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Abstract The scattering problem of the SH wave on a limited permeable crack in a functionally graded
piezoelectric substrate bonded to a homogeneous piezoelectric strip is investigated. We adopted the limited
permeable crack surface boundary condition. By using the Fourier cosine transform, this mixed boundary value
problem is reduced to two pairs of dual integral equations, which are solved numerically by the Copsonmethod.
Numerical results showed the effects of gradient parameter, electric loading, electric boundary conditions,
incident angle, thickness of PM strip, the distance from the crack to the interface, and wave number on the
dynamic stress intensity factor.

1 Introduction

Piezoelectric materials (PMs) exhibit practically useful phenomena because they produce an electric field
when being deformed and undergo deformation when subjected to an electric field. Due to this intrinsic
electromechanical coupling behavior, piezoelectric materials have been widely used in modern technologies
as sensors and actuators, being often adhered to substrates or embedded in polymer matrices. However, smart
piezoelectric materials tend to fracture during manufacturing and under in-service loading conditions because
of their brittleness in nature. To satisfy the demand of advanced PMs in lifetime and reliability, the concept of
functionally gradedmaterials (FGMs) has recently been extended into the PMswith the help of the development
in modern material processing technology. Such a gradient can be obtained from a resistivity nonuniformity
introduced into the PZT ceramic, and it can be made possible by doping with small amounts of various
additives, or by stacking piezoelectric composites of different compositions on top of each other. Therefore, it
is necessary to study the electroelastic interaction and fracture behavior of these materials, and the problems on
fracturemechanics of piezoelectricmaterials, and the functionally graded piezoelectricmaterials have attracted
substantial attention in the scientific literature [1–11].

The study of scattering of elastic waves by subsurface defects has been the focus of interest of many recent
researches due to its relevance to problems in nondestructive evaluation and material characterizations. Shen
and Kuang [12] investigated the elastic wave scattering from an interface crack in laminated anisotropic media
and in a layered half-space. Wang and Meguid [13] solved the interaction of SH wave with some cracks in a
piezoelectric material by using integral transform and Chebyshev polynomials. Gu et al. [14] discussed the
elastic wave scattering by an interface crack between a piezoelectric layer and an elastic substrate. Ueda [15]
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studied the diffraction of anti-plane shear waves in a piezoelectric laminated material with a vertical crack by
the integral transform and the singular integral equation methods. Zhou and Wang [16] discussed the scatter-
ing of harmonic anti-plane shear waves by an interface crack in magneto-electro-elastic composites by using
integral transform and Schmidt method. The scattering problem of an elastic wave by two collinear cracks in a
functionally graded interlayer bonded to a dissimilar half-plane under anti-plane shear was analyzed by Ma et
al. [17]. Li and Liu [18] considered scattering of the SH wave from a crack in a piezoelectric substrate bonded
to a half-space of FGMs by Fourier integral transform and singular integral equation method, respectively.
Huang and Li [19] studied the propagation of shear waves along a weak interface of two dissimilar magneto-
electric ormagneto-electro-elasticmaterials. The characteristics of wave propagation in structures with a single
piezoelectric layer and periodic piezoelectric layers were also considered by Zhao et al. [20]. Propagation of
SH waves in layered functionally gradient piezoelectric–piezomagnetic structures was analyzed by Singh and
Rokne [21]. Using Fourier integral transform and the Copson method, Yang and Li [22] studied the scattering
of the SH wave by a crack magneto-electro-elastic material substrate bonded to a piezoelectric material. The
main attention was paid to the contact zone model, and some simplified (permeable and impermeable) electric
boundary conditions were used.

For a slit crack, since the dielectric constant of a piezoceramic is much higher than that of the air (or
vacuum) filling the crack, the electric boundary condition may be very sensitive to the crack opening or sliding
caused by the applied mechanical and electric loads. Strictly, even if the permittivity of air is quite small, the
flux of an electric field through the crack gap should not be zero, so it is better to take the electric boundary
condition in the following form [23], D+

2 = D−
2 ; D+

2 (u+
2 − u−

2 ) = −εa(ϕ
+ − ϕ−), in which Di , ϕ, εa and

(u+
2 − u−

2 ) are the electric displacement component along the x2-axis, the electric potential, permittivity of air
in the crack, and the opening displacement component of crack surfaces. This electric boundary condition was
first given in Hao’s paper [23] and will be reduced to the permeable boundary condition when u+

