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Abstract This paper presents a new strategy for the numerical evaluation of 2D nearly singular integrals that
arise in the solution of 3D BEM using eight-node second-order quadrilateral surface elements. The strategy
is an extension of the previous sinh transformation techniques, which is used to evaluate the 1D or 2D nearly
singular integrals on simple geometry elements, such as linear or planar elements. The novel feature of the
proposed method is that a new distance formula is introduced here, and based on this an ingenious combination
of the distance formula and the sinh transformation is developed, and hence, the rapid variation of the distance
formula on the integration interval can been smoothed out. Several numerical examples involving boundary
layer effect and thin-body problems in 3D potential theory are given to verify the accuracy and efficiency of
the presented method.

1 Introduction

Accurate evaluation of nearly singular two-dimensional (2D) boundary element integrals has long been a
challenging task to the researchers in three-dimensional (3D) boundary elementmethod (BEM). These integrals
are ‘nearly’ singular in the sense that the source point is close to, but not on, the element of integration.
Theoretically, these integrals are regular since the values of their integrands are always finite. However, instead
of remaining flat, the integrands may vary drastically on the integration interval as the evaluation point moves
closer to the integration element, exhibiting similar characteristics of the singularity. The conventionalGaussian
quadrature becomes inefficient or even inaccurate to evaluate these integrals. Special integration techniques
are urgently required to deal with them. In this study, we focus on the numerical computation of 2D nearly
singular integrals that arise in the solution of 3D BEM using eight-node second-order quadrilateral surface
elements.

Tremendous effort has been devoted to derive convenient integral forms or sophisticated computational
techniques for evaluating nearly singular integrals, among which the variable transformations technique, based
on various nonlinear functions, seems to be a more promising approach. The methods developed so far include,
but are not limited to, polynomial transformation [1,2], degenerate mapping method [3], coordinate optimal
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transformation [4], sigmoidal transformation [5,6], sinh transformation [6–12], rational transformation [13],
distance transformation [14–17], exponential transformation [18–23] and combinations of the polar coordinates
approach and variable transformations [6]. In this work, we focus on the sinh transformation, based on the sinh
function, proposed by Johnston and his collaborators [7]. The main feature of this method is to automatically
take into account the position of the nearly singular point and the distance from the source point to the element.
In addition, the sinh transformation techniques are applicable to a broad range of integrals without extra
computational effort.

High-order geometry elements, such as the most commonly used eight-node second-order quadrilateral
surface elements, are of great significance to the modeling of the complex geometrical domains, especially
for thin-body structures, if sufficient accuracy is required. This is because high-order geometry elements can
approximate more sufficiently boundary geometry of the domains via high-order interpolation polynomials,
usually of second degree. However, it should be pointed out that the efficient estimation of nearly singular
integrals over high-order geometry elements is a very difficult problem. When the geometry of the boundary
element is approximated by using high-order curved surface elements, usually of the second order, the Jacobian
J (ξ1, ξ1) is not a constant but an irrational function,where ξ1, ξ2 are the dimensionless coordinates. Thedistance
r between the field point and the source point is an irrational function of the type

√
p(ξ1, ξ2), where p(ξ1, ξ2)

is the high-order polynomial. Consequently, the nearly singular integrals become more complicated and, in
general, are much more difficult to solve both analytically and numerically. To date, very few studies on the
calculation of nearly singular integrals over a curved surface have been reported in the BEM community [23].
Johnston and Elliott [8–10] have proposed an efficient strategy to numerically compute the nearly singular
integrals over the 9-point Lagrangian curved surface element in 3D BEM using the sinh transformation, and
Miao and his co-workers [12] also have done further researches on this topic. However, it is worth noting that,
in their studies, only simple test integrals have been examined. In fact, to the authors’ best knowledge, these
methods have not, as yet, been applied to solve any practical BEM problem arising in engineering applications,
although they seem to have such potential [23].

