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Abstract In the present work, the active control of vibration of annular plates is presented by the design of a
cylindrically orthotropic short/continuous piezoelectric fiber-reinforced composite (SPFRC/CPFRC) actuator.
The unidirectional piezoelectric fibers of the smart composite are oriented along the radial direction within
a reference cylindrical coordinate frame and poled in the same direction. First, a finite element analysis of
the effective electro-elastic properties of the smart composite is presented, and the optimal geometry of its
unit cell is determined with an objective of improved magnitude of an effective piezoelectric coefficient (e11,
1 for radial direction) for both short (SPFRC) and continuous (CPFRC) forms of piezoelectric fibers. Next,
an arrangement of surface electrodes is presented for its effectual utilization as an actuator based on the
coefficient e11. Subsequently, the smart actuator is attached to the surface of a host annular plate in the form of
actuator patches for substantiating its control performance by the numerical evaluation of controlled frequency
responses of the overall smart annular plate. The actuator patches act as smart dampers by means of supplying
voltage according to the velocity feedback control strategy. The numerical results reveal more control power
of the SPFRC actuator than that of a CPFRC actuator even though the magnitude of the major effective
coefficient (e11) for SPFRC is lesser than that for CPFRC. The overall analysis shows a meaningful control
power of present cylindrically orthotropic SPFRC/CPFRC actuators in control of vibration of annular plates
and suggests short piezoelectric fibers instead of continuous fibers within it (smart actuator) for achieving its
larger control power, flexibility and conformability.

1 Introduction

The property of piezoelectric ceramics to produce an electric field by exerting mechanical stress/strain and vice
versa is known as piezoelectricity. These direct and converse piezoelectric effects of piezoelectric ceramics are
exploited in the development of distributed piezoelectric sensors and actuators for structural applications [1,2].
The piezoelectric sensors and actuators are normally attached to or embedded in the host structure [3] in order
to accomplish self-sensing and self-controlling capabilities of the entire structure. Such structures are known
as ’smart structures.’ Over the past two decades, the concept of a smart structure has been frequently utilized
for active control of vibration of various flexible structural elements like beams, plates, shells, circular/annular
plates, etc. [3–13]. In this development of a smart structure, monolithic piezoelectric materials are extensively
employed as materials for distributed sensors and actuators. However, the control power of monolithic piezo-
electric ceramics is very low due to small magnitudes of piezoelectric stress/strain coefficients. The monolithic
piezoelectric ceramics also suffer from various demerits such as low flexibility, high stiffness, low strain and
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energy density [14–16]. These disadvantages in the utilization of monolithic piezoelectric actuators are cared
by many researchers resulting in various piezoelectric fiber-reinforced composites (PFRCs) [17–26]. Among
the different piezoelectric composites, the microfiber composite (MFC) and the active-fiber composite (AFC)
[19,20] are popular smart composite materials for distributed actuators in control of structural vibration. The
AFC/MFC actuator consists of unidirectional continuous monolithic piezoelectric fibers (longitudinally poled)
embedded within the polymer matrix. The special arrangement of inter-digitized electrodes (IDE) on the top
and bottom surfaces of AFC/MFC results in an electrically induced actuation force along the longitudinal direc-
tion of the fibers. Because of the uses of a polymer matrix and thin piezoelectric fibers, an AFC/MFC actuator
is a more flexible and conformable actuator than a monolithic piezoelectric actuator [27]. As a consequence,
the use of continuous piezoelectric fibers in smart composite actuators may cause difficulties in their practical
structural applications, especially when the overall smart structure undergoes large/nonlinear deformation or
when the actuator is to be integrated over the curved surface of the host structure. The thin, brittle and long
piezoelectric fibers within the actuator may break in these cases and this may eventually hamper its control
performance. For avoiding these practical difficulties, the smart actuator may be used in the form of a patch.
But the aforesaid shortcomings persist depending on the size of the actuator patch and also on the location of
the same over the curved surface of the host structure. Another possible option is to use short piezoelectric
fibers instead of continuous fibers. By the use of short fibers, all the aforesaid shortcomings can be eliminated
along with the advantages of enhanced flexibility and conformability of a smart composite actuator. Although
these advantages can be achieved by the use of short piezoelectric fibers instead of continuous fibers, the
corresponding change in the magnitudes of the effective piezoelectric coefficients is a major concern for its
(smart composite) use as an actuator in structural applications. So, the use of short piezoelectric fibers in the
design of a smart composite actuator not only provides the aforesaid advantages but also imposes a critical
aspect of the magnitudes of effective piezoelectric coefficients.

The different piezoelectric composite actuators including MFC/AFC actuators are substantially employed
in control of vibration of various host structures such as beams, plates, shells and airfoils [28–36]. Similar to
these structural elements, the plane structures of revolution like circular and annular plates are also equally
important structural elements for their wide applications in different engineering fields. For controlling flexural
modes of vibration of such plane structures of revolution, any of the existing piezoelectric composite actuators
maybe utilized. Itmaynot be an effective use of existing smart composite actuators. Because, themicrostructure
of any of the existing piezoelectric composite actuators is designed based on a specific coordinate frame and
also it is for controlling a specific mode of deformation of the host structure. Since none of the available
piezoelectric composite actuators is specially designed for controlling the flexural vibration of plane structures
of revolution, presently a cylindrically orthotropic piezoelectric fiber-reinforced composite (PFRC) actuator
is designed and analyzed for its control performance.

In the present work, a cylindrically orthotropic PFRC actuator is designed for its utilization in control
of the vibration of annular plates. The smart composite is comprised of unidirectional piezoelectric fibers
embedded within the epoxy matrix. The fibers are oriented along the radial direction within the reference
cylindrical coordinate frame and also poled in the same direction so as to achieve an improved magnitude of an
effective piezoelectric coefficient (e11, 1 for the radial direction). The piezoelectric fibers are first considered
in continuous form (CPFRC). Next, the same fibers are considered in a discontinuous form (SPFRC) to
constitute unidirectional short piezoelectric fibers along the radial direction. For both the forms of piezoelectric
fibers, the effective electro-elastic properties of the cylindrically orthotropic PFRC are evaluated using a finite
element (FE) procedure. A numerical analysis of effective properties is performed in order to determine
the geometrical dimensions of the corresponding representative volume element (RVE) with an objective
of improved magnitude of the major effective piezoelectric coefficient (e11). For effective utilization of the
major piezoelectric coefficient (e11) of the SPFRC/CPFRC, the arrangement of surface electrodes over the top
and bottom surfaces of the composite layer is presented. Subsequently, its (SPFRC/CPFRC actuator) control
performance is substantiated by the vibration analysis of an annular plate integrated with the patches of the
same (SPFRC/CPFRC) actuator. Specifically, the change in the control performance of the present cylindrically
orthotropic PFRC actuator due to the use of short piezoelectric fibers (SPFRC) instead of continuous fibers
(CPFRC) is investigated considering the same arrangement of surface electrodes. To the best knowledge of the
authors, similar design and analysis of cylindrically orthotropic SPFRC actuators for controlling the vibration
of plane structures of revolution are not yet available in the literature.
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2 Present cylindrically orthotropic SPFRC

Figure 1a shows a schematic diagram of a present cylindrically orthotropic unidirectional short piezoelectric
fiber-reinforced composite (SPFRC). The short piezoelectric fibers have identical dimension along every axial
direction (r, θ, z) in the reference polar coordinate frame. Also, the fibers are equally spaced along all axial
(r, θ, z) directions. The fiber and matrix phases are made of monolithic piezoelectric and elastic epoxy materi-
als, respectively. All short piezoelectric fibers are poled along the radial direction and assumed to be perfectly
bonded to the matrix phase. Since the analysis of a composite material for the determination of its effective
material constants is generally confined to a unit cell or representative volume element (RVE), a similar element
for the present smart composite is considered as illustrated in Fig. 1b. The short piezoelectric fiber is centrally
located within the volume of the RVE. The inner/outer radius of the RVE and the corresponding short fiber
are denoted by rci /r

c
o and r

f
i /r f

o , respectively. So, the symbols lc and l f in Fig. 1b stand for the radial lengths
of RVE and corresponding fiber, respectively. The circumferential span of RVE/fiber is designated by θc/θ f ,
while the thickness of the same is symbolized by hc/h f . The volume fractions of fiber and matrix phases
within the volume of the RVE are represented by the symbols v f and vm , respectively. Because of the short
fiber, the fiber volume fraction can be expressed as v f = (Ar × Lr )(Lr = l f / lc, Ar = 〈

θ f h f
〉
/ 〈θchc〉).

The parameter (Ar ) is basically the cross-sectional area ratio (A f /Ac) between the fiber and the RVE at
any radius (r), while the parameter (Lr ) signifies the ratio of their radial lengths. The dimensions of RVE
and corresponding fiber in the θ z-plane at any radius are considered to be related to (h f /hc) = (θ f /θc)

so that the area ratio (Ar ) may be expressed either by (θ f /θc)
2 or by (h f /hc)2. Alternatively, the dimen-

sions (h f , θ f ) of the fiber may be expressed in terms of the similar dimensions (hc, θc) of RVE as
h f = hc

√
Ar and θ f = θc

√
Ar . However, according to the aforesaid geometrical relations, all dimen-

sions of the RVE can be specified by Lr , Ar , hc, θc and lc. A boundary surface of RVE is denoted by its
normal direction. So, the six boundary surfaces of the RVE are denoted by −r, +r, −θ, +θ, −z and +z
surfaces.