2 − u−
2 = 0

and to the impermeable one when εa = 0. In the previous studies, the limited permeable crack face boundary
conditions [24,25] were applied to study the problem for scattering of the SH. Although many results have
been obtained for scattering of elastic waves, the scattering of the SHwave on a crack has an arbitrary incidence
angle, which is much closer to the actual situation, but most of the articles mentioned before assumed that the
elastic wave incidents vertically, which is different from the actual situation. In addition, the Copson method
other than singular integral equation method is applied to address the crack problem, which may be proven to
be a robust way of solving the fracture problem of smart materials. An attempt has been made to apply this
method to analyze the electroelastic dynamic behavior of a piezoelectric material. Moreover, smart devices are
usually made up of layered multiferroic materials. Thus, the structure with a functionally graded piezoelectric
substrate bonded to a homogeneous piezoelectric strip is considered. It is with this in mind that the scattering
of the SH wave with an incidence angle θ on a limited permeable crack in a functionally graded substrate
bonded to a homogeneous piezoelectric strip is investigated using the Fourier cosine transform and the Copson
method [26]. In the analysis, we consider the limited permeable crack boundary condition.

In this paper, we use the Fourier transform and the Copson method to investigate the problem for scattering
of the SH wave on a limited permeable crack in a functionally graded piezoelectric substrate bonded to a
homogeneous piezoelectric strip. The analysis has been conducted on the electrically limited permeable crack
boundary condition [24,25] described in Sect. 3. The material properties are assumed in exponential forms.
By using integral transform techniques, the problem is first reduced to two pairs of dual integral equations
and then into Fredholm integral equations of the second kind. The numerical results showed the effects of
the gradient parameter, electric loading, electric boundary condition, the angle of wave, the distance from the
crack to the interface, thickness of PM, and wave number upon the normalized dynamic stress intensity factor
(NDSIF).

2 Formulation of the problem

Consider a crack of length 2a in an FGPMsubstrate bonded to a homogeneous piezoelectric stripwith thickness
h3 in Fig. 1. The distance between the crack and the bonded interface is denoted by h2. The crack is referred
to the Cartesian coordinate system (x, y, z) with the origin located at the center of the crack. For convenience,
it is assumed that the FGPM consists of upper (y > 0, thickness h2) and lower (y < 0) regions. Quantities
in the FGPS and the PM will subsequently be designated by subscripts k(=1, 2 and 3, respectively). Also,
subscripts k = 1 and k = 2 indicate lower and upper regions of the FGPM, respectively, hereafter. Since the
poling directions of piezoelectric materials are orientated along the z-axis, the anti-plane mechanical field and
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Fig. 1 Scattering of the SH wave by a limited permeable in a FGPM bonded to a PM

in-plane electric field are coupled. The constitutive equation can be written as:

τyzk = c44k(y)
∂wk

∂y
+ e15k(y)

∂ϕk

∂y
, τxzk = c44k(y)

∂wk

∂x
+ e15k(y)

∂ϕk

∂x
, (1)

Dyk = e15k(y)
∂wk

∂y
− ε11(k)(y)

∂ϕk

∂y
, Dxk = e15k(y)

∂wk

∂x
− ε11k(y)

∂ϕk

∂x
(2)

where τlzk,wk, Dlk , andϕk(l = x, y, k = 1, 2, 3) are the shear stresses, anti-plane displacements, in-plane elec-
tric displacements, and electric potentials, respectively. The variations in material constants c44k(y), e15k(y),
and ε11k(y) called the shear modulus, the piezoelectric coefficients, the dielectric parameter, respectively, are
assumed in the following exponential forms:

c44k(y) = c440e
2βy, e15k(y) = e150e

2βy, ε11k(y) = ε110e
2βy, ρk(y) = ρ0e

2βy,

c443(y) = c440e
2βh2 , e153(y) = e150e

2βh2 , ε113(y) = ε110e
2βh2 , ρ3(y) = ρ0e

2βh2
(3)

where β is the material gradient and ρ is the mass density. c440, e150, ε110, and ρ0 are shear modulus, piezo-
electric constant, dielectric coefficient, and mass density at y = 0, respectively.