Inspired by the pioneering work mentioned above, we here extend the sinh transformation to evaluate
2D nearly singular integrals over eight-node second-order quadrilateral surface elements arising in 3D BEM.
The main novel features of the proposed method lie in: (i) introducing the ‘accurate’ distance formula used
in the exponential transformation method [23] into the sinh transformation. Such distance formula is able to
accurately approximate the actual distance, r , from the evaluation point to a generic point of the element,
which usually comes from the first-order Taylor expansion approximation of a curved surface element in other
approaches. So promising results for numerical evaluation of 2D nearly singular integrals can be expected, (ii)
an ingenious combination of the aforementioned distance formula and the sinh transformation being developed.
The sinh transformation can smooth out the rapid variation of the developed distance formula on the integration
interval.

The outline of the rest of this paper is as follows. The general form of nearly singular integrals is described
in Sect. 2. Then, in Sect. 3, the distance function, based on the eight-node second-order quadrilateral surface
elements, is constructed. Section 4 considers the regularization of nearly singular integrals over high-order
geometrical elements using the sinh transformation. In Sect. 5, the accuracy and stability of the proposed
scheme are tested on three 3D potential examples with known benchmark solutions. Finally, the conclusions
are provided in Sect. 6.

2 General descriptions

In this paper, we always assume thatΩ is a bounded domain in R3, Ωc is its open complement, and Γ denotes
the common boundary. n(x) is the unit outward normal vector on Γ to the domainΩ at the point x. By omitting
the body sources in potential problems, the regularized BIEs with indirect unknowns on �̂ can be expressed
as

u(y) =
∫

Γ

φ(x)u∗(x, y)dΓ x, y ∈ �̂,

∂u(y)
∂n̂(y)

= Ŝφ(y) +
∫

Γ

[φ(x) − φ(y)]∂u
∗(x, y)

∂n̂(y)
dΓ + φ(y)

∫
Γ

[
∂u∗(x, y)

∂n̂(y)
+ ∂u∗(x, y)

∂n̂(x)

]
dΓ , y ∈ �.

(1)
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For the internal point y the integral equations can be written as

u(y) =
∫

Γ

φ(x)u∗(x, y)dΓ x, y ∈ �̂,

∇ yu(y) =
∫

Γ

φ(x)∇ yu
∗(x, y)dΓ x, y ∈ �̂.

(2)

In Eqs. (1–2), φ(x)is the density function to be determined; u∗(x, y) denotes the Kelvin fundamental
solution. For interior problems, �̂ = �, Ŝ = 1, n̂(x) is the unit outward normal vector on Γ to domain � at
point x . For exterior problems, �̂ = �c, Ŝ = 0, n̂(x) is the unit outward normal vector on Γ to domain �c at
point x .

For the discretized form of Eq. (2), when the field point y is far enough from the integration elements,
a straightforward application of Gaussian quadrature procedure suffices to evaluate such integrals. However,
when the field point y is very close to the integration elements Γe, the distance r between the field point y
and the source point x is almost zero. Hence, the integrals in the discretized Eq. (2) are nearly singular and
the numerical integrations by the standard Gaussian quadrature fail. These nearly singular integrals can be
expressed as

I =
∫

�e

f (x, y)

rα
dΓ (3)

where r = ‖x − y‖2 , α > 0 is a real constant, and f (x, y) denotes a well-behaved function.

3 Nearly singular integrals on paraboloidal surface elements

In this paper, the geometry segment is modeled by a continuous paraboloidal element, which has eight knots;
namely, the boundary geometry is approximated by the piecewise continuous eight-node second-order quadri-
lateral surface elements, while the distribution of the boundary quantities over each of these segments is
approximated using discontinuous elements, eight nodes of which are located away from the edges of the
element.

