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Abstract The medium is composed of an elliptic inclusion and many confocal elliptic layers. The crack is
embedded in the elliptic inclusion. The remote loading is applied at the remote place of the matrix. Complex
variable method and conformal mapping are used to study the mentioned problem. This paper provides a
numerical solution for thementioned crack problem. The continuity condition for the traction and displacement
along the interface is reduced to a relation of two sets of Laurent series coefficients for the complex potentials
defined in the interior or exterior to the interface. This formulation is called the matrix transfer method in
this paper. From the following three conditions, the traction-free condition along creak face, the continuity
condition for the traction and displacement along the interfaces and the remote loading condition, the problem
is finally solved. Servable numerical examples are provided. For the exterior finite matrix case, the relevant
solution is also provided.

1 Introduction

In an earlier year, Eshelby [1] studied the eigenstrain problem. Itwas proved that the elastic field in an ellipsoidal
inclusion is also uniform if the uniform eigenstrains are applied in an inclusion. Later Mura [2] studied the
inclusion problem in more detail. He suggested that inclusions can be categorized into (i) inhomogeneities,
(ii) homogeneous inclusions and (iii) inhomogeneous inclusions.

Studies in the field of inhomogeneities and inclusions are numerous [3–11]. We only cite a portion of them.
A problem with three-phase elliptic inclusion in antiplane shear was studied [4]. It was proved that the stresses
within a multiphase elliptic inclusion are uniform provided that all interfaces consist of confocal ellipses. The
existence of a uniform hydrostatic stress state inside an arbitrary-shape (non-elliptical) inclusion bonded by
an interphase layer to an infinite elastic matrix subjected to remote uniform in-plane stresses is studied [5].
The null-field integral equation for an infinite medium containing circular holes and/or inclusions was derived.
Using the suggested null-field integral equation, the multi-inclusion problem under antiplane shear was solved
numerically [6].

Based on a complex variable boundary integral equation (CVBIE) suggested previously, a numerical
solution for the elastic inclusion problem using CVBIE was provided [7]. For a finite plate containing two
dissimilar inclusions, the boundary value problem for a finite plate containing two dissimilar inclusions was
solved by using the CVBIE [8].

A reviewof recentworks on inclusionswas proposed [9]. The problems of a single inclusion, two inclusions,
and multiple inclusions, dislocations and cracks as well as various methods used to address these problems
are discussed. The review concludes with an outlook on future research directions.
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The problem of a confocally multicoated elliptical inclusion in an unbounded matrix subjected to an
antiplane shear was studied [10]. For the Eshelby’s elliptic inclusion in antiplane elasticity, a closed-form solu-
tion was provided [11]. In the formulation, the prescribed eigenstrains are not only for the uniform distribution,
but also for the linear form.

Some researchers studied the crack problem for the crack outside of the inclusion. The interaction problem
between a circular inclusion and a symmetrically branched crack embedded in an infinite elastic medium is
solved [12]. By using the new integral equation method, the solution for the problem of a two-dimensional
infinite isotropic medium with various inclusions and cracks was presented [13]. A curved crack problem
for an infinite plate containing an elastic inclusion is considered [14]. A fundamental solution is proposed,
which corresponds to the stress field caused by a point dislocation in an infinite plate containing an elastic
inclusion. The solution to a curved matrix crack interacting with a circular elastic inclusion is presented [15].
The problem is formulated using the Kolosov–Muskhelishvili complex stress potential technique [16].

A crack problem in a confocal elliptic inhomogeneity embedded in an infinite medium was studied [17].
Plane and antiplane solutions associated with remote loading conditions are obtained.

In the present study, the medium is composed of an elliptic inclusion and many confocal elliptic layers.
The crack is embedded in the elliptic inclusion. The remote loading is applied at the remote place of matrix.
Complex variable method and conformal mapping are used to study the mentioned problem [16]. This paper
provides a numerical solution for the mentioned crack problem.