Short Piezoelectric Fiber

Epoxy Matrix

θf hf

θc

hc

lf

lc

fflf  = (ro-ri )
lc = (ro-ri )ccEpoxy matrix

(a)

(b)

Fig. 1 a Schematic diagram of the present cylindrically orthotropic radially poled short piezoelectric fiber reinforced composite,
b the corresponding representative volume element (RVE)
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3 Effective electro-elastic constants of the piezoelectric composite

In the theory of linear piezoelectricity without thermal effect, the coupled interaction between the electric and
elastic fields is described by four different piezoelectric constitutive formulations [37,38]. Among these four
different constitutive formulations, the piezoelectric stress formulation is commonly employed when the strain
and electric fields are considered as natural variables. According to this constitutive formulation, the natural
variables (strain and electric fields) are related to the stress and electric displacement fields by

σi j = Ci jklεkl − esi j Es, Di = eiklεkl+ ∈is Es (1)

where i, j, k, l, s = 1, 2, 3; Ci jkl , esi j and ∈is denote the elements of stiffness, piezoelectric and permittivity
tensors, respectively; σi j , εkl , Di and Es are the elements of stress, strain, electric displacement and electric
field tensors, respectively. In Eq. (1), the mathematical objects are symmetric in i and j , and also in k and
l. So, using Voigt notation, i j/kl for i, j, k, l = 1, 2, 3 could be represented as 11 → 1, 22 → 2, 33 →
3, 23/32 → 4, 13/31 → 5 and 12/21 → 6. Using this notation, Eq. (1) can be rewritten as

σξ = Cξηεη − e�ξ E�, D� = e�ηεη+ ∈�ζ Eζ (2)

where ξ, η = 1, 2, 3, 4, 5, 6 and �, ζ = 1, 2, 3. In Eq. (2), the elements of stiffness, piezoelectric and permit-
tivity matrices are defined by [39,40]

Cξη =
(

∂σξ

∂εη

)E

, e�ξ = −
(

∂σξ

∂E�

)ε

or e�η =
(

∂D�

∂εη

)E

, ∈�ζ =
(

∂D�

∂Eζ

)ε

. (3)

The superscriptE [Eq. (3)] indicates a zero or constant electric field, and the superscript ε [Eq. (3)] indicates
zero or constant strain field. The constitutive relations and material constants in Eqs. (2) and (3), respectively,
are given for a perfect homogeneous piezoelectric solid. Analogous to this homogeneous piezoelectric solid,
the present piezoelectric composite is considered to be a macroscopically homogeneous piezoelectric solid,
and its macroscopic behavior can be defined by effective constitutive relations according to standard microme-
chanical theories for composites. These effective constitutive relations are valid only for specially statistically
homogeneous fields within the composite, which (fields) can be produced within a heterogeneous body by
the imposition of homogeneous boundary conditions over the boundary surfaces of the body [41,42]. Making
use of this analogy, the effective material properties of asymptotically homogeneous composites could be
estimated by the application of volume-average strain field and/or electric field by means of homogeneous
kinematic boundary conditions (displacement and/or electric potential) [43]. Following that at present, the
effective material constants of the piezoelectric composite are estimated by applying RVE volume-average
strain field and/or electric field. The volume-average field quantities over a volume (Vd) are defined by

σ ξ = 1

Vd

∫

Vd
σξdVd , εη = 1

Vd

∫

Vd
εηdVd , E� = 1

Vd

∫

Vd
E�dVd , Dζ = 1

V

∫

V
DζdV (4)

where the over-bar signifies a volume-average quantity. Equation (4) indicates general expressions for the
volume averages of field quantities. These expressions could be utilized for any volume among the volumes of
the RVE, fiber phase and matrix phase by specifying the corresponding fields (σξ , εη, E�, Dζ ) and volume
(Vd). The constitutive relations for fiber ( f ) and matrix (m) phase materials within the RVE can be written in
terms of the volume-average field quantities as follows:

σ
f
ξ = C f

ξηε
f
η − e f

�ξ E
f
� , (5)

σm
ξ = Cm

ξηε
m
η , (6)

D
f
� = e f

�ηε
f
η + ∈ f

�ζ E
f
ζ , (7)

D
m
� = ∈m

�ζ E
m
ζ . (8)
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The volume-average field quantities of the RVE could be expressed in terms of the similar quantities of
constituent phases as follows:

σ ξ =
(
v f σ

f
ξ + vmσm

ξ

)
, (9)

D� =
(
v f D

f
� + vmD

m
�

)
, (10)

εη =
(
v f ε

f
η + vmεmη

)
, (11)

Eζ =
(
v f E

f
ζ + vmE

m
ζ

)
. (12)

Substituting Eqs. (5)–(6) in Eq. (9) and then using Eq. (11), the following expression can be obtained:

σ ξ = Cm
ξαεα + v f

(
C f

ξα − Cm
ξα

)
ε f
α − v f e

f
�ξ E

f
� (13)

where α = 1, 2, 3, 4, 5, 6. Similarly, substituting Eqs. (7)–(8) into Eq. (10) and then using Eq. (12), the
following expression can be obtained:

D� =∈m
�β Eβ + v f

(
∈ f

�β − ∈m
�β

)
E

f
β + v f e

f
�ηε

f
η (14)

where β = 1, 2, 3. According to the definitions of piezoelectric constants [Eq. (3)], the following expressions
for the effective electro-elastic constants of the piezoelectric composite can be obtained:

Cξη = Cm
ξη + v f

(
C f

ξα − Cm
ξα

)(∂ε
f
α

∂εη

)

− v f e
f
ζ ξ

⎛

⎝
∂E

f
ζ

∂εη

⎞

⎠ for Eζ = 0, (15)

e�η = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
∂E

f
β

∂εη

⎞

⎠ + v f e
f
�ξ

(
∂ε

f
ξ

∂εη

)

for Eζ = 0, (16)

∈�ζ = ∈m
�ζ +v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
∂E

f
β

∂Eζ

⎞

⎠ + v f e
f
�η

(
∂ε

f
η

∂Eζ

)

for εη = 0. (17)

It should be noted that the fiber-phase volume-average electric field (E
f
ζ ) may have a nonzero value for

a zero value of RVE volume-average electric field (Eζ = 0) because of the electro-elastic coupling within
the same (fiber) volume. This electro-elastic coupling may also cause a nonzero fiber-phase volume-average
strain field (ε

f
η ) even though the RVE volume-average strain field (εη) has zero value. So, the electro-elastic

coupling terms (∂E
f
ζ

/
∂εη, ∂ε

f
η

/
∂Eζ ) appear in the expressions [Eqs. (15)–(17)] of the effective electro-elastic

constants.
It is clear fromEqs. (15)–(17) that the effective electro-elastic constants could bedeterminedby computation

of volume-average-field quantities for RVE and fiber phase and it is performed at present by the imposition of
RVE volume-average strain and electric fields by means of homogeneous displacement and electric potential
boundary conditions as discussed earlier within this section. However, for this computation, an electro-elastic
analysis of RVE is to be carried out and this is done at present using a finite element (FE) procedure. The
FE procedure is generally a very time-consuming and expensive procedure. But it may provide more realistic
results in the prediction of electro-elastic constants of piezoelectric composites [44]. So, the FE procedure is
utilized at present by the derivation of a three-dimensional FE model of RVE as presented in the next section.
The solutions from the FE model of RVE for applied homogeneous kinematic boundary conditions yield the
volume-average field quantities according to the following expressions:

εη = 1

Vd

⎛

⎝
NVd∑

i=1

∫

V i
d

εiηdV
i
d

⎞

⎠ , Eζ = 1

Vd

⎛

⎝
NVd∑

i=1

∫

V i
d

Ei
ζdV

i
d

⎞

⎠ (18)

where NVd is the number of elementswithin a volumeVd (RVE/fiber phase/matrix phase); εiη/E
i
ζ is a component

of strain/electric field vector within the i th-element having the elemental volume of V i
d . However, in the
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determination of material constants, the volume-average strain and electric field quantities in RVE and fiber
phase [Eq. (18)] are computed at present by choosing nine sets of homogeneous kinematic boundary conditions.
The RVE is initially considered as a stress/strain/electric field free solid, and then, every set of boundary
conditions over its boundary surfaces is applied separately. Every set of boundary conditions yields only one
nonzero element of strain (εη at Eζ = 0) or electric (Eζ at εη = 0) field vector. Corresponding to such a
nonzero element (say,

〈
εη = ε1 for η =1; εη = 0 for η = 2, 3, . . . 6; Eζ = 0

〉
or
〈
Eζ = E1 for ζ =1; Eζ = 0

for ζ = 2, 3; εη = 0
〉
), the gradient terms in Eqs. (15)–(17) could be written as

∂ε
f
α

∂ε1
= ε

f
α

ε1
for Eζ = 0, (19)

∂E
f
ζ

∂ε1
= E

f
ζ

ε1
for Eζ = 0, (20)

∂ε
f
η

∂E1
= ε

f
η

E1
for εη = 0, (21)

∂E
f
�

∂E1
= E

f
�

E1
for εη = 0. (22)

Introducing these terms in Eqs. (15)–(17), the effective constants, Cξ1 , e�1 and ∈�1, can be obtained.
A similar computation for all sets of boundary conditions yields all material constants. However, it is now
important to consider the appropriate homogeneous electro-elastic kinematic boundary conditions for the
computation of material constants, and these are given as follows. In specifying the boundary conditions,
the displacements along r, θ and z directions are denoted by u(r, θ, z), v(r, θ, z) and w(r, θ, z), respectively,
while the electric potential is denoted by φ(r, θ, z).

(a) Effective constants (Cξ1, e�1):
Boundary conditions: u|−r = 0, u|+r = (ε01 × lc) , v|±θ = 0, w|±z = 0, φ|±r, ±θ, ±z = 0.
Elements (εη, Eζ ): ε1 ≈ ε01; εη = 0 for η = 2, 3, 4, 5, 6; Eζ = 0.
Effective material constants:

Cξ1 = Cm
ξ1 + v f

(
C f

ξα − Cm
ξα

)(ε
f
α

ε01

)

− v f e
f
ζ ξ

⎛

⎝
E

f
ζ

ε01

⎞

⎠ ,

e�1 = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

ε01

⎞

⎠ + v f e
f
�ξ

(
ε
f
ξ

ε01

)

. (23)

(b) Effective constants (Cξ2, e�2):
Boundary conditions: u|±r = 0, v|−θ = 0, v|+θ = (ε02 × θc), w|±z = 0, φ|±r, ±θ, ±z = 0.
Elements (εη, Eζ ): ε2 ≈ ε02; εη = 0 for η = 1, 3, 4, 5, 6; Eζ = 0.
Effective material constants:

Cξ2 = Cm
ξ2 + v f

(
C f

ξα − Cm
ξα

)(ε
f
α

ε02

)

− v f e
f
ζ ξ

⎛

⎝
E

f
ζ

ε02

⎞

⎠ ,

e�2 = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

ε02

⎞

⎠ + v f e
f
�ξ

(
ε
f
ξ

ε02

)

. (24)

(c) Effective constants (Cξ3, e�3):
Boundary conditions: u|±r = 0, v|±θ = 0, w|−z = 0, w|+z = (ε03 × hc), φ|±r, ±θ, ±z = 0.
Elements (εη, Eζ ): ε3 ≈ ε03; εη = 0 for η = 1, 2, 4, 5, 6; Eζ = 0.
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Effective material constants:

