdΓ

⎞
⎟⎠ λI −

N2
λ∑

I=1

N∑
J=1

δuTJ

⎛
⎜⎝
∫

Γt

NIdΓ

⎞
⎟⎠ δJ KλI (31)
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where N 2
λ is the number of nodes on the right and/or top edges of the RVE. Furthermore, δ indicates the

Kronecker delta function. In a compact form, expression (31) can be expressed as

δΛT
2G

∗U + δUTG∗TΛ2 (32)

where Λ2 is a vector of Lagrange multipliers corresponding to each node on the right and/or top edges of the
RVE. Moreover, G∗ = G − H, while H is

HI J = δJ K

∫

Γt

NT
I dΓ (33)

in which, as previously mentioned,K denotes the master node number. The discretized form of Eq. (21), which
is related to the fiber–matrix interface boundary, takes the following compact form:

δUTKαU (34)

where

K α
I J =

∫

Γc

[
Φ̃m

I − Φ̃
f
I

]T
α
[
Φ̃m

J − Φ̃
f
J

]
dΓ ; I, J = 1, . . . N (35)

in which Φ̃
f
I and Φ̃m

I are the diagonal matrices of the shape functions of node I for the fiber and matrix
domains, respectively. Consequently, the final form of the mechanical equilibrium equation can be recovered
using Eqs. (25), (29), (32) and (34) as

δUT
{(
K + Kα

)
U + F1ε0 + GTΛ1 +G∗TΛ2 − F2E3 − ft

}
+ δΛT

1 (GU − P) + δΛT
2

(
G∗U

)
+δε0

(
FT
1U + X1ε0 − X2E3 − faxial

) = 0. (36)

The discretized form of the electrical equilibrium Eq. (5) is

N∑
I=1

δE3

⎛
⎝
∫

Ω

�
e
T
BIdΩ

⎞
⎠ uI + δE3

⎛
⎝
∫

Ω

e33dΩ

⎞
⎠ ε0

+δE3

⎛
⎝
∫

Ω

κ33dΩ

⎞
⎠ E3 + δE3

⎛
⎝
∫

Ω ′
q3dΩ

⎞
⎠ = 0. (37)

Equation (37) can be rewritten in a compact form as

δE3
(
FT
2U + X2ε0 + X3E3 + Q3

) = 0 (38)

in which

X3 =
∫

Ω

κ33dΩ; Q3 =
∫

Ω ′
q3dΩ. (39)

Since δU, δε0, and δE3 are arbitrary, the expressions within the parentheses must be zero to ensure satisfaction
of Eqs. (36) and (38). Therefore, the governing equations in a discretized form appear as the following linear
system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(K + Kα)U + F1ε0 − F2E3 + GTΛ1 + G∗TΛ2 − ft = 0

FT
1U + X1ε0 − X2E3 − faxial = 0

FT
2U + X2ε0 + X3E3 + Q3 = 0

GU − P = 0

G∗U = 0

(40)
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or in a matrix form as ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(K + Kα) {F1} {F2}
(
GT
) (

G∗T
)

〈
FT
1

〉
X1 X2 0 0〈

FT
2

〉
X2 −X3 0 0

(G) 0 0 0 0

(G∗) 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{U}
ε0

−E3

{Λ1}
{Λ2}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ft}
faxial

−Q3

{P}
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (41)

In order to solve the system of linear equations (41), the Gauss elimination technique is employed to obtain
results of nodal parameters of the displacements, the axial strain and electric field along the polarization
direction. It should be noted that the displacements at any point including field nodes in the domain can be
obtained from (14).