Assume x j = (x j
1 , x j

2 , x j
3 ), j = 1, . . . , 8 are the eight knots of the segment Γ j , then Cartesian coordinates

of the points on the element Γ j can be interpolated as

xk(ξ1, ξ2) =
8∑
j=1

N j (ξ1, ξ2)x
j
k , k = 1, 2, 3 (4)

where

N1(ξ1, ξ2) = 1

4
(1 − ξ1)(1 − ξ2)(−ξ1 − ξ2 − 1), N2(ξ1, ξ2) = 1

4
(1 + ξ1)(1 − ξ2)(ξ1 − ξ2 − 1),

N3(ξ1, ξ2) = 1

4
(1 + ξ1)(1 + ξ2)(ξ1 + ξ2 − 1), N4(ξ1, ξ2) = 1

4
(1 − ξ1)(1 + ξ2)(−ξ1 + ξ2 − 1),

N5(ξ1, ξ2) = 1

2
(1 − ξ21 )(1 − ξ2), N6(ξ1, ξ2) = 1

2
(1 + ξ1)(1 − ξ22 ),

N7(ξ1, ξ2) = 1

2
(1 + ξ2)(1 − ξ21 ), N8(ξ1, ξ2) = 1

2
(1 − ξ1)(1 − ξ22 ), −1 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1.

(5)

3.1 Determination of the projection point

The minimum distance d from the field point y to the integration element �e is defined as the length |y − xp|,
where xp is the projection point of y onto the integration element �e. Letting (η1, η2) be the local coordinates
of the projection point xp, i.e., xp = (x1(η1, η2), x2(η1, η2), x3(η1, η2)), then η1, η2 are the real roots of the
following equation: {

[xi (η1, η2) − yi ] ∂xi
∂ξ1

= 0

[xi (η1, η2) − yi ] ∂xi
∂ξ2

= 0
, i = 1, 2, 3 (6)
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in which the summation convention is used, and ∂xi
∂ξk

= ∂xi
∂ξk

∣∣∣ ξ1 = η1
ξ2 = η2

, k = 1, 2. These assumptions will be

applied also in what follows unless specified otherwise.
If the source point y is sufficiently close to the boundary �, then xp is inside the integration element, and

Eq. (6) has a pair of the unique real roots (η1, η2) ∈ [−1, 1]× [−1, 1]. The real roots η1, η2 can be evaluated
numerically by using the Newton’s method. Setting

f1(η1, η2) = [xi (η1, η2) − yi ]∂xi
∂ξ1

, f2(η1, η2) = [xi (η1, η2) − yi ]∂xi
∂ξ2

,

the formula of the Newton’s method can be expressed as

F ′(η(k))�η(k) = −F(η(k)) (7)

where

�η(k) = η(k+1) − η(k), η(k) =
(
η

(k)
1 , η

(k)
2

)T
, η(k+1) =

(
η

(k+1)
1 , η

(k+1)
2

)T
,

F(η(k)) =
[
f1(η

(k)
1 , η

(k)
2 )

f2(η
(k)
1 , η

(k)
2 )

]
, F ′(η(k)) =

[
∂ f1
∂η1

∂ f1
∂η2

∂ f2
∂η1

∂ f2
∂η2

]

η=η(k)

;

here

∂ f j
∂ηm

=
3∑
i

(
∂xi
∂ξm

∂xi
∂ξ j

+ [xi (η1, η2) − yi ] ∂2xi
∂ξ j∂ξm

)
, j,m = 1, 2.

3.2 Form of distance function r2

xk(ξ1, ξ2) can be expressed as

xk(ξ1, ξ2) = xk(η1, η2) + (ξ1 − η1)
∂xk
∂ξ1

+ (ξ2 − η2)
∂xk
∂ξ2

+1

2

[
(ξ1 − η1)

2 ∂2xk
∂ξ21

+ 2(ξ1 − η1)(ξ2 − η2)
∂2xk

∂ξ1∂ξ2
+ (ξ2 − η2)

2 ∂2xk
∂ξ22

]
. (8)

Using Eq. (8), the distance square r2 between the source point y and the field point x(ξ1, ξ2) can be written
as

r2(ξ1, ξ2) = [xk(ξ1, ξ2) − yk] [xk(ξ1, ξ2) − yk]