Cξ3 = Cm
ξ3 + v f

(
C f

ξα − Cm
ξα

)(ε
f
α

ε03

)

− v f e
f
ζ ξ

⎛

⎝
E

f
ζ

ε03

⎞

⎠ ,

e�3 = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

ε03

⎞

⎠ + v f e
f
�ξ

(
ε
f
ξ

ε03

)

. (25)

(d) Effective constants (Cξ4, e�4):
Boundary conditions: v|−z = 0, v|+z = 1

/
2 ε04 ×hc, w|−θ = 0, w|+θ = 1

/
2 ε04 × θc, φ|±r, ±θ, ±z =

0.
Elements (εη, Eζ ): ε4 ≈ ε04; εη = 0 for η = 1, 2, 3, 5, 6; Eζ = 0.
Effective material constants:

Cξ4 = Cm
ξ4 + v f

(
C f

ξα − Cm
ξα

)(ε
f
α

ε04

)

− v f e
f
ζ ξ

⎛

⎝
E

f
ζ

ε04

⎞

⎠ ,

e�4 = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

ε04

⎞

⎠ + v f e
f
�ξ

(
ε
f
ξ

ε04

)

. (26)

(e) Effective constants (Cξ5, e�5):
Boundary conditions: u|−z = 0, u|+z = 1

/
2 ε05 × hc, w|−r = 0, w|+r = 1

/
2 ε05 × lc, φ|±r, ±θ, ±z =

0.
Elements (εη, Eζ ): ε5 ≈ ε05; εη = 0 for η = 1, 2, 3, 4, 6; Eζ = 0.
Effective material constants:

Cξ5 = Cm
ξ5 + v f

(
C f

ξα − Cm
ξα

)(ε
f
α

ε05

)

− v f e
f
ζ ξ

⎛

⎝
E

f
ζ

ε05

⎞

⎠ ,

e�5 = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

ε05

⎞

⎠ + v f e
f
�ξ

(
ε
f
ξ

ε05

)

. (27)

(f) Effective constants (Cξ6, e�6):
Boundary conditions: u|−θ = 0, u|+θ = 1

/
2 ε06×θc, v|−r = 0, v|+r = 1

/
2 ε06×lc, φ|±r, ±θ, ±z = 0.

Elements (εη, Eζ ): ε6 ≈ ε06; εη = 0 for η = 1, 2, 3, 4, 5; Eζ = 0.
Effective material constants:

Cξ6 = Cm
ξ6 + v f

(
C f

ξα − Cm
ξα

)(ε
f
α

ε06

)

− v f e
f
ζ ξ

⎛

⎝
E

f
ζ

ε06

⎞

⎠ ,

e�6 = v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

ε06

⎞

⎠ + v f e
f
�ξ

(
ε
f
ξ

ε06

)

. (28)

(g) Effective constant (∈�1):
Boundary conditions: φ|±z = 0, φ|±θ = 0, φ|−r = 0, φ|+r = −(E0

1 × lc), u|±r = 0, v|±θ =
0, w|±z = 0.
Elements (εη, Eζ ): E1 ≈ E0

1 ; Eζ = 0 for ζ = 2, 3; εη = 0.
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Effective material constants:

∈�1 = ∈m
�1 +v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

E0
1

⎞

⎠ + v f e
f
�η

(
ε
f
η

E0
1

)

. (29)

(h) Effective constant (∈�2):
Boundary conditions: φ|±r = 0, φ|±z = 0, φ|−θ = 0, φ|+θ = −(E0

2 × θc), u|±r = 0, v|±θ =
0, w|±z = 0.
Elements (εη, Eζ ): E2 ≈ E0

2 ; Eζ = 0 for ζ = 1, 3; εη = 0.
Effective material constants:

∈�2 = ∈m
�2 +v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

E0
2

⎞

⎠ + v f e
f
�η

(
ε
f
η

E0
2

)

. (30)

(i) Effective constant (∈�3):
Boundary conditions: φ|±r = 0, φ|±θ = 0, φ|−z = 0, φ|+z = −(E0

3 × hc), u|±r = 0, v|±θ =
0, w|±z = 0.
Elements (εη, Eζ ): E3 ≈ E0

3 ; Eζ = 0 for ζ = 1, 2; εη = 0.
Effective material constants:

∈�3 = ∈m
�3 +v f

(
∈ f

�β − ∈m
�β

)
⎛

⎝
E

f
β

E0
3

⎞

⎠ + v f e
f
�η

(
ε
f
η

E0
3

)

. (31)

4 FE model of RVE

The constitutive relations for fiber and matrix phases within the RVE can be expressed as
{

σ q

Dq

}
= Cq

{+ε
−E

}
. (32)

The superscript q in Eq. (32) denotes the quantities within the fiber or the matrix phase volume according
to its value as 1 or 2, respectively. The different matrix and vector quantities in Eq. (32) are as follows:

{+ε
−E

}
= {

ε1 ε2 ε3 ε4 ε5 ε6 −E1 −E2 −E3
}T

,

{
σ
D

}
= {

σ1 σ2 σ3 σ4 σ5 σ6 D1 D2 D3
}T

,

C1 =
[
C f eTf
e f −∈ f

]
,C2 =

[
Cm 0
0 −∈m

]
(33)

where C f /Cm is the stiffness matrix for the fiber/matrix phase; ∈ f / ∈m is the permittivity matrix of the
fiber/matrix phase; e f is the piezoelectric matrix of the fiber phase. The form of these property matrices is
given in Eq. (A.1). It should be noted that Eq. (A.1) represents the material properties for longitudinally (radial
direction) poled piezoelectric fibers. The electro-elastic state at any point within the RVE can be defined by an
electro-elastic state vector (d ) as

d = [
u v w φ

]T
. (34)

Using this electro-elastic state vector (d), the strain (ε) and electric (E) field vectors at any point within the
RVE can be expressed in terms of an operator matrix (L) as

{+ε
−E

}
= Ld. (35)
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The form of the operator matrix (L) is given in Eq. (A.2). Using Eq. (32), the first variation of the electro-elastic
internal energy of RVE can be written as [45]

δU =
2∑

q=1

(∫

Vq

〈⌊
δε −δE

⌋
Cq

{+ε
−E

}〉
dVq

)
(36)

where δ is an operator for the first variation; Vq is the volume of the fiber phase (q = 1) or matrix phase
(q = 2); introducing Eq. (35) in Eq. (36), the following form of δU can be obtained:

δU =
2∑

q=1

(∫

Vq

〈
δdTLTCqLd

〉
dVq

)
. (37)

For deriving the finite element model, the volume of the RVE is discretized by 27-node isoparametric
hexahedral elements. At any point within a typical elements, the electro-elastic state vector (d) can be written
as

d = Nde (38)

where N is the shape function matrix and de is the elemental nodal electro-elastic state vector. Introducing Eq.
(38) in Eq. (37), the simplified expression for the first variation of the electro-elastic internal energy (δUe) of
a typical element can be obtained as

δUe = (δde)T
〈
K e de

〉

Ke =
∫

Vq
e

(
NT LT Cq L N

)
dVq

e (39)

where Vq
e is the elemental volume within the fiber phase (q = 1) or matrix phase (q = 2). Assembling the

elemental equations [Eq. (39)] in the global space, the global expression for the internal energy of an RVE can
be obtained as

δU = (δX)T 〈KX〉 (40)

where K is the global electro-elastic coefficient matrix; X is the global nodal electro-elastic state vector. The
present electro-elastic FE analysis of RVE is due to the applied kinematic boundary conditions [Eqs. (23)–(31)]
over its (RVE) boundary surfaces. If these boundary conditions are directly applied to the boundary surfaces
of RVE, then it results in over-constrained RVE edges [44]. This kind of over-constrained deformation of RVE
could be avoided by applying the kinematic boundary conditions over the full FE model of RVE instead of
applying the same directly to the RVE boundary surfaces [44]. So, the kinematic boundary conditions [Eqs.
(23)–(31)] are presently applied over the FE model of RVE [Eq. (40)] following a procedure described in
[46]. For a specified nodal electric potential or displacement over the boundary surface, the first variation of
the corresponding element of X (say, Xi ) is zero (δXi = 0 ). Thus, the corresponding (i th) row of K is to be
deleted, while a column (Pi ) of K with the same index (i) is to be removed for the formation of the electric
potential or displacement–load vector as

δU = (δXr )
T 〈Kr Xr + Pi Xi 〉 (41)

where Kr and Xr are the reduced electro-elastic coefficient matrix and nodal electro-elastic state vector,
respectively. For a number (Nb) of specified values of nodal degrees of freedoms over the boundary surfaces
of RVE, Eq. (41) can be written in general form as

δU = (δXr )
T

〈

Kr Xr +
Nb∑

i=1

Pi Xi

〉

. (42)

Employing the principle of minimum potential energy, Eq. (42) can be written as follows:

Kr Xr = −
Nb∑

i=1

Pi Xi . (43)
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Equation (43) represents the electro-elastic finite element model of RVE under the specified nodal values
of electric potential and/or displacement. Using Eq. (43), the nodal solutions for electric potential and dis-
placement fields within the RVE corresponding to every set of boundary conditions [Eqs. (23)–(31)] can be
obtained. Subsequently, the volume-average (RVE/phase) strain and electric fields can be computed according
to Eq. (18) using these nodal solutions.