3 Results and discussion

3.1 Parallel processing aspects of the EFG method

As previously mentioned in Sect. 2.3, the EFG method provides several major advantages such as lack of
mesh structure, high convergence rate and higher-order continuous shape functions. It should, however, be
noted that mesh-free methods in general suffer from various disadvantages. While considerable attempts have
been made recently to improve mesh-free methods, currently available methods are still computationally less
efficient in comparison with the well-established conventional discretization techniques such as FEM. To this
end, one may refer to the following points as main reasons which may cause additional computational costs
in the EFG method:

1. The determination of the influence domain for each Gauss point,
2. The relative complexity of the EFG shape functions
3. Additional attempts to enforce essential boundary conditions using Lagrange multiplier method

Due to the above reasons, onemay conclude that the EFG procedure would be time-consumingwhen compared
to the FEM. However, parallelization can be considered as a simple way to speed up the EFG technique. The
result of parallelization for the presented EFG code is examined using OpenMP application programming
interface. It should be mentioned that the OpenMP has been widely used for parallelization as it needs just
a few changes in a sequential code and therefore requires an easy procedure for implementation. In order
to capture the relative benefit of a numerical procedure, the speedup parameter is normally used which is
commonly defined as the time ratio of the serial algorithm to the parallel algorithm for a specific computer
program. Figure 2 depicts the variation of the speedup parameter of the present EFGmethod versus the number
of processors. The figure indicates that for ten processors the maximum speedup reaches 9.04 for a moderate
and sufficient number of nodes. This implies that the presented EFG method exhibits excellent parallelization
capability. Discrepancies between the ideal graph, which is raised from Amdahls law [33], and the presented
results are due to the fact that any part of a program which cannot be parallelized can be considered as a
bottleneck which limits the speedup.

3.2 The overall electro-elastic behavior of PFRCs

Using the present EFG micromechanical model, electro-elastic coefficients related to normal mode sensing
and actuation are predicted for both axial and transverse polarization. In order to study the effects of fiber
shape on the electro-elastic behavior of PFRCs, two different types of fiber cross sections including circular
and elliptical fibers are considered in both axial and transverse polarization cases, see Figs. 1 and 3. To facilitate
comparison of effective coefficients of PFRCs with corresponding coefficients of a pure piezoelectric material,
it is preferred to use normalized electro-elastic coefficients as

e∗
i j = ei j

ePi j
; Y∗

i = Yi
Y P
i

; κ∗
33 = κ33

κ0
(42)
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Fig. 2 Variation of speedup (Sp) of the present EFG method versus the number of processors

Fig. 3 Coordinate system with electric field direction depicted by arrows; (a) axial polarization; (b) transverse polarization

Table 1 Electro-elastic coefficients of matrix and fiber materials [6,7]

Material Elastic constants(GPa) Dielectric constant (F/m) Piezoelectric constants (C/m2)

C11 = C22 C12 C13 = C23 C33 C44 = C55 C66 κ33 e31 = e32 e33

PZT-7A 148 76.2 74.2 131 25.4 35.9 2.07 × 10−9 –2.1 9.5
PZT-5H 151 98 96 124 23 23.3 13.27 × 10−9 –5.1 27
Epoxy 3.86 2.57 2.57 3.86 0.64 0.64 0.079 × 10−9 0 0
Polyimide 8.1 5.4 5.4 8.1 1.4 1.6 0.0247 × 10−9 0 0

where Yi is an elastic modulus of composite corresponding to the xi direction and κ0 is defined as permittivity
of free space, which is equal to 8.85 × 10−12F/m [34]. Moreover, superscript P denotes a pure piezoelectric
material.

3.2.1 Longitudinal polarization

The first case study is related to a unidirectional composite in which fibers are poled in the direction parallel to
the fiber axis, as shown in Fig. 3a. It is also assumed that the electric field is applied along the fibers direction,
which has a constant and unique value in both matrix and fiber phases. Details of constituent properties of
PFRC at room temperature are given in Table 1. In order to verify the presentmodel, the electro-elastic behavior
of PZT-7A/polyimide composite with circular fibers for various fiber volume fractions is compared with those
obtained by othermicromechanicalmodels [7]. Both elastic and electrical constants obtained by variousmodels
including Mori-Tanaka, self-consistent and proposed by Odegard [7] together with presented EFG predictions
are given in Table 2. Close agreement between the predictions of different micromechanical models can be
concluded from this table. The normalized dielectric constant κ∗