= d2 + (ξα − ηα)g̃α + (ξα − ηα)(ξβ − ηβ)g̃αβ

+ (ξα − ηα)(ξβ − ηβ)(ξγ − ηγ )g̃αβγ

+ (ξα − ηα)(ξβ − ηβ)(ξγ − ηγ )(ξμ − ημ)g̃αβγμ (9)

where the summation rule is applied with respect to the Latin indices (taken from the range 1, 2, 3) and Greek
indices (taken from the range 1, 2),

d2 = (
yk − x p

k

) (
yk − x p

k

)
,

g̃α = 2
(
yk − x p

k

)
xk,α, xk,α = ∂xk

∂ξα

∣∣∣∣ ξ1 = η1
ξ2 = η2

,

g̃αβ = (
yk − x p

k

)
xk,αβ + xk,αxk,β = g̃βα,

g̃αβγ = xk,αβxk,γ = g̃βαγ , g̃αβγμ = 1

4
xk,αβxk,γμ = g̃βαγμ.
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Recall that g̃α ≡ 0, since (yk − x p
k ) is orthogonal to the element and xk,α is tangential to the element at the

projection point xp. Thus, Eq. (10) can be rewritten as

r2(ξ1, ξ2) = d2 + (ξα − ηα)(ξβ − ηβ)ĝαβ

= d2 + (ξ1 − η1)
2g11 + (ξ2 − η2)

2g22 + (ξ1 − η1)(ξ2 − η2)g12 (10)

where

ĝαβ = g̃αβ + (ξγ − ηγ )g̃αβγ + (ξγ − ηγ )(ξμ − ημ)g̃αβγμ,

g11 = ĝ11, g22 = ĝ22, g12 = ĝ12 + ĝ21 = 2ĝ12.

3.3 Nearly singular integrals on the second-order elements

By some simple deductions and based on the expression form (10) of the distance function r2, the nearly
singular integrals in Eq. (3) would be reduced to the following form:

I =
∫ B

0

∫ A

0

f (x, y)[
d2 + x2g11(x, y) + y2g22(x, y) + xyg12(x, y)

]α dxdy (11)

where A, B are two constants which are possibly different values in different integrals; f (·) is a regular
function that consists of shape functions, Jacobian and terms which arise from taking the derivative of the
integral kernels.

4 Variable transformation

In this section, the proposed sinh transformation is extended to dealingwith the two-dimensional nearly singular
integrals over paraboloidal surface elements in the three-dimensional boundary element method. The proposed
transformation can be expressed as follows:

x = dsinh(m1 + m2s), y = dsinh(n1 + n2t), −1 ≤ s ≤ 1, −1 ≤ t ≤ 1 (12)

where m1 = m2 = arcsinh(A/d)/2, n1 = n2 = arcsinh(B/d)/2.
The Jacobian of transformation (12) is then given by

|J | = d2m2n2 cosh(m1 + m2s) cosh(n1 + n2t). (13)

Substituting (12) into Eq. (11), we obtain the following equation:

I = 1

d2α−2

∫ 1

−1

∫ 1

−1

f (s, t)m2n2 cosh(m1 + m2s) cosh(n1 + n2t)

F(s, t)
dsdt (14)

where

F(s, t) = [1+ sinh2(m1 + m2s)g11(s, t) + sinh2(n1 + n2t)g22(s, t)

+ sinh(m1 + m2s)sinh(n1 + n2t)g12(s, t)]
α .

By following the procedures described above, the nearly singularity of the boundary integrals has been fully
regularized. The final integral formulations over curved boundary elements are obtained as shown in Eq. (14),
which can be computed straightforward by using standard Gaussian quadrature.
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Fig. 1 Discretization of the torus with 80 second-order surface elements

5 Numerical examples

In order to verify the effectiveness of the proposed technique, three numerical examples of 3D potential
problems are investigated below. The geometry boundary is depicted by eight-node second-order quadrilateral
surface elements, and the boundary functions are approximated by the same type of discontinuous interpolation
functions. The eighteen-point standard Gaussian integration is used for the calculation of the various element
integrals unless specified otherwise. For the nearly singular integrals the standard Gaussian quadrature is
employed after application of the proposed transformation. The results obtained by using the present method
as well as by the conventional algorithm (without any transformation) and the exact solutions are all presented
for convenience of comparison, in order to demonstrate the usefulness of the proposed method.