5 Arrangement of electrodes

The present cylindrically orthotropic piezoelectric composite is designed to utilize it as amaterial of distributed
actuator in control of the vibration of plane structures of revolution. So, the electrodes are to be provided over
its boundary surfaces in order to activate it by supplying external voltage. The external voltage induces an
electric field within the smart composite resulting in necessary control activity. According to the geometrical
construction and poling direction of the present smart composite, the magnitude of one effective piezoelectric
coefficient (e11, 1 for radial direction) is significantly larger than themagnitudes of other effective piezoelectric
coefficients. Thus, this effective coefficient (e11) is utilized for its (smart composite) better control performance,
and it could be achieved by applying the electric field in the radial direction by an arrangement of electrodes
over the top and bottom surfaces of the composite layer as illustrated in Fig. 2a. Figure 2a shows the top/bottom
surface of the SPFRC layer over which a surface electrode is provided at the radial gap of any two consecutive
short fibers. The uniform polarity of external voltage is considered for the top and bottom surface electrodes
lying on the same radial location, while any two consecutive electrodes along the radial direction are of opposite
polarity. Any two consecutive electrodes of opposite polarity are denoted as a pair of electrodes. Across all pairs
of electrodes, a uniform value of applied voltage is considered that yields uniform magnitude of the electric
the field within all such pairs. But the radial component of the electric field within a pair of electrodes is in
opposite direction to that of the same within the consecutive pairs of electrodes. For obtaining the electrically
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(lc-lf)/2
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Electrode

(-φ)
Electrode

(+φ)
Electrode

(-φ)
Electrode

hf
hc

(hc-hf)/2
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−φ (TSE)

+φ (BSE) -φ (BSE)
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TSE: Top surface electrode, BSE: Bottom surface electrode

(a)

(b)

Fig. 2 a Top/bottom surface of the cylindrically orthotropic piezoelectric composite with electrodes, b the RVE with electrode
surfaces
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induced actuation force in the same direction from all pairs of electrodes, the corresponding piezoelectric fibers
are poled along the radial direction in alternate manner. However, according to the present arrangements of
surface electrodes and short piezoelectric fibers, the macroscopic behavior of the smart composite actuator can
be estimated by defining an elemental volume as illustrated in Fig. 2b that is basically a volume of RVE with
surface electrodes.

In this arrangement, it seems a too small radial gap between any two consecutive surface electrodes. But
this facilitates to achieve a significant magnitude of externally induced electric field in expense of small applied
voltage across the pairs of surface electrodes. The difficulty may arise in the fabrication of electrodes because
of the small gap between any two consecutive electrodes, but this gap can be increased by increasing the length
of the fibers in terms of the increase in fiber aspect ratio. The fiber aspect ratio does not have much effect on
the magnitude of the effective coefficient (e11) as it is shown in a later section (Sect. 7.1). So, the aforesaid
difficulty may be mitigated considering higher fiber aspect ratio. In this case (higher aspect ratio), the only
change would be the requirement of more external voltage for the same magnitude of the applied electric field.

It is now required to determine the magnitude of the induced electric field for an applied voltage across the
pairs of electrodes in order to use the smart composite as an actuator. In this evaluation of the induced electric
field, the difficulty arises due to the material heterogeneity. The effective properties or constitutive behavior of
the smart composite is valid only for specially statistically homogeneous fields, which could be produced by
means of homogeneous kinematic/kinetic boundary conditions over the surface of a large composite [42]. The
present applied electric potentials over the surface electrodes do not satisfy the conditions for homogeneous
kinematic boundary conditions. So, in a strict sense, the corresponding statistically homogeneous electric field
would not be adequate to the effective constitutive relation.As a consequence, for a situationwhere the aforesaid
specially statistically homogeneous fields do not arise or could not be produced, an assumption of local averages
of fields over the volume of an RVEmay be made to salvage the analysis [42]. Following this assumption in the
present analysis, the local electric field within the elemental volume (RVE) with surface electrodes (Fig. 2b) is
considered as local volume-average electric field over the same volume (RVE). Without this assumption in the
present analysis, it is difficult to model the induced electric field within a local heterogeneous volume of the
large smart composite actuator. However, as per this consideration, the induced electric field due to an external
voltage could be taken as its volume-average quantity over the volume of the RVE according to Eq. (12).
Now, for structural applications of the smart actuator under the assumption of small strain, the induced electric
field due to strain of overall structure is of negligibly small magnitude as compared to the large magnitude of
the applied electric field by means of external voltage. So, the magnitude of an RVE volume-average electric
field (E) may be considered as a function of applied voltage (V ) only. Since one value of applied voltage
yields one magnitude of E within the actuator, E is a single-valued function of applied voltage (V ). This
functional relation may be represented by the following expressions [Eq. (44)], in which Gr (V ),Gθ (V ) and
Gz(V ) are the functions of applied voltage corresponding to the components of the volume-average electric
field (Er , Eθ , Ez):

Er = Gr (V ) V, Eθ = Gθ (V ) V, Ez = Gz(V ) V . (44)

The forgoing demonstration is for a layer of present SPFRC actuator comprised of one layer of short piezo-
electric fibers. Similar SPFRC layers can be stackedwith proper alignment of electrode polarities to form a lam-
ina of SPFRC actuator as illustrated in Fig. 3. The electrodes of the same polarity of this smart actuator lamina
are vertically coincident, and their (electrodes) ends are exposed on the circumferential edge surfaces (+θ and
−θ surfaces) of the lamina. So, the external voltage can be provided through these exposed ends of electrodes.

6 FE model of a smart annular plate

The present cylindrically orthotropic SPFRC actuator is designed mainly for controlling the vibration of
plane structures of revolution. In order to substantiate this objective, a vibration analysis of an annular plate
integrated with the patches of the present SPFRC actuator is performed by deriving a close-loop FE model of
the overall smart annular plate. Figure 4 shows a substrate annular plate integrated with four identical patches
of a presently designed cylindrically orthotropic SPFRC actuator. The middle plane of the substrate annular
plate is considered as the reference plane, and the origin of the reference cylindrical coordinate system (r, θ, z)
is located at the center of this reference annular plane. The inner and outer radii of the overall plate are denoted
by ri and ro, respectively. The thickness of the substrate plate and actuator patches are symbolized by h and
h p, respectively. The circumferential span of every patch is denoted by βo, and their locations on the top
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Fig. 3 Stack of cylindrically orthotropic SPFRC layers in forming a lamina
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Fig. 4 Schematic diagram of an annular plate integrated with the patches of cylindrically orthotropic PFRC actuators

surface of the substrate plate are indicated by the angles αo
1 and αo

2 (Fig. 4). The radial length of the patches
is identical to that of the substrate annular plate, and the patches are considered to be located symmetrically
(αo

1 = αo
1 = αo). The fibers within the actuator patches are aligned in the plane of the plate and oriented along

the radial direction. The state of stress and the state of strain at any point in the overall annular plate can be
written as

σ b = [σr σθ τrθ ]
T , σ s = [

τr z τθ z
]T

, (45)

εb = [εr εθ εrθ ]
T , εs = [

εr z εθ z
]T

. (46)

Since a thin overall annular plate is considered in the present study, its kinematics of deformation is defined
according to the first-order shear deformation theory (FSDT) as follows:

u p (r, θ, z, t) = u0 (r, θ, t) + zφr (r, θ, t) , (47.1)

vp (r, θ, z, t) = v0 (r, θ, t) + zφθ (r, θ, t) , (47.2)

wp (r, θ, z, t) = w0 (r, θ, t) . (47.3)
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The generalized displacements in Eqs. (47.1)–(47.3) can be represented by a displacement vector (dp) as
follows:

dp = {uo vo wo φr φθ }T, (48)

According to this displacement field [Eq. (47)], the linear strain-displacement relations at any point of the
overall annular plate can be written in terms of the operator matrices (Lbt , Lbr , Ls) as

εb = (Lbt + zLbr ) dp, εs = Lsdp. (49)

In Eq. (49), the forms of operator matrices are given in Eqs. (A.3)–(A.5). The constitutive relations for the
substrate isotropic annular plate can be written as

σ k
b = Ck

bεb , σ k
s = Ck

sεs, k = 1 (50)

where Ck
b and Ck

s (k = 1) are the stiffness matrices for the isotropic material of substrate plate. The forms of
these stiffness matrices are given in Eq. (A.6) in which the symbols E and ν stand for Young’s modulus and
Poisson’s ratio, respectively. The constitutive relations for the cylindrically orthotropic piezoelectric composite
can be written as

σ k
b = Ck

bεb − ebE, σ k
s = Ck

sεs − esE, D = eTbεb + eTs εs + ∈E, k = 2. (51)

In Eqs. (50) and (51), the superscript k denotes the substrate plate or the actuator patch according to its value
as 1 or 2, respectively. The forms of elastic matrices (Ck

b , Ck
s , k = 2), piezoelectric matrices (eb, es) and

permittivity matrix (∈) appearing in Eq. (51) are given in Eqs. (A.7)–(A.9). The present analysis deals with
the small amplitude vibration of the overall smart annular plate with an assumption of small strain. Under the
small strain of overall smart annular plate and uniform value of applied voltage (V ) across all pairs of surface
electrodes, the components (Er , Eθ , Ez) of the volume-average electric field (E) within the actuator patch
may be assumed as functions of applied voltage (V ) only as it is discussed in the previous section [Eq. (44)].
The electric field (E) then can be written as

E = [
Gr (V ) Gθ (V ) Gz(V )

]T
V . (52)

The overall annular plate is considered to be subjected to a distributed transverse harmonic load (p(r, θ, t)).
Thus, the first variations of total potential energy (δTp) and total kinetic energy (δTk) of the overall smart
annular plate at an instant of time (t) can be written as

δTp =
∫ ro

ri

∫ 2π

0

[
2∑

k=1

∫ hk+1

hk

(
δεTbσ k

b + δεTs σ k
s

)
dz−

∫ hk+1

hk
(δETD)k=2dz − δwp 〈p(r, θ, t)〉z=−h/2

]

rdθdr ,

(53)

δTk =
∫ ro

ri

∫ 2π

0

⎛

⎜
⎝

2∑

k=1

hk+1∫

hk

({
δu̇ p δv̇p δẇp

}
ρk { u̇ p v̇p ẇp

}T)dz

⎞

⎟
⎠ rdθdr (54)

where ρk is the mass density of the substrate plate (k = 1) or actuator patch (k = 2). Substituting Eqs. (50),
(51), (49) and (48) in Eqs. (53)–(54), the first variations of the total potential energy and total kinetic energy
of the overall smart annular plate can be written as

δTp =
∫ r0

ri

∫ 2π

0
δdTp

[ 〈
LT
btAbLbt + LT

btBbLbr + LT
brBbLbt + LT

brDbLbr + LT
s AsLs

〉
dp

− 〈
LT
btAbe(V ) + LT

br Be(V ) + LT
s Ase(V )

〉
V − Pcm(t)

]
rdθdr , (55)

δTk =
∫ ro

ri

∫ 2π

0

(
δḋ

T
pmḋp

)
rdθdr . (56)
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In Eqs. (55)–(56), the rigidity matrices (Ab, As, Bb, Db), electro-elastic coupling vectors
(Abe(V ), Ase(V ), Be(V )), mass matrix per unit area ( m) and load vector (Pcm(t)) are given by