All complex potentials in the mapping plane are expressed in the form of Laurent series. In a weaker
formulation, the traction-free condition along the crack is reduced to a relation between coefficients of Laurent
series for two complex potentials. In addition, the continuity condition for the traction and displacement along
the interface is reduced to a relation of two sets of Laurent series coefficients for the complex potentials,
which are the interior or exterior to the interface. This formulation is called the matrix transfer method in this
paper. Finally, from the loading condition at the remote place, all complex potentials defined on layers can
be evaluated. In addition, the stress intensity factor at the crack tip can be evaluated. The stress distributions
along the both sides of interfaces are also presented in the study. Several numerical examples are provided in
the paper.

Previously, we studied the problem for multiply confocal layers with dissimilar elastic properties [18]. In
that paper, the matrix transfer method was suggested. Therefore, the relation between two layers is the same
as used in the present paper. However, the perfect inclusion is assumed in [18], and a crack is embedded in the
inclusion in the present study. Therefore, the matrix transfer method itself cannot provide the final solution in
the present paper.

2 Analysis

2.1 Some basic equations in complex variable method in plane elasticity

The following analysis depends on the complex variable functionmethod in plane elasticity [16]. In themethod,
the stresses (σx , σy, σxy), the resultant forces (X, Y ) and the displacements (u, v) are expressed in terms of
two complex potentials φ∗(z) and ψ∗(z) such that

σx + σy = 4Reφ′∗(z),
σy − σx + 2iσxy = 2[z̄φ′′∗ (z) + ψ ′∗(z)], (1)

F = −Y + i X = φ∗(z) + zφ′∗(z) + ψ∗(z), (2)

2G(u + iv) = κφ∗(z) − zφ′∗(z) − ψ∗(z), (3)

where z = x + iy denotes a complex variable, G is the shear modulus of elasticity, κ = (3 − ν)/(1 + ν) is
for the plane stress problems, κ = 3 − 4ν is for the plane strain problems, and ν is Poisson’s ratio. In the
present study, the plane strain condition is assumed thoroughly. In the following, we occasionally rewrite the
displacements “u,” “v” as u1, u2, σx , σy, σxy as σ11, σ22, σ12 and “x ,” “y” as x1, x2, respectively.

In the analysis, we use the following conformal mapping [16] (Fig. 1):

z = ω(ς) = R

(
ς + m

ς

)
, with R = a + b

2
, m = a − b

a + b
, (4)

ω′(ς) = R

(
1 − m

ς2

)
, ω′′(ς) = 2Rm

ς3 . (5)
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Fig. 1 Mapping relations: (a) the finite elliptic inclusion with two half-axes “a” and “b,” with a crack (−c, c) with c = √
a2 − b2

(in the z-plane) and elastic constantsG1, κ1 mapped into the ring region
√
m < |ς | ≤ 1 [in the ς -planewithm = (a−b)/(a+b)],

(b) the elliptic layer bounded by two interfacesΣ1 andΣ2 (in the z-plane) with elastic constantsG2, κ2 mapped into a ring region
bounded by two circles Γ1 and Γ2, or ρ1 ≤ |ς | ≤ ρ2 with ρ1 = 1 (in the ς -plane), (c) the infinite matrix region exterior to the
interface Σ2 (in the z-plane) with elastic constants G3, κ3 mapped into the infinite region exterior to circle Γ2, or |ς | ≥ ρ2 (in
the ς -plane)

The mapping function maps the exterior region of a unite circle in the ς -plane to the elliptic contour with two
half-axes “a” and “ b” in the z-plane. In addition, this mapping function also maps the ring region defined by√
m < |ς | ≤ 1 in the ς -plane to the finite elliptic region with a cut interval (−c, c) (c = √

a2 − b2) in the
z-plane (Fig. 1).

The inversion of the mapping z = ω(ς) is defined by

ς = Ω(z) = z +
√
z2 − 4mR2

2R
. (6)

In the following analysis, we denote

φ(ς) = φ∗(z) |z=ω(ς) , ψ(ς) = ψ∗(z) |z=ω(ς) . (7)

Clearly, after using the mentioned conformal mapping, from Eqs. (1) to (3) we have

σx + σy = 4Re
φ′(ς)

ω′(ς)
,

σy − σx + 2iσxy = 2

(
ω(ς)(φ′′(ς)ω′(ς) − φ′(ς)ω′′(ς))

(ω′(ς))3
+ ψ ′(ς)

ω′(ς)

)
, (8)

F = −Y + i X = φ(ς) + ω(ς)
φ′(ς)