The numerical solution accuracy at a single computed point is assessed by means of the relative error
defined by

RE =
∣∣∣∣ Iexa − Inum

Iexa

∣∣∣∣
where Inum and Iexa denote the numerical and exact values at the evaluation points, respectively. Furthermore,
the average relative error (ARE) of the multiple computational results is defined by

ARE =
√∑M

k=1

(
I knum − I kexa

)2
/
∑M

k=1

∣∣I kexa
∣∣2

where M is the number of the interior evaluation points.
In what follows, d denotes the distance between the evaluation point and the integration boundary element.

Example 1 As shown in Fig. 1, this example concerns a problem in a torus centered at origin, with the exterior
radius and interior radius being R = 3 and r = 1, respectively. The parametric equation of the boundary
surface is

x1 = (R + r cos θ) cosϕ, x2 = (R + r cos θ) sin ϕ, x3 = r sin θ, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ 2π.

The prescribed potential distribution on the boundary is

u = x21 − x23 + x1x2 + x2x3 − 2x1 + 1.

The boundary surface of the torus is discretized by 80 second-order quadrilateral surface elements. The
numerical solutions for the potentials u and the fluxes ∂u/∂x1 at internal points along the x1-axis are listed in
Tables 1 and 2, respectively. Hence, we can observe that when the evaluation points are not too close to the
boundary, both the methods with and without transformation of the integration variables are effective and can
give acceptable results. As the evaluation point approaches the boundary element of integration, i.e., when
the distance of the internal point from the integration element is equal to or less than 0.01, the results of the
conventional method become less satisfactory. On the other hand, the results of the proposed method are still
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Table 1 Potentials u at internal points increasingly close to the boundary

Interior points Exact No transform Present

Numerical Relative error

(2. 0001,0,0) 1.007666 1.128092 1.003588 4.046417E–03
(2. 001,0,0) 1.009474 1.128620 1.005400 4.035724E–03
(2. 01,0,0) 1.027640 1.136976 1.023604 3.926795E–03
(2. 1,0,0) 1.218210 1.209839 1.214820 2.782792E–03
(2.2,0,0) 1.440000 1.430107 1.437461 1.763063E–03
(2.6,0,0) 2.560000 2.560376 2.559541 1.794608E–03
(3.0,0,0) 4.000000 4.000731 4.000438 1.094613E–03
(3.4,0,0) 5.760000 5.726179 5.755770 7.344121E–03
(3.8,0,0) 7.840000 7.801368 7.833435 8.373920E–03
(3.9,0,0) 8.410000 8.558704 8.404022 7.108219E–03
(3.99,0,0) 8.940100 12.121401 8.935828 4.778300E–03
(3.999,0,0) 8.976016 12.157652 8.971904 4.581146E–03

Table 2 Fluxes ∂u/∂x1 at internal points increasingly close to the boundary

Interior points Exact No transform Present

Numerical Relative error

(2.0001,0,0) 2.007651 0.553920 2.011478 1.906012E–03
(2.001,0,0) 2.009451 0.618515 2.013358 1.944084E–03
(2.01,0,0) 2.027451 1.218043 2.032116 2.300681E–03
(2.1,0,0) 2.207451 2.203175 2.208647 3.930504E–03
(2.2,0,0) 2.400000 2.401970 2.408492 3.538399E–03
(2.6,0,0) 3.200000 3.200439 3.202832 8.850165E–03
(3.0,0,0) 4.000000 4.001484 4.000438 1.094613E–03
(3.4,0,0) 4.800000 4.803833 4.793360 1.383321E–03
(3.8,0,0) 5.600000 5.612679 5.600656 1.170607E–03
(3.9,0,0) 5.800000 5.695471 5.812065 2.080162E–03
(3.99,0,0) 5.980000 0.835980 6.006151 4.373007E–03
(3.999,0,0) 5.992000 0.954581 5.992000 4.525456E–03

steady and satisfactory even when the interior points are very close to the boundary. This can be seen from the
relative errors with respect to the exact solutions which are also shown in Tables 1 and 2 and demonstrate the
efficiency and the usefulness of the developed algorithm.