The electric fields Exk and Eyk are related to the electric potential ϕk by the following form:

Exk = −∂ϕk

∂x
, Eyk = −∂ϕk

∂y
. (4)

Let a time-harmonic SH wave originating at y → ∞ be incident with an incidence angle θ on the crack.
The anti-plane shear stress acts on the materials, so the displacement components are written as:

w(t)(x, y, t) = w(i)(x, y, t) + w(x, y, t) (5)

where w(t)(x, y, t), w(i)(x, y, t), and w(x, y, t) are the total field, incidence field, and scattering field. The
appended superscripts “t” and “i” mean “total” and “incident,” respectively. In the incidence field, the dis-
placement and the electric potential are expressed as [27]

w(i)(x, y, t) = A0 exp

[
−iω

(
x cos θ + y sin θ

csh
+ t

)]
, (6)

ϕ(i)(x, y, t) = e15
ε11

A0 exp

[
−iω

(
xcosθ + ysinθ

csh
+ t

)]
(7)

where A0, θ, ω, and t are the amplitude, the incidence angle, the frequency and time, csh is the shear wave

velocity. i = √−1, csh =
√

μ0
ρ0

, μ0 = c440 + e2150
ε110

.
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Because of the same time factor in the incidence and the scattering fields, the displacement and electric
potential in the scattering field are expressed as follows:

wk(x, y, t) = w(x, y) exp(−iωt), ϕk(x, y, t) = ϕ(x, y) exp(−iωt). (8)

In view of the harmonic time variation in the incident wave given by Eqs. (6) and (7), the field quantities
will all contain the time factor exp(−iωt), which will henceforth be dropped.

Substituting Eqs. (6–7) into Eqs. (1–2) and applying Eq. (3), the stress in the incidence field will be written
as:

τ0 = τ (i)
yz (x, 0, t) = τ00 sin θ exp

(
−iω

x cos θ

csh

)
(9)

where

τ00 = −i A0ωρ0csh. (10)

The equilibrium equations of the PM can be expressed as follows:

∂τxzk

∂x
+ ∂τyzk

∂y
= ρ

∂2wk

∂t2
,

∂Dxk

∂x
+ ∂Dyk

∂y
= 0. (11)

Substituting Eqs. (1–2) and (8) into Eq. (11) and using the relation (3), we obtain the following equations:

∇2wk + 2β
∂wk

∂y
+ ρ0ω

2

μ0
wk = 0, (12)

∇2φk + 2β
∂φk

∂y
= 0, (13)

∇2w3 + ρ0ω
2

μ0
w3 = 0, (14)

∇2φ3 = 0 (15)

where the Bleustein function is given by φk = ϕk − e150
ε110

wk, and ∇2 = ∂2

∂x2
+ ∂2

∂y2
is the two-dimensional

Laplace operator.
On the surfaces y = h2+h3, y = h2 and y = 0, the traction and electric displacement boundary conditions

are

τyz3(x, h2 + h3) = 0, Dy3(x, h2 + h3) = 0, (16)

τyz2(x, h2) = τyz3(x, h2), w2(x, h2) = w3(x, h2), (17)

Dy2(x, h2) = Dy3(x, h2), ϕ2(x, h2) = ϕ3(x, h2), (18)

τyz1(x, 0) = τyz2(x, 0), Dy1(x, 0) = Dy2(x, 0), (a ≤ x < ∞). (19)

Themechanical boundary conditions at the surfaces of the cracks are assumed to be traction-free. Following
Refs. [24,25], the limited permeable crack boundary condition on the cracked plane y = 0 in scattering field
is written as:

τyz1(x, 0) = τyz2(x, 0) = −τ (i)
yz (x, 0, t) = −τ0, (0 ≤ x < a), (20)

w1(x, 0) = w2(x, 0), (a ≤ x < ∞), (21)

Dy1(x, 0) = Dy2(x, 0) = Dc
y − D0 = G0, (0 ≤ x < a), (22)

ϕ1(x, 0) = ϕ2(x, 0), (a ≤ x < ∞) (23)

where the quantities τ0 and D0 are, respectively, the stress and electric displacement in the absence of any
cracks. Equations (22) and (23) will be hereafter referred to the “limited” crack boundary condition. And Dc

y
is the normal component of the electric displacement on the crack faces.
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3 Dual integral equations

Applying first Fourier transforms to the governing equations of Eqs. (12–15) and then taking inverse Fourier
transforms, the following results are obtained:

w1(x, y) = 1

2π

∫ ∞

−∞
A1(s)e

λ1ye−isxds, (24)