33 in longitudinal polarization of PFRCs for
circular and elliptical fiber shapes is shown in Fig. 4. A linear behavior is seen for this dielectric constant with
respect to the fiber volume fraction. It should be noted that due to geometrical restrictions in a square array
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Table 2 Comparison of the predicted non-dimensional electro-elastic coefficients of PZT-7A/Polyimide PFRC between the
present EFG method and other micromechanics models [7]

Fiber volume fraction Method Normalized elastic constants Normalized electric constants

Y ∗
1 = Y ∗

2 Y ∗
3 κ∗

33 e∗
31 = e∗

32 e∗
33

0.1 Mori-Tanaka 0.055922 0.142515 26.4 0.01 0.113906
Self-consistent 0.055922 0.142515 26.4 0.006571 0.113906
Proposed-Odegard 0.052658 0.140805 26.4 0.01 0.112632
Present 0.052658 0.141660 26.4 0.008429 0.112632

0.4 Mori-Tanaka 0.087391 0.427422 97.18 0.039429 0.451634
Self-consistent 0.116521 0.427422 97.18 0.048571 0.448975
Proposed-Odegard 0.104199 0.428643 97.18 0.052381 0.449474
Present 0.109802 0.428643 98.31 0.046952 0.449474

0.6 Mori-Tanaka 0.138932 0.619029 144.4 0.099524 0.672355
Self-consistent 0.256569 0.619029 144.2 0.176190 0.659368
Proposed-Odegard 0.182617 0.615731 144.2 0.099524 0.670526
Present 0.209514 0.619029 146.7 0.103333 0.670526

Volume fraction

κ 33*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

30

60

90

120

150

180

Circular Fibers
Elliptical Fibers, η/ξ =0.5

Fig. 4 Variation of normalized dielectric coefficient κ∗
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Fig. 5 Variation of normalized elastic moduli in axial polarization versus fiber volume fraction of PZT-7A/Polyimide PFRC

packing, the volume fraction of circular and elliptical fibers with aspect ratio (η/ξ ) of 0.5 could be reached
approximately up to 0.7 and 0.35, respectively. The normalized Young’s moduli and piezoelectric constants are
shown in Figs. 5 and 6, respectively. A linear behavior is also observed from the results of the present model
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33 in transverse polarization versus fiber volume fraction of PZT-5H/Epoxy

PFRC

for the normalized longitudinal Young’s modulus Y ∗
3 and piezoelectric constant e∗

33. Furthermore, Figs. 4,
5 and 6 also imply that the longitudinal electromechanical constants, i.e., κ33, e33 and Y3, are insensitive to
the fiber shape. In addition, the normalized transverse elastic moduli, i.e., Y ∗

1 and Y ∗
2 , and normalized shear

piezoelectric coefficients, i.e., e∗
31 and e∗

32, which are, respectively, shown in Figs. 5 and 6, show nonlinear
behavior with respect to the fiber volume fraction. In addition, it is clear that the normalized transverse elastic
modulus Y ∗

1 and shear piezoelectric constant e∗
31 are significantly sensitive to the fiber shape. As can be seen

in Figs. 5 and 6, for a volume fraction of 35%, maximum differences between predicted values Y ∗
1 and e∗

31 for
circular and elliptical fibers are 78.9 and 50%, respectively.

3.2.2 Transverse polarization

In this case, the fibers are polarized across their thickness, as shown in Fig. 3b. Moreover, it is assumed that
the electric field within both fiber and matrix phases are uniform and equal to the applied electrical field. To
ensure that the direction of polarization remains unchanged in the x3 direction, suitable coordinate systems
for both transverse and longitudinal polarization are chosen, as shown in Fig. 3. Therefore, for the case of
transverse polarization, the x2− x3 would be the plane of symmetry and the two-dimensional solution domain.
Furthermore, electromechanical constitutive relations 6 and 7 together with in-plane vectors, i.e., ε, σ , u and
t̄ must be modified for the case of transverse polarization. For comparison, a PFRC consisting of PZT-5H
circular fibers embedded in the epoxy matrix was considered with the electro-elastic properties presented in
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Fig. 10 Variation of e∗
32 in transverse polarization versus fiber volume fraction of PZT-5H/Epoxy PFRC