Furthermore, on the inner surface

S1:x1 = (3 + 0.99 cos θ) cosϕ, x2 = (3 + 0.99 cos θ) sin ϕ, x3 = 0.99 sin θ,

0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ 2π,

320 interior points, uniformly spaced with respect to θ and φ, are taken into account. Figure 2a, b displays
the profiles of the analytical solutions for the potentials u and fluxes ∂u/∂x1 on the inner spherical surface S1,
respectively, and Fig. 3a, b shows the surfaces of the numerical solutions for the potentials u and its derivatives
∂u/∂x1 at these 320 interior points, respectively. Hence, we can see from the comparison of Figs. 2a, b and 3a,
b that the numerical results match the exact solution very well. Figure 4a, b shows the relative error surfaces
of the computational results for the potentials u and fluxes ∂u/∂x1 at these 320 interior points, where their
AREs are 7.6206 × 10−4 and 5.1547 × 10−3 at these 320 interior points, respectively. Hence, it can be seen
that the proposed method is accurate.

Example 2 As shown in Fig. 5, a mixed boundary-value problem in a cylindrical tube � centered at (0, 0, 0)
is considered in this example, such that

� =
{
(x1, x2, x3) ∈ R3 : 2 <

√
x21 + x22 < 4,−5 < x3 < 5

}
.

On the boundary Γ , the potential u is prescribed on the top face

{
2 ≤

√
x21 + x22 ≤ 4, x3 = 5

}
, and the flux

q = n · ∇u is given on the remaining surface components of Γ , where
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Fig. 2 Profiles of the analytical solutions for the potentials (a) and its derivatives (b)

Fig. 3 Profiles of the numerical solutions for the potentials (a) and its derivatives (b)

Fig. 4 Surfaces of REs for the potentials (a) and its derivatives (b) with eighty discretization boundary elements
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Fig. 5 A mixed boundary-value problem in a cylindrical tube

Table 3 Potentials u at internal points increasingly close to the outer boundary

Distance d Exact No transform Present

Numerical Relative error

0.1 0.5931900E+02 0.5927756E+02 0.5929656E+02 3.783496E−04
0.01 0.6352120E+02 0.6227269E+02 0.6349058E+02 4.820358E−04
0.001 0.6395201E+02 0.6225023E+02 0.6392043E+02 4.938404E−04
0.0001 0.6399520E+02 0.6224245E+02 0.6396352E+02 4.950364E−04
0.00001 0.6399952E+02 0.6224161E+02 0.6396783E+02 4.951579E−04
0.000001 0.6399995E+02 0.6224153E+02 0.6396826E+02 4.951775E−04
0.0000001 0.6400000E+02 0.6224152E+02 0.6396830E+02 4.951890E−04
0.00000001 0.6400000E+02 0.6224152E+02 0.6396831E+02 4.951747E−04
0.000000001 0.6400000E+02 0.6224152E+02 0.6396832E+02 4.950759E−04
0.0000000001 0.6400000E+02 0.6224152E+02 0.6396833E+02 4.948031E−04

Table 4 Potential derivatives ∂u/∂x1 at internal points increasingly close to the outer boundary