Ab =
2∑

k=1

∫ hk+1

hk
Ck
bdz, As =

2∑

k=1

∫ hk+1

hk
Ck
sdz, Bb =

2∑

k=1

∫ hk+1

hk
Ck
bzdz, Db =

2∑

k=1

∫ hk+1

hk
Ck
bz

2dz,

Abe(V ) =
∫ hk+1

hk
eb {Gr (V )Gθ (V )Gz(V )}T∣∣k=2 dz,Ase(V ) =

∫ hk+1

hk
es {Gr (V )Gθ (V )Gz(V )}T∣∣k=2 dz,

Be(V ) =
∫ hk+1

hk
eb {Gr (V )Gθ (V )Gz(V )}T∣∣k=2 zdz, Pcm(t) = {

0 0 p(r, θ, t) 0 0
}T

,

m =
2∑

k=1

∫ hk+1

hk

(
ZT
t ρkZt + ZT

t ρkZr + ZT
r ρkZt + ZT

r ρkZr
)
dz. (57)

The co-ordinate matrices (Zt , Zr ) appearing in Eq. (57) are given in Eq. (A.10). For an element without
actuator patch, the electro-elastic couplingvectors (Abe(V ), Ase(V ), Be(V )) are null vectors.Also, the rigidity
matrices (Ab, As, Bb, Db) and mass matrix (m) are only for the substrate plate (k = 1). For deriving the
FE model of the overall annular plate, the plane of the plate is discretized into (n1 × m1) number of 9-
node isoparametric elements. The equally spaced circumferential lines divide the radial length (r0 − ri ) into
n1 number of equal divisions, while the equally spaced radial lines divide the circumference (2π) into m1
number of equal divisions. The inner/outer boundaries of a typical element along the radial and circumferential
directions are denoted by rei /r

e
o and θei /θ

e
o , respectively. The generalized displacement vector [Eq. (48)] within

an element can be written as

dp = Npdep (58)

where Np is the shape function matrix and dep is the elemental nodal displacement vector. Using Eq. (58), the
total strain energy [Eq. (55)] and the total kinetic energy [Eq. (56)] for a typical element can be expressed as

δT e
p = (δdep)

T
〈
(Ke

b + Ke
s)d

e
p − Pe

E (V )V − Pe
M (t)

〉
, (59)

δT e
k = (δḋ

e
p)

TMeḋ
e
p. (60)

In Eqs. (59)–(60), the different matrix quantities are as follows:

Ke
b =

∫ reo

rei

∫ θeo

θei

[
NT

p(L
T
btAbLbt + LT

btBbLbr + LT
brBbLbt + LT

brDbLbr )Np

]
rdθdr,

Ke
s =

∫ reo

rei

∫ θeo

θei

[
NT

p(L
T
s AsLs)Np

]
rdθdr,

Pe
E (V ) =

∫ reo

rei

∫ θeo

θei

[
NT

p

〈
LT
btAbe(V ) + LT

br Be(V ) + LT
s Ase(V )

〉]
rdθdr ,

Pe
M (t) =

∫ reo

rei

∫ θeo

θei

[
NT

pPcm(t)
]
rdθdr ,

Me =
∫ reo

rei

∫ θeo

θei

[
NT

pmNp

]
rdθdr . (61)

In Eq. (61), the bending and shear counterparts of the total stiffness matrix are separately formulated for
implementing the selective integration in a straight forward manner. The governing equations of motion of the
overall smart annular plate are derived employing Hamilton’s principle as

∫ t2

t1

(
δT e

k − δT e
p

)
dt = 0. (62)
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Introducing the expressions of δT e
p and δT e

k [Eqs. (59)–(60)] in Eq. (62), the following governing equations
of motion for a typical element of the overall smart annular plate can be obtained:

Med̈
e
p + (Ke

b + Ke
s)d

e
p = Pe

E (V )V + Pe
M (t). (63)

Assembling the elemental governing equations of motion [Eq. (63)] into the global space, the following global
equations of motion of the overall smart annular plate can be obtained:

MẌp + (Kb + Ks)Xp =
4∑

q=1

Pq
E (V q)Vq + PM (t). (64)

In Eq. (64),M is the global mass matrix; Kb and Ks are bending and shear counterparts of the global stiffness
matrix; PM (t) is the global mechanical load vector; Xp is the global nodal displacement vector; Pq

E is the
coefficient vector of the global electrical load for the qth actuator patch; and Vq is the applied voltage to the
qth actuator patch.

6.1 Smart damping

The external voltage to the actuator patches is supplied according to the negative velocity feedback control
strategy. Every actuator patch is equipped with a velocity sensor at its middle point to sense the transverse
velocity (ẇq) at that point, and this velocity is feedback to the corresponding actuator patch in the form of a
control voltage (Vq) with a control gain (kqd ) as

Vq = −kqd ẇq . (65)

The sensing-point velocity (ẇq) can also be expressed in terms of the global nodal velocity vector (Ẋp) by
introducing a transformation vector (Nq

T ) as follows:

ẇq = Nq
T Ẋp. (66)

Using Eqs. (65)–(66), Eq. (64) can be expressed as

MẌp + (Kb + Ks)Xp =
⎛

⎝−
4∑

q=1

Cq(ẇq)

⎞

⎠ Ẋp + PM (t),

Cq(ẇq) = 〈
Pq
Ec(ẇ

q)kqdN
q
T

〉
. (67)

In Eq. (67), Pq
Ec(ẇ

q) can be obtained by introducing Eq. (1) in the expression of Pq
E (Vq). Equation (67) can

also be written in a simplified form as

MẌp + Ct Ẋp + KtXp = PM (t),

Ct =
4∑

q=1

Cq(ẇq),Kt = (Kb + Ks). (68)

The damping matrix (Ct ) in Eq. (68) signifies an electrically induced smart damping in the overall plate.
For a linear relation between the electric field (E) and applied voltage (V ) or for constant values of Gr ,Gθ and
Gz , the damping coefficient matrix (Ct ) is independent of the sensing-point velocities (ẇq). Otherwise, it (Ct )
would vary according to the velocities of the sensing points. In the present analysis, the control performance of
presently designed smart actuator patches is assessed within a specified range of the driving frequency. Within
that range of frequency, the simply supported (vo = 0, wo = 0, φθ = 0 at r = ri, ro) overall annular plate
can vibrate in a shape of its first or second bending mode (Fig. 5). Since the actuator patches are attached to
the top surface of the substrate plate, they act mainly against the mechanically induced radial stress (σr ) on
the same substrate surface for every mode of vibration. Now, for both modes (Fig. 5), the radial stress (σr )
at the top substrate surface may not be distributed in uniform manner along the circumferential direction. So,
for effective control of both the modes of vibration, the voltage to the actuator patches is to be supplied in
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Fig. 5 a First and b second bending mode shapes of the simply supported overall annular plate

an adequate manner so that every actuator patch can act against the mechanically induced stress (σr ) around
its location. In order to conform this in the present use of velocity feedback control strategy, every actuator
patch is equipped with a velocity sensor and activated according to the corresponding local velocity. As a
consequence, one configuration (locations) of actuator patches may not be sufficient for effective control of
all modes of vibration within a given range of driving frequency. But it (configuration) is to be utilized for
the same purpose because of the physical infeasibility in shifting the patch configuration during operation of
the overall plate within a range of the driving frequency. On this ground, the activation of actuator patches
according to their local velocity facilitates to control several modes of vibration of the overall plate even though
the patch configuration remains the same.

7 Results and discussion

In this section, first a numerical analysis of effective electro-elastic properties of present cylindrically
orthotropic SPFRC is carried out for deciding the geometrical properties of a corresponding RVE with an
objective of improved magnitude of the major effective piezoelectric coefficient (e11). Next, the control per-
formance of the SPFRC actuator is substantiated by the numerical evaluation of frequency responses of the
simply supported annular substrate plate integrated with the same actuator patches. An associated issue of
the change in control performance of such actuators (SPFRC) for using short piezoelectric fibers instead of
continuous fibers (CPFRC) is also numerically evaluated.

7.1 Effective electro-elastic properties of SPFRC and CPFRC

Since the analysis of a similar cylindrically orthotropic SPFRC is not available in the literature, the present FE
formulation in estimating the material constants is verified considering both the RVE and corresponding fiber
in shape of a parallelepiped. If large values of inner and outer radii of present RVE (Fig. 1b) are considered
along with a very small circumferential span, then the corresponding geometry of the RVE may be assumed
as a parallelepiped. For a vertically poled continuous piezoelectric fiber within the RVE of such a geometrical
shape, the effective electro-elastic coefficients are computed and compared with similar available results [22],
which are estimated analytically for an RVE in shape of a perfect parallelepiped. This comparison is illustrated
in Table 1. It may be observed from Table 1 that the present FE results are in good agreement with the earlier
analytical results [22], thus verifying the present FE formulation for the evaluation of electro-elastic constants
of piezoelectric composites.