ω′(ς)
+ ψ(ς), (9)

2G(u + iv) = κφ(ς) − ω(ς)
φ′(ς)

ω′(ς)
− ψ(ς). (10)

From Eqs. (8) to (10) we see that, if one obtains the complex potentials φ(ς) and ψ(ς) in the mapping plane,
one can get the stress and displacement in the physical plane.
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2.2 Relation derived from traction-free condition along the crack face

In the study, the whole region is composed of three-phase composites: (i) the elliptic inclusion with a crack
with the elastic constants G1, κ1, (ii) the elliptic layer bound by two interfaces Σ1 and Σ2 with the elastic
constants G2, κ2, and (iii) the infinite matrix exterior to the interface Σ2 with the elastic constants G3, κ3. In
addition, the remote tensions σ∞

x and σ∞
y are applied at infinity (Fig. 1).

The elliptic inclusion with the elastic constants G1, κ1 has two half-axes “a” and “b” (Fig. 1). In addition, a
crack (−c, c) (c = √

a2 − b2) is embedded in the inclusion. The assumed complex potentials in the inclusion
region are denoted by φ(1)∗(z) and ψ(1)∗(z). After using conformal mapping shown by Eq. (4), we can define
the relevant complex potentials in the mapping plane as follows:

φ(1)(ς) = φ(1)∗(z) |z=ω(ς) , ψ(1)(ς) = ψ(1)∗(z) |z=ω(ς) , (
√
m < |ς | ≤ 1). (11)

In addition, since the elliptic plate with two half-axes “a” and “b” and the crack line (−c, c) (in the z-plane)
maps into the ring region

√
m < |ς | ≤ 1(in the ς -plane), two complex potentials can be expressed in the

following Laurent series form:

φ(1)(ς) =
N∑

k=−N

′a(1)
k ςk, ψ(1)(ς) =

N∑
k=−N

′
b(1)
k ςk (

√
m < |ς | ≤ 1). (12)

In Eq. (12), “N” denotes the terms truncated in the derivation and computation. Because of no influence for
the term of k = 0 in Eq. (12) for the continuity condition along the interface, in

∑N
k=−N

′ the prime means that
the term k = 0 has been excluded in the summation.

In fact, in the case of many confocal elliptic layers and symmetry loading with respect to two axes “ox” and
“oy,” the even terms in complex potentials φ(1)(ς) and ψ(1)(ς) do not exist. However, if the applied loading
on the exterior layer is only symmetric with respect to the axis “ox,” both the odd and even terms exist in the
mentioned complex potentials. For the complex potentials shown by Eq. (12), we design the form of those
complex potentials which can be used to a general loading condition.

From a general analysis in the fracture mechanics, the complex potentials φ(1)∗′(z), ψ(1)∗′(z) are singular
at the points z = c and z = −c. Alternatively speaking, φ(1)′(ς)/ω′(ς)(= φ(1)∗′(z)) and ψ(1)′(ς)/ω′(ς)(=
ψ(1)∗′(z)) are singular at the points ς = √

m and ς = −√
m.

From Eqs. (2) and (4), the traction-free condition along the crack face is as follows:

φ(1)(ς) + ω(ς)

ω′(ς)
φ′(1)(ς) + ψ(1)(ς) = 0,

(
ς ∈ Γo, with ς = √

meiθ
)

(13)

or

φ(1)(ς) + ω(ς)

ω′(ς)
φ′(1)(ς) = −ψ(1)(ς),

(
ς ∈ Γo, with ς = √

meiθ
)

. (14)

From Eq. (14), we see that two complex potentials φ(1)(ς) and ψ(1)(ς) are not independent. The equality
shown by Eq. (14) can be satisfied in a weaker form. To this end, we can apply the following operator:

1

2π i

∫
Γ0

[. . .]ς j−1dς ( j = −N , −(N − 1), . . . , −2, −1, 1, 2, . . . , N − 1, N ) (15)

to both sides of Eq. (14). After performing this operation, we have

[K1]2N×2N{A1p}2N = [K2]2N×2N{A1q}2N (16)

where the two vectors are defined by

{A1p}2N =
{
a(1)
−Na

(1)
−(N−1) · · · a(1)

−1a
(1)
1 · · · a(1)

N−1a
(1)
N

}T
, (17)

{A1q}2N =
{
b(1)
−Nb

(1)
−(N−1) · · · b(1)

−1b
(1)
1 · · · b(1)

N−1b
(1)
N

}T
. (18)
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For evaluating all elements in the matrices [K1]2N×2N and [K2]2N×2N, we can refer to some results in
“Appendix A.”