ϕ1(x, y) = e150
ε110

w1(x, y) + 1

2π

∫ ∞

−∞
B1(s)e

γ1ye−isxds, (25)

w2(x, y) = 1

2π

∫ ∞

−∞
[
A2(s)e

λ1y + A3(s)e
λ2y

]
e−isxds, (26)

ϕ2(x, y) = e150
ε110

w2(x, y) + 1

2π

∫ ∞

−∞
[
B2(s)e

γ1y + B3(s)e
γ2y

]
e−isxds, (27)

w3(x, y) = 1

2π

∫ ∞

−∞
[
C1(s)e

my + C2(s)e
−my] e−isxds, (28)

ϕ3(x, y) = e150
ε110

w3(x, y) + 1

2π

∫ ∞

−∞
[
D1(s)e

sy + D2(s)e
−sy] e−isxds (29)

where

λ1 = −β +
√

β2 + s2 − ρ0ω2

μ0
, λ2 = −β −

√
β2 + s2 − ρ0ω2

μ0
, γ1 = −β +

√
β2 + s2,

γ2 = −β −
√

β2 + s2, m =
√
s2 − ρ0ω2

μ0
.

The solutions of the undetermined functions Al(s), Bl(s),C j (s), and Dj (s)(l = 1, 2, 3, j = 1, 2) depend on
the mechanical and electric conditions of the crack surfaces.

From Eqs. (24–29), (1), and (2), the stress and the electric displacement can be obtained,

τyz1(x, y) = μ0e2βy

2π

∫ ∞

−∞
λ1A1(s)e

λ1ye−isxds + e150e2βy

2π

∫ ∞

−∞
γ1B1(s)e

γ1ye−isxds, (30)

Dy1(x, y) = −ε110e2βy

2π

∫ ∞

−∞
γ1B1(s)e

γ1ye−isxds, (31)

τyz2(x, y) = μ0e2βy

2π

∫ ∞

−∞
[
λ1A2(s)e

λ1y + λ2A3(s)e
λ2y

]
e−isxds

+e150e2βy

2π

∫ ∞

−∞
[γ1B2(s)e

γ1y + γ2B3(s)e
γ2y]e−isxds, (32)

Dy2(x, y) = −ε110e2βy

2π

∫ ∞

−∞
[
γ1B2(s)e

γ1y + γ2B3(s)e
γ2y

]
e−isxds, (33)

τyz3(x, y) = μ0e2βh2

2π

∫ ∞

−∞
m

[
C1(s)e

my − C2(s)e
−my] e−isxds

+e150e2βh2

2π

∫ ∞

−∞
s
[
D1(s)e

sy − D2(s)e
−sy] e−isxds, (34)

Dy3(x, y) = −ε110e2βh2

2π

∫ ∞

−∞
s
[
D1(s)e

sy − D2(s)e
−sy] e−isxds. (35)

Using boundary conditions (19), from the second of Eqs. (30)–(33), we have

λ1[A1(s) − A2(s)] = λ2A3(s)
�= M(s), (36)

γ1[B1(s) − B2(s)] = γ2B3(s)
�= N (s) (37)

where M(s) and N (s) are to be determined.
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Substituting the solutions of 10 unknown functions A1(s), A2(s), A3(s), B1(s), B2(s), B3(s),C1(s),
C2(s), D1(s), D2(s) (the solutions can be found in “Appendix B”) into Eqs. (24–25) and (30–31), and applying
the boundary conditions (20–23), two simultaneous dual integral equations can be obtained as follows:

1

2π

∫ ∞

−∞
sF1(s)P1(s)e

−isxds = 1

μ0
[τ00 sin θ exp

(
−iω

x cos θ

csh

)
− e150

ε110
G0] (0 ≤ x < a), (38)

1

2π

∫ ∞

−∞
P1(s)e

−isxds = 0 (x ≥ a), (39)

1

2π

∫ ∞

−∞
sF2(s)P2(s)e

−isxds = G0

ε110
(0 ≤ x < a), (40)

1

2π

∫ ∞

−∞

[
e150
ε110

P1(s) + P2(s)

]
e−isxds = 0 (x ≥ a) (41)

where F1(s), F2(s) are known functions (see “Appendix C”), and

P1(s) = 1

2

λ2 − λ1

λ2λ1
M(s), P2(s) = 1

2

γ2 − γ1

γ2γ1
N (s).