The materials for fiber and matrix phases of the present cylindrically orthotropic SPFRC are considered
as PZT5H and Epoxy, respectively. Table 2 presents the material properties of these constituent materials. For
given constituent materials, the electro-elastic properties of SPFRC are mainly dependent on the area ratio
(Ar ) and length ratio (Lr ) by the relation v f = (Ar × Lr ). Further, since the SPFRC acts as a material of
distributed actuator by the application of an electric field along the poling direction of the fibers, the important
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Table 1 Verification of the present FE formulation for an estimation of effective electro-elastic constants of piezoelectric com-
posites (∗R31 = (e31)composite/(e31)piezoelectric fiber)

v f Source ∗R31 C11 (GPa) C12 (GPa) C22 (GPa)

0.2 Present 0.6654 18.71 3.396 5.27
Ray [22] 0.6859 17.93 3.191 4.794

0.4 Present 1.3334 34.55 4.752 6.62
Ray [22] 1.3563 32.35 4.207 6.325

0.6 Present 1.9837 49.06 6.795 10.10
Ray [22] 1.9902 47.63 6.177 9.293

Table 2 Material properties of constituent materials [22]

Fiber/matrix C11 (GPa) C12 (GPa) C23 (GPa) C22 (GPa) C44 (GPa)

Epoxy 3.86 2.57 2.57 3.86 0.64
PZT-5H 124 96 98 151 26.5

Fiber/matrix e11 (C/m2) e12/e13 (C/m2) e26/e35 (C/m2) ∈11 (C/Vm × 10−09) ∈22 / ∈33 (C/Vm × 10−09)

Epoxy 0 0 0 0.079 0.079
PZT-5H 27 −5.1 17 13.27 13.4

Fig. 6 Variations of effective piezoelectric coefficients (e11, e12, e13) with the area ratio (Ar )

effective piezoelectric coefficients are e11, e12 and e13. So, the present analysis is carried out mainly for
investigating the effects of these parameters (Ar , Lr ) on the magnitudes of the effective coefficients e11, e12
and e13. Figure 6 represents the variations of the effective piezoelectric coefficients with the area ratio (Ar )
for continuous piezoelectric fibers (Lr = 1). In order to achieve the variation of area ratio (Ar ) for constant
values of thickness (hc) and circumferential span (θc) of the RVE, the fiber dimensions (h f , θ f ) are varied
following the relations h f = hc

√
Ar and θ f = θc

√
Ar . It may be observed from Fig. 6 that the magnitude

of the effective coefficient (e11) significantly increases with increasing area ratio. But the magnitude of the
other coefficient (e12/e13) remains almost constant and it is also significantly lesser than the magnitude of e11.
This result signifies that the use of the smart composite as a material of distributed actuator would be based
on the coefficient (e11), and its magnitude can be increased by increasing the area ratio. However, for the use
of short piezoelectric fibers (Lr < 1), the variations in the same coefficients (e11, e12, e13) with the length
ratio (Lr ) are illustrated in Fig. 7 for different values of area ratio (Ar ). In this computation, the fiber length is
varied keeping the constant values of all other dimensions in such a manner that the central location of a short
fiber within the RVE does not alter. For any value of area ratio (Ar ), it may be observed form Fig. 7 that the
magnitude of coefficient e11 significantly increases with the increasing length ratio (Lr ) and reaches its (e11)
maximum value for Lr = 1 (continuous fiber). The other coefficient (e12/e13) also increases with increasing
Lr . But, after a certain value of Lr , its (e12/e13) magnitude decreases to the minimum value for a continuous
fiber (Lr = 1). Similar to the case of continuous fibers (Lr = 1, Fig. 6), the magnitude of e12/e13 is much
lesser than that of e11 (Fig. 7). Thus, for both the forms (short and continuous) of piezoelectric fibers within the
present smart composite, the coefficient e11 would be chosen as the major piezoelectric coefficient in its (smart
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Fig. 7 Variations of the effective piezoelectric coefficients (e11, e12, e13) with the length ratio (Lr ) for different values of area
ratio (Ar )

composite) use as a distributed actuator. In case of SPFRC, Fig. 7 indicates a higher value of Lr (close to 1)
for improved magnitude of e11. The same figure (Fig. 7) also indicates the significant effect of area ratio on the
magnitude of e11 for a higher value of the length ratio. So, for SPFRC, higher values of both the area ratio and
length ratio are to be considered for improved magnitude of e11. However, based on the forgoing observations
(Figs. 6, 7), a higher value of area ratio is chosen at present as 0.6 for both the SPFRC and CPFRC, while a
higher value of length ratio for SPFRC is chosen as 0.95. Basically, the CPFRC is modified into a SPFRC by
reducing the value of the length ratio from 1 to 0.95. This modification causes a little decrease in the magnitude
of e11 (Fig. 7a) from its maximum possible magnitude (at Lr = 1). But an advantage of greater flexibility and
conformability of the smart composite can be achieved which is useful in its structural applications.

Like area ratio and length ratio, the dimensions such as lc, hc and θc are also to be mentioned for complete
geometrical properties of the present RVE. These dimensions (lc, hc, θc) of the RVE are directly related to
the similar dimensions (l f , h f , θ f ) of the corresponding fiber by the relations l f = Lrlc, h f = hc

√
Ar and

h f = hc
√
Ar . So, the dimensions of the fiber could also be specified instead of those of the RVE. For the

aforesaid selected values of area ratio and length ratio, the cross-sectional dimensions (h f , θ f ) are considered
to have small values as compared to the value of the longitudinal dimension (l f ). This consideration results in
negligibly small effects of variations of these parameters (h f , θ f )on themagnitudes of the effective coefficients
(e11, e12, e13) when other geometrical parameters remain at their constant values. So, for simplicity, these
dimensions (h f , θ f ) could be represented by a single parameter, A f (A f = h f θ f ). Now, for specified values
of Ar and Lr , the values of A f and l f may be assigned arbitrarily. But this arbitrary assignment may have
an effect on the magnitudes of the effective coefficients (e11, e12, e13) which implies a relation among these
parameters (A f , l f ) for improvedmagnitude of e11. This relation is estimated at present by defining a parameter
as fiber aspect ratio (S f = l f /A f ). In this computation, two values of Ar are considered by varying A f with
a constant value of Ac(Ac = hcθc, Ar = A f /Ac). For every value of Ar or A f , S f is varied by the variation
of l f . It should be noted that the value of lc would vary with l f for constant value of Lr . Figure 8 illustrates
the variations of the coefficients (e11, e12, e13) with the fiber aspect ratio (S f ) for different values of the area
ratio (Ar ). It may be observed from Fig. 8 that there is a little variation of every coefficient (e11/e12/e13) with
the piezoelectric fiber aspect ratio (S f ) for any value of Ar/A f . Also, the nature of variation of any of the
coefficients (e11, e12, e13) does not alter for different values of the area ratio. Thus, for specified values of
area ratio and length ratio, the value of S f can be chosen from this result (Fig. 8) and this is taken at present as
1.2×104 for an improvedmagnitude of e11. However, according to the present geometrical properties (SPFRC,
Lr = 0.95, Ar = 0.6, S f = 1.2 × 104) of the RVE, the effective electro-elastic properties are illustrated in
Table 3. The same table also illustrates similar properties when the continuous piezoelectric fiber of an RVE
is considered (CPFRC, Lr = 1, Ar = 0.6). It may be observed from Table 3 that the magnitude of the major
effective piezoelectric coefficient (e11) decreases for the use of short piezoelectric fibers (Lr = 0.95) instead
of continuous fibers (Lr = 1). This decrease in the magnitude of e11 is an important issue when one intends
to use an SPFRC actuator instead of a CPFRC actuator. However, the corresponding change in the control
performance is studied in a latter section considering the aforesaid arrangement of surface electrodes.
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Fig. 8 Variations of effective piezoelectric coefficients (e11, e12, e13) with the fiber aspect ratio (S f ) (Lr = 0.95)

Table 3 Effective electro-elastic properties of a cylindrically orthotropic PFRCwith radially poled short/continuous piezoelectric
fibers

Composite e11 (C/m2) e12/e13 (C/m2) e26/e35 (C/m2) ∈11 (C/Vm)(×10−09) ∈22 / ∈33
(C/Vm) (×10−09)

SPFRC 13.818 −1.158 1.220 0.95 0.302
CPFRC 18.379 −0.231 1.429 8.75 0.28

Composite C11 (GPa) C12 (GPa) C23 (GPa) C22 (GPa) C44 (GPa) C55 (GPa)

SPFRC 31.635 4.734 4.201 12.623 1.628 2.229
CPFRC 36.019 6.794 4.34 13.056 1.649 2.503

7.2 Electric field for the present arrangement of surface electrodes

The foregoing results show a significant magnitude of e11 for the present cylindrically orthotropic
SPFRC/CPFRC. In order to utilize this piezoelectric coefficient in the use of the present SPFRC/CPFRC
as a material of distributed actuator, an arrangement of surface electrodes is shown in Fig. 2. The correspond-
ing volume-average electric field within the RVE is expressed as a function of applied voltage (V ) according
to Eq. (44). In this section, this functional relation is evaluated numerically. Figure 9 illustrates the variations
of the radial component (Er ) of volume-average electric field (E)with the applied voltage (V ) across the pairs
of surface electrodes. As compared to the magnitude of Er , other components (Eθ , Er ) have negligibly small
magnitudes. So, these components (Eθ , Ez) of the electric field (E) are not furnished in the present results.
However, it may be observed from Fig. 9 that the radial component of the electric field (Er ) linearly varies
with the applied voltage (V ). Also, the magnitude of the slope (Er vs. V ) of this linear variation for SPFRC is
more than that for CPFRC. According to this result (Fig. 9), the magnitudes of Gr for SPFRC and CPFRC are
obtained as 540.65m−1 and 369.55m−1, respectively. Since the other similar parameters (Gθ and Gz) have
negligibly small magnitudes as compared to the magnitude of Gr , these parameters are considered to have
null magnitudes (Gθ ≈ 0, Gz ≈ 0).

7.3 Frequency responses of a smart annular plate

In this section, the control performance of a presently designed SPFRC actuator is assessed by analyzing the
controlled frequency responses of a simply supported annular plate integrated with four identical actuator
patches (Fig. 4). The controlled frequency responses of the overall smart annular plate are evaluated using its
closed-loop FEmodel derived in Sect. 6. The geometrical properties of the overall annular plate are considered
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Fig. 9 Variations of the radial component (Er ) of the volume-average electric field (E) with the applied voltage (V ) for SPFRC
and CPFRC actuators

Table 4 Comparison of the first two dimensionless natural frequencies (�0 = ω0r0
√

ρh/D, �1 = ω1r0
√

ρh/D) of a simply
supported annular plate (h p ≈ 0) with those given in [48] (ν = 1/, ri/r0 = 0.4, h/r0 = 0.001), D = Eh3/12(1 − ν2))

Source �0 �1

Chakravarthy et al. [48] 28.08 30.09
Present 28.35 30.43

as ri = 0.25m, ro = 1m, h = 4mm, h p = 250μm, β = 60o and α = 30o. The substrate annular plate is
considered to be made of aluminum (E = 70GPa, ν = 0.3, ρ = 2700 kg/m2), while the material properties
of the smart actuator patches are tabulated in Table 3. The density of actuator patches is taken according to the
rule of mixture (ρc = 3666 kg/m2). For linear relation between the electric field (E) and the applied voltage
(V ) (Fig. 9), the damping coefficient matrix (Ct ) is independent of the sensing-point velocities (ẇq), and it
yields linear governing equations of motion [Eq. (68)] of the overall smart annular plate. In order to excite the
first two bending modes (Fig. 5) of the overall annular plate, the transversely distributed harmonic mechanical
load is considered as

p(r, θ, t) = p 〈1 + cos(θ)〉 e jωt , j = √−1 (69)

where p is the amplitude parameter of the distributed load and ω is the driving frequency. For the steady-state
linear vibration of the overall plate under this mechanical excitation [Eq. (69)], the nodal displacement vector
(Xp) can be written as [47]

Xp = Xe jωt ,X = (XR + jXI ) (70)

where X is a complex nodal displacement vector and XR /XI is its real/imaginary counterpart. Substituting Eq.
(70) in the linear form of the governing equations of motion [Eq. (68)], the following algebraic equations can
be obtained:

(−ω2M + jωCt + Kt
)
X = P0

M . (71)

The complex nodal displacement vector (X) can be obtained by solving Eq. (71), and the absolute value of the
same (X) is the nodal amplitude vector for the linear steady-state vibration of the overall smart annular plate.