Table 1. Figures 7, 8, 9 and 10 show overall electrical properties of the PZT-5H/epoxy composite system
versus fiber volume fraction in transverse polarization. Included in the figures are also predictions obtained
by the method of cells (MOC) and strength of materials (SM) [6], which show close agreement with results
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Fig. 11 Variation of normalized elastic moduli in transverse polarization versus fiber volume fraction of PZT-5H/Epoxy PFRC

of the present EFG model. It should, however, be noted that numerical methods such as EFG provide realistic
models. For instance, in analytical methods, the stress field is assumed to be uniform in both fiber and matrix
phases, and the fiber shape is mostly considered to be rectangular. Predictions of the normalized dielectric
constant κ∗

33 for elliptical fibers with three different aspect ratios, i.e., η/ξ = 0.5, 1 and 2 are shown in Fig. 7.
Results reveal that in low volume fractions the predicted values of κ∗

33 are independent of the fiber shape,
whereas slight discrepancy can be observed in the case of η/ξ = 2 at higher volume fractions. Variations of
normalized effective piezoelectric coefficients with respect to the fiber volume fraction are depicted in Figs. 8,
9 and 10. It can be seen that the present EFG model and the MOC [6] are very close, while discrepancies are
found between the present results and those obtained by SM [6] approach. This may be attributed to the fact
that in the MOC the solution domain is subdivided into several rectangular parallelepiped sub-cells. Figure 8
depicts the nonlinear behavior of normalized piezoelectric coefficient e∗

33 with respect to the fiber volume
fraction. Results reveal that increasing aspect ratio of the fiber geometry leads to an enhancement of e∗

33. The
normalized effective piezoelectric coefficient e∗

31 is shown in Fig. 9. It is interesting to conclude from Fig. 9
that in PFRCs with transverse polarization and fiber volume fractions larger than about 30% the normalized
effective piezoelectric coefficient e∗

31 passes unity. This implies that the effective piezoelectric coefficient
e31 of PFRCs increases in comparison with the same coefficient for pure piezoelectric material. It should be
noted that the effective coefficient e31 in transverse polarization evaluates the amount of induced axial normal
stress in PFRC due to the applied electric field. As a result, one may enhance controllability of the actuators
by using PFRCs with transverse polarization. Figure 9 also shows effects of fiber shape on the performance
of the normalized piezoelectric coefficient e∗

31. As may be appreciated from this figure, e∗
31 is decreased by

increasing the aspect ratio of fiber geometry. Prediction of the present model about the normalized piezoelectric
coefficient e∗

32 is exhibited in Fig. 10. A strong dependency of e∗
32 to the fiber shape can be observed as e∗

32
for fibers with η/ξ = 0.5 is 4.5 times that of circular fibers at 35% volume fraction. Furthermore, similar to
e∗
31, for a constant fiber volume fraction, increasing aspect ratio of the elliptical fibers significantly reduces
e∗
32. Figure 11 shows the normalized Young’s moduli of PFRC corresponding to various coordinate axes for
three different aspect ratios of fiber geometry. The figure implies that the Young’s modulus of PFRC related to
the direction of orientation of the elliptical fiber major axis significantly increases in comparison with circular
fibers. For instance, the normalized elastic modulus, Y ∗

2 , shows a dependency to the fiber shape; as in 35%
volume fraction, Y ∗

2 of PFRC with elliptical fibers (η/ξ = 0.5) is 1.82 times that of PFRC with circular fibers.
Moreover, it is seen that the normalized longitudinal elastic modulus, Y ∗