From Eq. (16), we have

{A1q}2N = [G]2N×2N{A1p}2N (19)

where

[G]2N×2N = [K−1
2 ]2N×2N[K1]2N×2N. (20)

From Eqs. (17), (18) and (19), we have

{A1}4N = [H]4N×2N{A1p}2N (21)

where

[H]4N×2N = [I]2N×2N
[G]2N×2N

, (22)

{A1}4N =
{
a(1)
−Na

(1)
−(N−1) · · · a(1)

−1a
(1)
1 · · · a(1)

N−1a
(1)
N b(1)

−Nb
(1)
−(N−1) · · · b(1)

−1b
(1)
1 · · · b(1)

N−1b
(1)
N

}T
. (23)

In Eq. (22), [I]2N×2N denotes the unit diagonal matrix.

2.3 Evaluation of the transfer matrix from the continuity condition along the interface

The elliptic layer with the elastic constants G2, κ2 is bound by the interfaces Σ1 and Σ2 (in the z-plane).
Clearly, the two elliptic interfaces Σ1 and Σ2 are confocal. After using the conformal mapping, the layer is
mapped on the ring region bound by two circles Γ1 and Γ2(in the ς -plane) (Fig. 1). In addition, two circles Γ1
and Γ2 have the relevant radius ρ1 = 1 and ρ2, respectively.

The assumed complex potentials in the layer are denoted by φ(2)∗(z) and ψ(2)∗(z). After using conformal
mapping shown by Eq. (4), we can define the relevant complex potentials in the mapping plane as follows:

φ(2)(ς) = φ(2)∗(z) |z=ω(ς) , ψ(2)(ς) = ψ(2)∗(z) |z=ω(ς) . (24)

Similarly, two complex potentials can be expressed in the Laurent series form

φ(2)(ς) =
N∑

k=−N

′a(2)
k ςk, ψ(2)(ς) =

N∑
k=−N

′ b(2)
k ςk (ρ1 ≤ |ς | ≤ ρ2). (25)

A similar notation
∑N

k=−N
′ used in Eq. (12) is used for Eq. (25).

The infinite matrix with the elastic constants G3, κ3 is located outside the interface Σ2 (in z-plane). After
using the conformal mapping, the matrix is mapped on the region outside to the circle Γ2 with the radius ρ2
(in the ς -plane) (Fig. 1).

The assumed complex potentials in the matrix are denoted by φ(3)∗(z) andψ(3)∗(z). After using conformal
mapping shown by Eq. (4), we can define the relevant complex potentials in the mapping plane as follows:

φ(3)(ς) = φ(3)∗(z) |z=ω(ς) , ψ(3)(ς) = ψ(3)∗(z) |z=ω(ς) . (26)

Similarly, two complex potentials can be expressed in the Laurent series form

φ(3)(ς) =
N∑

k=−N

′ a(3)
k ςk, ψ(3)(ς) =

N∑
k=−N

′ b(3)
k ςk (|ς | ≥ ρ2) . (27)

A similar notation for
∑N

k=−N
′ used in Eq. (12) is used for Eq. (27). In the present study, all the coefficients, or

a(1)
k , b(1)

k , a(2)
k , b(2)

k a(3)
k , b(3)

k (k = −N , −(N − 1), . . .,−1, 1, 2, . . ., N ) in the assumed complex potentials
take a real value.
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In the case of the remote loading σ∞
x , σ∞

y , the complex potentials in the matrix portion can be expressed
as [16]

φ(3)∗(z) = h1z +
−1∑

k=−N

p(3)
k zk, ψ(3)∗(z) = h2z +

−1∑
k=−N

q(3)
k zk (28)

where p(3)
k and q(3)

k are some undetermined coefficients, and h1, h2 are defined by

h1 = σ∞
x + σ∞

y

4
, h2 = σ∞

y − σ∞
x

2
. (29)

Naturally, the continuity conditions for displacements and tractions [see below Eqs. (32) and (33)] can be
satisfied with a difference of a constant. Therefore, the term of the constant is not included in Eqs. (27) and
(28).