Solving the dual integral Eqs. (38–41) by using the Copson–Sih method [26], the solutions can be
expressed as

P1(s) = a2

μ0

(
τ00sinθ − e150

ε110
G0

)∫ 1

0

√
ξ [Ω1(ξ)J0(saξ) + Ω2(ξ)J1(saξ)] dξ, (42)

P2(s) = a2G0

ε110

∫ 1

0

√
ξ [Ω3(ξ)J0(saξ) + Ω4(ξ)J1(saξ)] dξ (43)

where J0(saξ) and J1(saξ) are the zero-order Bessel function and the first-order Bessel function of the first
kind. The functions Ω1(ξ), Ω2(ξ), Ω3(ξ), and Ω4(ξ) can be governed by the Fredholm integral equation of
the second kind,

Ω1(ξ) +
∫ 1

0
Ω1(η)K1(ξ, η)dη = √

ξ J0

(
ω

csh
aξcosθ

)
,

Ω2(ξ) +
∫ 1

0
Ω2(η)K2(ξ, η)dη = √

ξ J1

(
ω

csh
aξcosθ

)
,

(44)

Ω3(ξ) +
∫ 1

0
Ω3(η)K3(ξ, η)dη = √

ξ J0

(
ω

csh
aξcosθ

)
,

Ω4(ξ) +
∫ 1

0
Ω4(η)K4(ξ, η)dη = √

ξ J1

(
ω

csh
aξcosθ

)
,

(45)

with kernel functions K1(ξ, η), K2(ξ, η), K3(ξ, η) and K4(ξ, η) given by

K1(ξ, η) = √
ξη

∫ ∞

0
s
[
F1

( s

a

)
− 1

]
J0(sξ)J0(sη)ds,

K2(ξ, η) = √
ξη

∫ ∞

0
s
[
F1

( s

a

)
− 1

]
J1(sξ)J1(sη)ds,

(46)

K3(ξ, η) = √
ξη

∫ ∞

0
s
[
F2

( s

a

)
− 1

]
J0(sξ)J0(sη)ds,

K4(ξ, η) = √
ξη

∫ ∞

0
s
[
F2

( s

a

)
− 1

]
J1(sξ)J1(sη)ds.

(47)
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4 The stress intensity factor

By using the formula of integration by parts, Eqs. (42) and (43) can be written as:

P1(s) = τ00a

μ0
(sinθ + ∧0)

1

s
[Ω1(1)J1(sa) + Ω2(1)J2(sa) + · · · ] , (48)

P2(s) = aD0(Dr − 1)

ε110

1

s
[Ω1(1)J1(sa) + Ω2(1)J2(sa) + · · · ] (49)

where ∧0 = λ0(1 − Dr ), λ0 = e150
ε110

D0
τ00

is electric load, Dr = Dc
y

D0
is electric boundary condition, and J2(sa)

denotes for the second-order Bessel function of the first kind.
Substituting Eqs. (48–49) into Eqs. (30–31), part of the stress and the electric displacement stresses can

be obtained,

τyz1(x, 0) = −aτ00(sinθ + ∧0)

∫ ∞

−∞
F1(s) [Ω1(1)J1(sa) + Ω2(1)J2(sa)] e−isxds

+ aτ00 ∧0

∫ ∞

−∞
F2(s) [Ω3(1)J1(sa) + Ω4(1)J2(sa)] e−isxds, (50)

Dy1(x, 0) = aD0(Dr − 1)
∫ ∞

−∞
F2(s) [Ω3(1)J1(sa) + Ω4(1)J2(sa)] e−isxds. (51)

Considering the stress singularity as s → ∞, the result is

F1(s) → 1, F2(s) → 1,

introducing the complex transformations as follows:

z = x + iy = r exp(iθ), z − a = r1 exp(iθ1), z + a = r2 exp(iθ2).

Thus, Eqs. (50–51) can be written as:

τyz1(x, 0) = τ00 {(sin θ + ∧0) [Ω1(1) − iΩ2(1)] − ∧0 [Ω3(1) − iΩ4(1)]} x√
(x + a)(x − a)

, (52)

Dy1(x, 0) = D0(1 − Dr ) [Ω3(1) − iΩ4(1)]
x√

(x + a)(x − a)
. (53)

According to Eqs. (52–53), the mode-III dynamic stress intensity factor and the electric displacement
intensity factor for the limited permeable case are obtained as follows:

KT = lim
x→a+

√
2π(x − a)τyz1(x, 0)