Distance d Exact No transform Present

Numerical Relative error

0.1 0.4563000E+02 0.4458462E+02 0.4555244E+02 1.699758E−03
0.01 0.4776030E+02 0.3018469E+01 0.4765494E+02 2. 206029E−03
0.001 0.4797600E+02 −0.8086343E+01 0.4786744E+02 2.262867E−03
0.0001 0.4799760E+02 −0.9213227E+01 0.4788871E+02 2.268619E−03
0.00001 0.4799976E+02 −0.9325899E+01 0.4789084E+02 2.269241E−03
0.000001 0.4799998E+02 −0.9337166E+01 0.4789104E+02 2.269487E−03
0.0000001 0.4800000E+02 −0.9338293E+01 0.4789105E+02 2.269826E−03
0.00000001 0.4800000E+02 −0.9338405E+01 0.4789104E+02 2.270017E−03
0.000000001 0.4800000E+02 −0.9338417E+01 0.4789108E+02 2.269247E−03
0.0000000001 0.4800000E+02 −0.9338418E+01 0.4789123E+02 2.266044E−03

u = x31 + 2x32 + 3x33 − 3x1x
2
3 − 6x2x

2
1 − 9x3x

2
2 ,

∇u = (3x21 − 3x23 − 12x1x2,−6x21 + 6x22 − 18x2x3,−9x22 + 9x23 − 6x1x3).

To solve the problem numerically, the boundary Γ is totally divided by 98 quadrilateral surface elements,
where 50 elements are on the outer side face, 32 elements on the inner side face, 8 elements on the top face and
8 elements on the bottom face, respectively. The numerical solutions for the potentials u and its derivatives
∂u/∂x1 (in the x1 direction) at internal points are listed in Tables 3 and 4, respectively; hence, we can see that
when the evaluation points are not too close to the boundary, both the methods with and without transformation
of the integration variables are effective and can give acceptable results. As the evaluation point approaches
the boundary element of integration, i.e., when the distance of the internal point from the integration element is
equal to or less than 0.001, the results of the conventional method become less satisfactory. On the other hand,
the results of the proposed method are still steady and satisfactory even when the distance of the evaluation
point to the integration element reaches 1E−10. This can be seen from the relative errors with respect to the
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Fig. 6 Convergence curves of the potential and its derivative at interior point (3.999999, 0, 0)

Fig. 7 A mixed boundary-value problem in a hyperbolic paraboloid

exact solutions which are also shown in Tables 1 and 2 and demonstrate the efficiency and the usefulness of
the developed algorithm.

In addition, the convergence rates of the potential and its partial derivative, u and ∂u/∂x1, at the point
(3.999999, 0, 0) are shown in Fig. 6, from which we can observe that the convergence rates of the computed
potential u and its partial derivative ∂u/∂x1 are acceptable even when the distance between the computed point
and the boundary reaches 10−6.

Example 3 In this example, a mixed boundary-value problem with an oscillatory boundary condition is con-
sidered. The geometry of the problem is displayed in Fig. 7, and the parameter equation of the boundary can
be given as:

x(θ, t) = (
√
1 + t2 cos θ,

√
1 + t2 sin θ, t), θ ∈ [0, 2π] , t ∈ [−2, 2] .

On the boundary Γ , the potential u is prescribed on the top face and the bottom face, and the flux q = n · ∇u
is given on the remaining surface components of Γ , where

u=ex1 cos

(√
2

2
x2

)
cos

(√
2

2
x3

)
,

∇u=ex1

(
cos

(√
2

2
x2

)
cos

(√
2

2
x3

)
,−

√
2

2
sin

(√
2

2
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)
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(√
2

2
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)
,−
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2

2
cos
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2

2
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.
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Fig. 8 Numerical results of the potentials (a) and its derivatives (b) at interior points close to the boundary

Fig. 9 Convergence curves of the potentials (a) and its derivatives (b) at an interior point

Sixty-six second-order quadrilateral surface elements are employed to depict the geometry boundary, in which
50 elements are on the side surface, 8 elements on the top surface and 8 elements on the bottom surface,
respectively. Along the x1-axis, Fig. 8 displays the numerical results of the potential and its partial derivative at
inner points which are close to the boundary, respectively. From Fig. 8 we can observe that when the evaluation
points are not too close to the integration element, the conventional method and the proposed method are both
efficient, but the conventional method fails as the evaluation points are closer to the boundary. On the other
hand, the results obtained by the proposed method are stable and satisfactory even when the distance of the
evaluation point to the integration element is equal to 1.0E−9 or even smaller.