1 , demonstrates a linear behavior with
respect to the volume fraction, while it is independent from fiber shape. Consequently, it is noteworthy that
elliptical fibers can provide better electrical sensitivity in a specific direction than circular fibers for both
polarization directions.
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Fig. 12 Distribution of the local fields within the RVE subjected to electric charge density q3 = 0.1(colon/m2) on the top edge
of the RVE in transverse polarization case: (a) vonMises stress (MPa); (b) shear stress (MPa); (c) displacement along the vertical
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3.3 Local behavior of PFRCs in transverse polarization

Analytical models normally employ simplified assumptions, which can affect the physics of the problems,
while they usually provide reasonably accurate predictions for axial overall properties. Moreover, in the
micromechanics of composite systems, most of the analytical models are not able to present non-uniform
stress and strain fields within the RVE. In the numerical methods, however, one of the interesting features is
characterization of the local behavior of materials. Figure 12 shows the distribution of the local fields within the
RVE subjected to electric charge density q3 = 0.1(colon/m2) on the top edge of the standard RVE as shown
in Fig. 1, in transverse polarization. Figure 12a shows the von Mises stress distribution within the RVE. It is
seen that the maximum von Mises stress occurs on the horizontal axis near the fiber–matrix interface within
the fiber domain. The shear stress contour plot is demonstrated in Fig. 12b. As can be seen, the shear stress
tends toward zero in the vicinity of the RVE boundaries, which consequently implies that the edges of the RVE
remain straight. Moreover, it may be recognized from Fig. 12a, b that the derivatives of the primary-dependent
variables, which are obtained by the present EFG method, are already smooth without any post-processing.
Figure 12c, d shows contour plots of displacement components along the vertical and the horizontal axes,
respectively. As expected, implemented symmetric and periodic BCs and also continuity of the displacements
at the fiber–matrix interface can be easily concluded.



A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites 3193

4 Concluding remarks

(i) A two-dimensional generalized plane strain (GPS) micromechanical model is presented for the analysis
of PFRCs subjected to the combined electrical and mechanical loading in normal mode sensing and
actuation conditions.

(ii) From the numerical point of view, the EFG method provides a smooth contour plot of the derivatives of
the primary-dependent variables, e.g., stress fields, without using any post-processing, such as L2 norm.
In addition, it is shown that the presented EFG method illustrates excellent parallelization capability.
Using the parallelization tool, one may extremely reduce the computational time.

(iii) Characterizing local effects is a clear advantage of numerical methods such as EFG in comparison with
analytical models. It is shown that the present mesh-free method associated with the GPS assumption
provides accurate predictions. The predicted effective electro-elastic properties and those obtained by
analytical methods for PFRCs indicate good agreement.

(iv) In order to study the effect of polarization direction in PFRCs, both axial and transverse polarizations are
examined. It is found that beyond a critical fiber volume fraction the effective piezoelectric coefficient e31
in PFRCs with transverse polarization considerably increases in comparison with the same coefficient
for a pure piezoelectric material. Consequently, one may enhance controllability of the actuators by using
PFRCs with transverse polarization.

(v) In the longitudinal polarization, the axial electro-elastic coefficients demonstrate linear behavior and
insensitivity to the fiber shape. For transverse elasticmoduli and shear piezoelectric coefficients, however,
dependency to the fiber shapes can be seen. Results reveal that for a volume fraction of 35% maximum
differences between predicted values Y ∗

1 and e∗
31 for circular and elliptical fibers are 78.9 and 50%,

respectively.
(vi) In the transverse polarization, results disclose that increasing aspect ratio of elliptical fiber geometry

increases e∗
33, while this causes that e∗

31 and e∗
32 decrease. Furthermore, the results exhibit a strong

dependency of e∗
32 to the fiber shape as e∗

32 for fibers with η/ξ = 0.5 is 4.5 times that of circular fibers
at 35% volume fraction.

(vii) As expected, results imply that the elastic modulus of PFRCs, related to the direction of orientation of the
elliptical fiber major axis, significantly increases in comparison with circular fibers in both polarization
directions.
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