= √
πaτ00 {(sinθ + ∧0) [Ω1(1) − iΩ2(1)] − ∧0 [Ω3(1) − iΩ4(1)]} , (54)

K D = lim
x→a+

√
2π(x − a)Dy1(x, 0) = ε110

e150
∧0

√
πaτ00 [Ω3(1) − iΩ4(1)] . (55)

Then, the NDSIF is obtained as follows:

K3 = |(sin θ + ∧0) [Ω1(1) − iΩ2(1)] − ∧0 [Ω3(1) − iΩ4(1)]| .
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5 Numerical computation and discussion

By using the numerical integral method, the numerical solution of Ω1(1) andΩ2(1) can be determined from
Eqs. (44) and (46), and the numerical solution of Ω3(1) andΩ4(1) can be obtained from Eqs. (45) and (47).
In this section, we will investigate the effect of the gradient parameter, the electric loads, electric boundary
condition, the incident angle, thickness of PM strip, the distance from the crack to the interface, and wave
number on the NDSIF. The numerical results are shown in Figs. 2, 3, 4, 5, 6, 7, and 8.

The variations in the NDSIF K3 versus wave number aω/csh for different incident angles θ are shown in
Fig. 2. It is indicated by Fig. 2 that the NDSIF increases remarkably with increasing θ . So, a larger angle of
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

aω/csh

N
D

SI
F 

K
3

Impermeable
Dr=0.3

Dr=0.6

Dr=0.9

Fig. 3 Variations in the NDSIF K3 with aω/csh for different Dr (impermeable and limited permeable crack)



The scattering of the SH wave on a limited permeable crack 3213

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.8

1

1.2

1.4

1.6

1.8

2

2.2

λ0

N
D

S
IF

 K
3

Dr=0.2

Dr=0.4

Dr=0.6

Dr=0.8

Fig. 4 Variations in the NDSIF K3 with λ0 for different Dr (limited permeable crack)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.97

0.975

0.98

0.985

0.99

0.995

1

Dr

N
D

S
IF

 K
3

λ0=0.2

λ0=0.4

λ0=0.6

λ0=0.8

Fig. 5 Variations in the NDSIF K3 with Dr for different λ0 (limited permeable crack)

incidence can inhibit the peak emergence of the NDSIF, which means that the incidence angle can control
the NDSIF of the material. Therefore, it can inhibit material properties and crack propagation by adjusting
properly the load angle of incidence.

For an impermeable and limited permeable crack, Fig. 3 displays the effect of the electric boundary
condition Dr on the NDSIF K3, where βa = 0.5, λ0 = 0.6, θ = π/3, h2/a = 0.4, and h3/a = 0.5.
Figure 4 demonstrates the effect of electric loads λ0 on the normalized dynamic stress intensity factor (NDSIF)
K3 under different Dr , where aω/csh = 0.2, βa = 0.5, θ = π/3, h2/a = 0.4, h3/a = 0.5. The effect
of the electric boundary condition Dr on the NDSIF K3 under different λ0 is illustrated in Fig. 5, where
βa = 1.0, aω/csh = 0.2, θ = π/3, h2/a = 0.4, and h3/a = 0.5. Looking at Figs. 3, 4, and 5, it is found
that the NDSIF generally decreases with increasing Dr , which delineates that being in a more permeable state,
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the crack propagation may be resisted. From Figs. 4 and 5, the NDSIF increases with increasing λ0, which
illustrates that a smaller electric load may lead to a smaller potential of the crack propagation.

In addition, from Figs. 2 and 3, the NDSIF tends to increase with an increase in the wave number aω/csh.
So, in engineering, it can decrease the crack tip extension by adjusting the frequency of the SH wave. At the
same time, it can realize the change in the stress field by changing the frequency of the incident wave.

Figures 6 and 7 indicate the influence of the thickness of the PM layer h3/a on the NDSIF K3 under
different gradient parameters βa. It can also be found from Figs. 6 and 7 that the NDSIF decreases with the
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Fig. 8 Variations in the NDSIF K3 with h2/a for different βa (limited permeable crack)

increase of h3/a when βa is fixed. So, we could conclude that the propagation of the crack can be resisted by
properly increasing the thickness of the PM.

Under different gradient parameters βa, the effect of the distance from the crack to the interface h2/a
on the NDSIF K3 is illustrated in Fig. 8, where aω/csh = 0.5, θ = π/6, h3/a = 0.5Dr = 0.5, λ0 = 0.2.
It is found in Fig. 8 that the NDSIF increases with the decrease in h2/a when βa is fixed. So, in practical
engineering, it can improve the fracture resistance of materials by controlling properly the distance from the
crack to the interface.