Besides, the convergence curves of the computed potentials u and its derivatives ∂u/∂x1 at a point, whose
distance to the boundary equals 1.0E−6, are shown in Fig. 9; hence, we can observe that the convergence
rates remain monotonic and rapid even when the distance from the field point to the boundary is as small as
1.0E−6.

Example 4 The computation of the nearly singular integral on a curved surface element is considered in
this example [16]. The chosen surface element, named as spherical surface element [24], is represented in
parametric form with the usual spherical polar system (θ, ϕ). And the element’s geometric parameters are
given as follows:θ ∈ [0, π/4], ϕ ∈ [π/4, π/2], the sphere radius r = 0.1, and with center (0, 0, 0). The
projection point of the evaluation point is located at the center of the element. As given in Ref. [16], the relative
distance between the evaluation point and the element is defined as r0/a1/2, where a stands for the element’s
area and r0 is the minimum distance from the evaluation point to the element.
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Table 5 Relative errors of various integrals with kernel u∗ on a spherical surface element

r0/a1/2 10−1 10−2 10−3 10−4 10−5 10−6

Reference solution 0.0077988 0.0079031 0.0079136 0.0079147 0.0079148 0.0079148
Ref. [24] : (ρ, θ) 6.42E−9 2.52E−7 1.99E−6 6.09E−6 7.44E−6 9.11E−6
Ref. [24] : (α, β) 7.16E−9 2.52E−7 1.99E−6 6.09E−6 7.44E−6 9.11E−6
Present method 7.12E−9 2.47E−7 1.79E−6 5.06E−6 4.82E−6 4.53E−6

Table 6 Relative errors of various integrals with kernel q∗ on a spherical surface element

r0/a1/2 10−1 10−2 10−3 10−4 10−5 10−6

Reference solution 0.2839962 0.2890126 0.2895177 0.2895683 0.2895733 0.2895783
Ref. [24] : (ρ, θ) 1.81E−7 4.48E−6 1.59E−6 7.89E−5 1.77E−4 1.50E−4
Ref. [24] : (α, β) 1.76E−7 4.48E−6 1.59E−6 7.89E−5 1.77E−4 1.50E−4
Present method 1.66E−7 4.12E−6 1.50E−6 7.69E−5 2.69E−4 2.14E−4

In Ref. [16], a new distance transformation is developed to remove the near singularity based on two local
systems (ρ, θ) and (α, β). Tables 5 and 6 list the relative errors for the numerical evaluation of integrals with
the kernels u∗ and q∗, respectively, with the relative distance d/a1/2 changing, using both the present method
and the distance transformation.We can observe from the Table 5 and 6 that for these very simple test problems
two methods can achieve very similar accuracies, and meanwhile, the relative errors for integrals with kernel
u∗ are both very small with the order less than 10−5, whereas for integrals with kernel q∗, the relative errors
reach 10−4.

However, it should be pointed out that the distance transformation method in Ref. [16] possesses two
major drawbacks: One is that when the four subtriangles, each of which is with projection point as one of
its vertices, have unsuitable shapes depending on the position of the projection point, an adaptive element
subdivision technique [24] is necessary to improve the computational accuracy. Such a procedure is sometime
very cumbersome. The other drawback is that the distance transformation is not very effective for the evaluation
of nearly hyper-singular integrals due to not fully eliminating their singularities. Compared with the distance
transformation method in Ref. [16], the present method always works no matter where the position point is
located. In addition, in the numerical implementation process of the present method, there is no need to define
the aforementioned relative distance which is used here only for comparison purpose.

6 Conclusions

This study presents an improved scheme in order to numerically calculate 2D nearly singular integrals arising in
3D BEM. The scheme is an extension of the sinh transformation, which is used to evaluate the 1D or 2D nearly
singular integrals on simple geometry elements, such as usual linear or planar elements, to 3D BEM using
the eight-node second-order quadrilateral surface element. Three numerical examples with exact benchmark
solutions are presented to test the proposed scheme, yielding very promising results. The results verify the
feasibility and the effectiveness of the proposed scheme.
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