In order to verify the present FE model of a smart annular plate, the natural frequencies for the first two
bending modes of vibration of the simply supported substrate annular plate (h p ≈ 0) are computed and
compared with similar results available in the literature [48]. This comparison is illustrated in Table 4. Table 4
shows a good agreement of the present results with similar results reported in an earlier study [48]. This
comparison verifies the accuracy of the present FE model for an annular plate. Next, the modeling of electro-
elastic coupling is verified. Since a similar smart composite actuator is not available in the literature, this
verification is carried out considering a substrate circular plate integrated with a vertically poled monolithic
piezoelectric layer. A negligibly small thickness (h ≈ 0) of the substrate plate is considered, and the transverse
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Fig. 10 Verification of the FE formulation for handling electro-elastic coupling in piezoelectric actuators

deflections at different radial locations of the simply supported overall smart circular plate are computed for
an applied electric field across the top and bottom electrode surfaces of the piezoelectric layer. These results
are then compared with those for a similar smart circular plate studied by Dong et al. [49]. Figure 10 illustrates
this comparison, and it shows an excellent agreement of the present results with similar published results [49].
Thus, the present FE formulation is verified for handling the electro-elastic coupling in a piezoelectric actuator.

In order to present the frequency responses of the overall annular plate, the amplitude of flexural vibration
(Aw) at a point ((ro − ri )/2, π/4, 0) on the plate is computed at every frequency and represented by W =
(Aw/h). The present smart composite actuators reduce the amplitude of vibration of the overall annular plate
by inducing smart damping within the same (overall) plate. The maximum reduction in amplitude due to smart
damping occurs at the resonant frequency for any mode of vibration. So, for every mode of vibration, the
efficiency of actuators (SPFRC and CPFRC) in inducing smart damping within the overall plate is measured
in terms of the change of peak amplitude (Wpeak) at resonant frequency. All actuator patches are considered
to be activated using a uniform value of control gain (kqd = kd , q =1,2,3,4). But the velocity amplitudes
corresponding to the locations of velocity sensors may be of different values. So, the control voltages for four
actuator patches are computed separately at any frequency of vibration, and the maximum one (Vm) is taken
at this frequency for presenting the numerical results.

Figure 11a demonstrates the frequency responses of the overall smart annular plate when the actuator
patches are either made of SPFRC or made of CPFRC. The corresponding variations of control voltage (Vm)
are also illustrated in Fig. 11b. It may be observed from Fig. 11 that the SPFRC/CPFRC induces significant
damping in the overall annular plate in expense of reasonable control voltage. The smart damping in the
overall plate can also be increased by increasing the value of control gain (kd). But the corresponding required
control voltage (Vm , Fig. 11b) remains almost the same mainly because of the constant value of the load
parameter (p). For a particular value of control gain (kd), Fig. 11 illustrates an important observation that the
induced damping in the overall plate by CPFRC actuators is a little smaller than that by SPFRC actuators in
expense of added control voltage (Vm). This may be due to the fact that the magnitude of the electric field
induced in an SPFRC actuator due to an applied voltage is more than that in a CPFRC actuator (Fig. 9). The
SPFRC actuator has lesser magnitude of major piezoelectric coefficient (e11) as compared to that for a CPFRC
actuator (Table 3). But the larger magnitude of induced electric field within it (SPFRC) as compared to that
in a CPFRC actuator (Fig. 9) causes more damping within the overall plate in case of an SPFRC actuator.
In order to exemplify this difference for every mode (first and second modes) of vibration, the variations of
the peak amplitude (Wpeak) either with the load parameter (p, constant value of kd) or with the control gain
(kd , constant value of p) are presented in Figs. 12 and 13. Figure 12 illustrates the variations of the peak
amplitude (Wpeak) and corresponding control voltage (Vm

peak) with the load parameter (p) for a constant value
of control gain (kd = 100). Figure 13 demonstrates the variations of the same parameters (Wpeak, Vm

peak)

with the control gain (kd) for a constant value of load parameter (p = 0.3 N/m2). In comparison with the
CPFRC actuator, it may be observed from Figs. 12 and 13 that the SPFRC actuator induces more damping
in expense of lesser control voltage. This difference also increases as the value of Wpeak increases either by
increasing the value of the load parameter (p, constant value of kd) or by reducing the value of control gain
(kd , constant value of p). However, from the foregoing observations (Figs. 11, 12, 13), it may be concluded
that the control performance of the present cylindrically orthotropic smart composite actuator can be improved
by the use of short piezoelectric fibers instead of similar fibers in continuous form. The use of short fibers
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Fig. 11 a Controlled frequency responses of the annular plate integrated with the patches of an SPFRC/CPFRC actuator, b
variations of corresponding control voltage (p = 0.3N/m2, kd = 100, 200)

instead of continuous fibers also facilitates to have a cylindrically orthotropic smart composite actuator with
greater flexibility and conformability.

For constant values of load parameter (p) and control gain (kd), Fig. 14 illustrates the variations of the
peak amplitude (Wpeak) and corresponding control voltage (Vm

peak) with the thickness (h p) of the actuator
patches for the first bending mode of vibration of the overall annular plate. For every value of h p, Wpeak is
computed at the corresponding resonant frequency (for the first mode). It is known that a finite value of Wpeak
at a resonant frequency arises due to the existence of damping within the overall plate. So, the variations of
Wpeak in Fig. 14a represent the variation of damping within the overall annular plate with the increase in h p.
Figure 14a, b indicates that a significant damping within the overall annular plate in expense of a low value
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Fig. 12 Variations of a peak amplitude (Wpeak) and b corresponding control voltage (Vm
peak) with the load parameter (p) for the

first two bending modes of vibration of the overall annular plate (kd = 100)

Fig. 13 Variations of a peak amplitude (Wpeak) and b corresponding control voltage (Vm
peak) with control gain kd for first two

bending modes of vibration of the overall annular plate (p = 0.3N/m2)

of control voltage could be achieved by increasing the thickness of the SPFRC/CPFRC actuator patches. But,
for constant values of kd and p, this increase in damping continues up to a certain value of increasing h p.
Beyond that value of h p, the negligibly small rate of decrease inWpeak with increasing h p (Fig. 14a) indicates
an insignificant effect of h p on the smart damping within the overall plate.

8 Conclusions

In the present work, a cylindrically orthotropic short piezoelectric fiber-reinforced composite (SPFRC) actuator
is designed for active damping of the vibration of annular plates. The SPFRC is comprised of unidirectional
short piezoelectric fibers embedded within the epoxy matrix. The unidirectional fibers are oriented in the radial
direction within a reference cylindrical coordinate frame and poled in the same direction so as to achieve an
improved magnitude of the effective piezoelectric coefficient (e11, 1 for radial direction). For the use of this
smart composite as a material of distributed actuator based on the effective coefficient (e11), an arrangement
of surface electrodes over the top and bottom surfaces of the smart composite layer is presented. Utilizing a
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Fig. 14 Variations of a peak amplitude (Wpeak) and b corresponding control voltage (Vm
peak) with actuator thickness (h p) (p =

0.3N/m2, kd = 100, 200) for first bending mode of vibration of the overall annular plate

finite element procedure, the effective electro-elastic constants of the smart composite are evaluated for both
the short (SPFRC) and continuous (CPFRC) forms of unidirectional piezoelectric fibers. In this evaluation of
material constants, the geometrical properties of the corresponding RVE are also determined with an objective
of improvedmagnitude of the effective coefficient (e11). The numerical results reveal a significantmagnitude of
the effective coefficient (e11) of the smart composite while other similar coefficients have negligibly small mag-
nitudes. It is observed that the use of short fibers instead of continuous fibers causes a smaller magnitude of e11.

The control performance of a presently designed cylindrically orthotropic SPFRC/CPFRC actuator is sub-
stantiated by the evaluation of frequency responses of an annular plate integrated with four identical patches
of the same (SPFRC/CPFRC) actuators. The actuator patches are activated according to the negative veloc-
ity feedback control strategy so as to achieve smart damping in the overall annular plate. A closed-loop FE
model of the overall smart annular plate is derived in order to evaluate its (overall plate) controlled frequency
responses, which exhibit significant performance of both the actuators in inducing smart damping within the
overall plate. It is observed that the special arrangement of surface electrodes causes a larger magnitude of
volume-average electric field in an SPFRC actuator than that in a CPFRC actuator for an applied voltage.
Because of this fact, the evaluated frequency responses of the smart annular plate show a little more control
power of the SPFRC actuator than that of the CPFRC actuator although the magnitude of the concerned coef-
ficient (e11) for SPFRC is smaller than that for CPFRC. The overall study reveals significant control power
of the present cylindrically orthotropic SPFRC/CPFRC actuator in control of the vibration of annular plates.
Also, the use of short piezoelectric fibers instead of continuous piezoelectric fibers provides the advantages of
greater control power, flexibility and conformability of the present smart actuator.