From Figs. 6, 7, and 8, the NDSIF tends to increase with an increase in the gradient parameter βa, which
indicates that the stress concentration around the crack tips may be relieved by adjusting the graded parameters.

6 Conclusions

Scattering of an SH wave by a limited permeable crack in a functionally graded piezoelectric substrate bonded
to a homogeneous piezoelectric strip has been solved by means of the Fourier transform–Copson method. The
crack is considered as mechanically free and electrically limited permeable. Also, the field intensity factors
have been obtained via auxiliary functions determined from Fredholm integral equations. The dynamic stress
intensity factor depends on the gradient parameter, the electric loads, electric boundary conditions, the angle of
wave, thickness of PMstrip, the distance from the crack to the interface, andwave number.Unlike the traditional
impermeable and permeable crack assumptions, the present limited permeable crack boundary condition is
considered to be neither electrically insulating nor electrically conducting. In real piezoelectric ceramics, the
solutions derived from the limbed permeable boundary condition provide more reasonable results, which are
located between those obtained from an impermeable crack and permeable crack analysis.

7 Case studies

The solutions provided in the previous sections can now be extended to several special cases, as detailed below.

Case 1 Static solution. The corresponding static solution is obtained by letting ρ0ω
2

μ0
= 0. For this case, all

the auxiliary functions Ω1, Ω2, Ω3 and Ω4 are governed by
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λ1 = γ1 = −β +
√

β2 + s2, λ2 = γ2 = −β −
√

β2 + s2,m = s,

F1(s) = F2(s) = 2λ1λ2
s(λ2 − λ1)

Q(s), R(s) = Q(s).

Case 2 Homogeneous solution. To find the solutions for the homogeneous piezoelectric materials, one should
let β = 0. In this case,

p1 =
√
s2 − ρ0ω2

μ0
, p2 = −

√
s2 − ρ0ω2

μ0
, q1 = s, q2 = −s,

H1(s) = 1 − e2sh3

1 + e2sh3
, H2(s) = 1 − e2mh3

1 + e2mh3
.

Case 3 Interface crack. For the case of h2 = 0,

Q(s) = 1 − λ1

λ2

λ2 − sH1(s)

λ1 − sH1(s)
, R(s) = 1 − γ1

γ2

γ2 − mH2(s)

γ1 − mH2(s)
.

Case 4 Considering h3 → 0, we can find the solution of a semi-infinite FGPM in the form

H1(s) = H2(s) = 0, Q(s) = 1 − e(λ2−λ1)h2 , R(s) = 1 − e(γ2−γ1)h2 .
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Appendix A

To obtain the conventional solutions based on the impermeable and the permeable crack assumptions, we must
find the value of an unknown constant Dc

y (or Dr ) which is contained in Eqs. (54) and (55). Firstly, by letting
Dr = 0 (or ∧0 = λ0), the impermeable solutions are easily obtained as:

KT = √
πaτ00 {(sin θ + λ0) [Ω1(1) − iΩ2(1)] − λ0 [Ω3(1) − iΩ4(1)]} , (A.1)

K D = ε110

e150
λ0

√
πaτ00 [Ω3(1) − iΩ4(1)] . (A.2)

In order to obtain the permeable solution, one replaces Eq. (22) with the following:

Dy1(x, 0) = Dy2(x, 0), ϕ1(x, 0) = ϕ2(x, 0), (0 ≤ x < a) (A.3)

or

Dy1(x, 0) = Dy2(x, 0), Ex1(x, 0) = Ex2(x, 0), (0 ≤ x < a). (A.4)

Following the same procedure as shown in Sect. 3, it leads to two pairs of dual integral equations from
Eqs. (20), (21), (A.4), and (23),

1

2π

∫ ∞

−∞
sF(s)p(s)cos(sx)ds = τ00

c440
sinθexp

(
−iω

xcosθ

csh

)
, (0 ≤ x < a), (A.5)

1

2π

∫ ∞

−∞
p(s)cos(sx)ds = 0 (x > a), (A.6)

1

2π

∫ ∞

−∞
s

[(
q2 − q1
q2q1

)
N (s) + e150

ε110

(
p2 − p1
p2 p1

)
M(s)

]
sin(sx)ds = 0, (0 ≤ x < a), (A.7)

1

2π

∫ ∞

−∞

[(
q2 − q1
q2q1

)
N (s) + e150

ε110

(
p2 − p1
p2 p1

)
M(s)

]
cos(sx)ds = 0, (x > a) (A.8)
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where

F(s) = s2−ρ0ω
2

μ0

s

√
β2+s2−ρ0ω

2

μ0

f (s), f (s) = (
1 + κ2

0

)
Q(s) − κ2

0 R(s), κ0 =
√

e2150
c440ε110

.

It is readily seen from Eqs. (A.7) and (A.8) that

N (s) = −e150
ε110

M(s)

J (s)

where J (s) = q2−q1
q2q1

p2 p1
p2−p1

.
With the aid of Copson’s method [26] in the above Eqs. (A.5) and (A.6), one finally obtains a Fredholm

integral equation of the second kind of the form:

Ψ1(ξ) +
∫ 1

0
Ψ1(η)K1(ξ, η)dη = √

ξ J0

(
w

csh
aξcosθ

)
,

Ψ2(ξ) +
∫ 1

0
Ψ2(η)K2(ξ, η)dη = √

ξ J1

(
w

csh
aξcosθ

) (A.9)

where

K1(ξ, η) = √
ξη

∫ ∞

0
s
[
F

( s

a

)
− 1

]
J0(sξ)J0(sη)ds,

K2(ξ, η) = √
ξη

∫ ∞

0
s
[
F

( s

a

)
− 1

]
J1(sξ)J1(sη)ds.

(A.10)

Two field intensity factors are given as:

KT = lim
x→a+

√
2π(x − a)τyz1(x, 0) = √

πaτ00 [Ψ1(1) − iΨ2(1)] sinθ,

K D = lim
x→a+

√
2π(x − a)Dy1(x, 0) = e150

c440

√
πaτ00[Ψ1(1) − iΨ2(1)]sinθ = e150

c440
KT .

(A.11)

Appendix B

Substituting Eqs. (26–29) and (32–35) into Eqs. (16–18), and applying Fourier transform, we have

C1(s)e
m(h2+h3) − C2(s)e

−m(h2+h3) = 0, (A.12)

D1(s)e
s(h2+h3) − D2(s)e

−ss(h2+h3) = 0, (A.13)

λ1A2(s)e
λ1h2 + λ2A3(s)e

λ2h2 = m[C1(s)e
mh2 − C2(s)e

−mh2 ], (A.14)

A2(s)e
λ1h2 + A3(s)e

λ2h2 = C1(s)e
mh2 + C2(s)e

−mh2 , (A.15)

γ1B2(s)e
γ1h2 + γ2B3(s)e

γ2h2 = s
[
D1(s)e

sh2 − D2(s)e
−sh2

]
, (A.16)

D1(s)e
sh2 + D2(s)e

−sh2 = B2(s)e
γ1h2 + B3(s)e

γ2h2 . (A.17)

Solving Eqs. (36–37) and (A.12–A.17) with 10 unknown functions, we have

H1(s) = 1 − e2sh3

1 + e2sh3
, H2(s) = 1 − e2mh3

1 + e2mh3
,

Q1(s) = 1

λ2

λ2 − sH1(s)

λ1 − sH1(s)
e(λ2−λ1)h2 , R1(s) = 1

γ2

γ2 − mH2(s)

γ1 − mH2(s)
e(γ2−γ1)h2 ,

A1(s) = A2(s) + M(s)

λ1
, A2(s) = −Q1(s)M(s), A3(s) = M(s)

λ2
,



3218 J. Yang, X. Li

B1(s) = B2(s) + N (s)

γ1
, B2(s) = −R1(s)N (s), B3(s) = N (s)

γ2
,

C1(s) = A2(s)eλ1h2 + A3(s)eλ2h2

1 + e2mh3
e−mh2 , C2(s) = C1(s)e

2m(h2+h3),

D1(s) = γ1B2(s)eγ1h2 + γ2B3(s)eγ2h2

s(1 − e2sh3)
e−h2s, D2(s) = D1(s)e

2s(h2+h3).

Appendix C

Q(s) = 1 − λ1Q1(s), R(s) = 1 − γ1R1(s), F1(s) = 2λ1λ2
s(λ2 − λ1)

Q(s), F2(s) = 2γ1γ2
s(γ2 − λ1)

R(s).
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