Appendix

∈ f =
⎡

⎢
⎣

∈ f
11 0 0
0 ∈ f

22 0
0 0 ∈ f

33

⎤

⎥
⎦ , ∈m=

[∈m
11 0 0
0 ∈m

22 0
0 0 ∈m

33

]

, e f =
[
e11 e12 e13 0 0 0
0 0 0 0 0 e26
0 0 0 0 e35 0

]

,

C f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

C f
11 C f

12 C f
13 0 0 0

C f
21 C f

22 C f
23 0 0 0

C f
31 C f

32 C f
33 0 0 0

0 0 0 C f
44 0 0

0 0 0 0 C f
55 0

0 0 0 0 0 C f
66

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Cm =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Cm
11 Cm

12 Cm
13 0 0 0

Cm
21 Cm

22 Cm
23 0 0 0

Cm
31 Cm

32 Cm
33 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (A.1)



Smart damping of vibration of annular plates 3175

L =

⎡

⎢⎢
⎣

∂
∂r

1
r 0 0 ∂

∂z
1
r

∂
∂θ

0 0 0
0 1

r
∂
∂θ

0 ∂
∂z 0 ∂

∂r − 1
r 0 0 0

0 0 ∂
∂z

1
r

∂
∂θ

∂
∂r 0 0 0 0

0 0 0 0 0 0 ∂
∂r

1
r

∂
∂θ

∂
∂z

⎤

⎥⎥
⎦

T

, (A.2)

Lbt =
[

∂/∂r 0 0 0 0
1/r (1/r)(∂/∂θ) 0 0 0

(1/r)(∂/∂θ) (∂/∂r) − (1/r) 0 0 0

]

, (A.3)

Lbr =
[
0 0 0 ∂/∂r 0
0 0 0 1/r (1/r)(∂/∂θ)
0 0 0 (1/r)(∂/∂θ) (∂/∂r) − (1/r)

]

, (A.4)

Ls =
[
0 0 ∂/∂r 1 0
0 0 (1/r)(∂/∂θ) 0 1

]
, (A.5)

Ck
b = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦ , Ck
s = E

1 + ν

[
1/2 0
0 1/2

]
, k = 1, (A.6)

Ck
b =

⎡

⎣
Ck
11 Ck

12 0
Ck
12 Ck

22 0
0 0 Ck

66

⎤

⎦ , Ck
s =

[
Ck
55 0
0 Ck

44

]
, k = 2, (A.7)

eTb =
[
e11 0 0
e12 0 0
0 e26 0

]

, eTs =
[
0 0 e35
0 0 0

]
, (A.8)

∈ =
[∈11 0 0

0 ∈22 0
0 0 ∈33

]

, (A.9)

Zt =
[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]

, Zr =
[
0 0 0 z 0
0 0 0 0 z
0 0 0 0 0

]

. (A.10)

References

1. Bailey, T., Hubbard, J.E., James, E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. J. Guid.
Control Dyn. 8, 605–611 (1985)

2. Miller, S.E., Hubbard, J.E.: Observability of a Bernoulli–Euler beam using PVF2 as a distributed sensor. In: MIT Draper
Laboratory Report (July 1987)

3. Crawley, E.F., Luis, J.D.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1373–1385 (1987)
4. Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)
5. Hui, L.H.: Axisymmetric response of circular plates with piezoelectric layers: exact solutions. Int. J. Mech. Sci. 40, 1265–

1289 (1998)
6. Lee, C.Y., Huang, R., Li, X., Shih, W.H.: Vibrations and static responses of asymmetric bimorph disks of piezoelectric

ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 706–715 (2000)
7. Dong, S., Tong, L.: Vibration control of plates using discretely distributed piezoelectric quasi-modal actuators/sensors. AIAA

J. 39, 1766–1772 (2001)
8. Liu, X., Wang, Q., Quek, S.T.: Analytical solution for free vibration of piezoelectric coupled moderately thick circular

plates. Int. J. Solids Struct. 39, 2129–2151 (2001)
9. Ray, M.C.: Optimal control of laminated shells with piezoelectric sensor and actuator layers. AIAA J. 41, 1151–1157 (2003)

10. Sekouri, E.M., Yan-Ru, H., Ngo, A.D.: Modeling of a circular plate with piezoelectric actuators. Mechatronics 14, 1007–
1020 (2004)

11. Peng, F., Ng, A., Hu, Y.R.: Actuator placement optimization and adaptive vibration control of plate smart structures. J. Intell.
Mater. Syst. Struct. 16, 263–271 (2005)

12. Fox,C.H.J., Chen,X.,McWilliam, S.:Analysis of the deflection of a circular platewith an annular piezoelectric actuator. Sens.
Actuators 133, 180–194 (2007)

13. Ashida, F., Sakata, S., Matsumoto, K.: Structure design of a piezoelectric composite disk for control of thermal stress. ASME
J. Appl. Mech. 75, 610091–0610098 (2008)

14. Cook,A.C., Vel, S.S.:Multiscale analysis of laminated plateswith integrated piezoelectric fiber composite actuators. Compos.
Struct. 94, 322–336 (2012)

15. Prasanth, S.S., Arockiarajan, A.: Effective electromechanical response of macro-fiber composite (MFC): analytical and
numerical models. Int. J. Mech. Sci. 77, 98–106 (2013)

16. Wilkie, W.K., Inman, D.J., Lloyd, J.M., High, J.W.: Anisotropic laminar piezocomposite actuator incorporating machined
PMN–PT single-crystal fibers. J. Intell. Mater. Syst. Struct. 17, 15–28 (2006)

17. Smith, W.A., Auld, B.A.: Modeling of 1-3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 38, 40–47 (1991)

18. Huang, J.H., Kuo, W.-S.: Micromechanics determination of the effective properties of piezoelectric composites containing
spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)



3176 A. S. Pavan Kumar et al.

19. Bent, A.A., Hagood, N.W.: Piezoelectric fiber composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 8, 903–
919 (1997)

20. High, J.W., Wilkie, W.K.: Method of fabricating NASA-standard macro-fiber composite piezoelectric actuators. In: National
Aeronautics and Space Administration, Langley Research Center (2003)

21. Mallik, N., Ray, M.C.: Effective coefficients of piezoelectric fiber reinforced composites. AIAA J. 41, 704–710 (2003)
22. Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater.

Des. 3, 361–371 (2006)
23. Shu, D., Della, C.N.: The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta

Mater. 56, 754–761 (2008)
24. Chakaraborty, D., Kumar, A.: Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced

composites. Mater. Des. 30, 1216–1222 (2009)
25. Arockiarajan, A., Sakthivel, M.: Thermo-electro-mechanical response of 1–3–2 piezoelectric composites: effect of fiber

orientations. Acta Mech. 223, 1353–1369 (2012)
26. Kalamkarov, A.L., Savi,M.A.:Micromechanicalmodeling and effective properties of the smart grid reinforced composites. J.

Braz. Soc. Mech. Sci. Eng. XXXIV, 343–351 (2012)
27. William, K.W., Robert, G.B., James, W.H., Robert, L.F., Richard, F.H., Anthony, J. Jr., Bruce, D.L., Paul, H.M.: Low-cost

piezocomposite actuator for structural control applications. In: Proceedings of SPIE 3991, Smart Structures and Materials
2000: Industrial and Commercial Applications of Smart Structures Technologies 323 (2000)

28. Park, S., Inman, D.J., Yun, C.B.: An outliner analysis of MFC-based impedance sensing data for wireless structural health
monitoring of railroad tracks. Eng. Struct. 30, 2792–2799 (2008)

29. Choi, S.C., Park, J.S., Kim, J.H.: Active damping of rotating composite thin-walled beams using MFC actuators and PVDF
sensors. Compos. Struct. 76, 362–374 (2006)

30. Kovalovs, A., Barkanov, E., Gluhihs, S.: Active control of structures using macro-fiber composite (MFC). J. Phys. Conf.
Ser. 93, 012034 (2007)

31. Bilgen, O., Kochersberger, K.B., Inman, D.J., Ohanian, O.J.: Macro-fiber composite actuated simply supported thin air-
foils. Smart Mater. Struct. 19, 055010 (2010)

32. Bent, A.A.: Active fiber composite material systems for structural control applications. In: Proceedings of SPIE 3674, Smart
Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies 166, (1999)

33. Sodano, H.A., Park, G., Inman, D.J.: An investigation into the performance of macro-fiber composites for sensing and
structural vibration applications. Mech. Syst. Signal Process. 18, 683–697 (2004)

34. Sohn, J.W., Kim, H.S., Choi, S.B., Kim, K.S.: Experimental investigation of smart hull structures based on macro fiber
composite actuators. Key Eng. Mater. 326, 1419–1422 (2006)

35. Azzouz, M.S., Bevan, J.S., Ro, J.-J., Mei, C.: Finite element modeling of MFC/AFC actuators. In: Proceedings of SPIE 326:
Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures (2001)

36. Ray, M.C., Reddy, J.N.: Performance of piezoelectric fiber-reinforced composites for active structural acoustic control of
laminated composite plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1477–1490 (2004)

37. Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990)
38. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J.

Solids Struct. 30, 161–175 (1993)
39. Furukawa, T.: Piezoelectricity and pyroelectricity in polymers. IEEE Trans. Electr. Insul. 24, 375–395 (1989)
40. Cady, W.G.: Piezolectricity. McGraw-Hill, New York (1946)
41. Hasin, Z.: Viscoelastic behavior of heterogeneous media. J. Appl. Mech. 32, 630 (1965)
42. Hasin, Z.: Complex moduli of viscoelastic composites-I, general theory and application to particulate composites. Int. J.

Solids Struct. 6, 539–552 (1970)
43. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of Composite Materials. Academic Press, New York (2013)
44. Odegard, G.M.: Constitutive modeling of piezoelectric polymer pomposities. Acta Mater. 52, 5315–5330 (2004)
45. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)
46. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis. Wiley, New

York (2001)
47. Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, New York (2007)
48. Chakraverty, S., Bhat, R.B., Stiharu, I.: Free vibration of annular elliptic plates using boundary characteristic orthogonal

polynomials as shape functions in the Rayleigh–Ritz method. J. Sound. Vib. 241, 524–539 (2001)
49. Dong, S., Uchino, K., Li, L., Viehland, D.: Analytical solutions for the transverse deflection of a piezoelectric circular

axisymmetric unimorph actuator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1240–1248 (2007)


	Smart damping of vibration of annular plates by the design of a cylindrically orthotropic piezoelectric fiber-reinforced composite actuator
	Abstract
	1 Introduction
	2 Present cylindrically orthotropic SPFRC
	3 Effective electro-elastic constants of the piezoelectric composite
	4 FE model of RVE
	5 Arrangement of electrodes
	6 FE model of a smart annular plate
	6.1 Smart damping

	7 Results and discussion
	7.1 Effective electro-elastic properties of SPFRC and CPFRC
	7.2 Electric field for the present arrangement of surface electrodes
	7.3 Frequency responses of a smart annular plate

	8 Conclusions
	Appendix
	References