After using conformal mapping shown by Eq. (4), from Eqs. (28) and (29), we can define the relevant
complex potentials in the mapping plane as follows:

φ(3)(ς) = h1Rς +
−1∑

k=−N

a(3)
k ςk, ψ(3)(ς) = h2Rς +

−1∑
k=−N

b(3)
k ςk, (|ς | ≥ ρ2). (30)

Comparing Eq. (27) with (30), we see the following relations:

a(3)
1 = h1R, a(3)

k = 0 (for k ≥ 2) ,

b(3)
1 = h2R, b(3)

k = 0 (for k ≥ 2). (31)

Physically, Eq. (31) represents the condition for the applied remote loading σ∞
x and σ∞

y .
Without losing generality, we consider the continuity condition for traction and displacement along the

interface Σ1 (Fig. 1). Since the resultant force function and the displacement should be continuous along the
interface, from Eqs. (9) and (10) we have

φ(1)(ς) + ω(ς)

ω′(ς)
φ′(1)(ς) + ψ(1)(ς) = φ(2)(ς) + ω(ς)

ω′(ς)
φ′(2)(ς) + ψ(2)(ς), (ς ∈ Γ1) , (32)

1

2G1

{
κ1φ

(1)(ς)− ω(ς)

ω′(ς)
φ′(1)(ς) − ψ(1)(ς)

}
= 1

2G2

{
κ2φ

(2)(ς)− ω(ς)

ω′(ς)
φ′(2)(ς) − ψ(2)(ς)

}
, (ς ∈Γ1) .

(33)

It is seen that the continuation conditions shown by Eqs. (32) and (33) are expressed in the continuous
form, which is formulated along the interface ς ∈ Γ1 with ς = ρ1eiθ (Fig. 1). Now we want to convert two
conditions into a discrete form. To this end, we can apply the following operator:

1

2π i

∫
Γ1

{. . .}ς j−1dς, ( j = −N ,− (N − 1) , . . . , −2,−1, 1, 2, . . . , N − 1, N ) (34)

to both side of Eqs. (32) and (33). After making the mentioned operation, from Eqs. (32) and (33) we will
obtain the following transfer matrix relation:

{A2}4N = [S21]4N×4N{A1}4N (35)

where the two vectors are defined by

{A1}4N = {a(1)
−N a(1)

−(N−1) · · · a(1)
−1 a

(1)
1 · · · a(1)

N−1 a
(1)
N b(1)

−N b(1)
−(N−1) · · · b(1)

−1 b
(1)
1 · · · b(1)

N−1 b
(1)
N }T, (36)

{A2}4N = {a(2)
−N a(2)

−(N−1) · · · a(2)
−1 a

(2)
1 · · · a(2)

N−1 a
(2)
N b(2)

−N b(2)
−(N−1) · · · b(2)

−1 b
(2)
1 · · · b(2)

N−1 .b(2)
N }T. (37)

The matrix [S21]4N×4N is called the transfer matrix, which provides a relation between the two vectors {A1}4N
and {A2}4N .

For evaluating all elements in the matrices [S21]4N×4N, we can refer to some results in “Appendix A.”
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Similarly, after using the continuity conditions for traction and displacement along the interfaceΓ2 (Fig. 1),
we have

{A3}4N = [S32]4N×4N{A2}4N (38)

where

{A3}4N =
{
a(3)
−N a(3)

−(N−1) · · · a(3)
−1 a

(3)
1 · · · a(3)

N−1 a
(3)
N b(3)

−N b(3)
−(N−1) · · · b(3)

−1 a
(3)
1 · · · b(3)

N−1 b
(3)
N

}T
. (39)

After linking Eqs. (35) and (38) together, we will find

{A3}4N = [S31]4N×4N {A1}4N (40)

where

[S31]4N×4N = [S32]4N×4N [S21]4N×4N. (41)

Theobtainedmatrices [S21]4N×4N, [S32]4N×4N and [S31]4N×4N (=[S32]4N×4N [S21]4N×4N) are called the trans-
fer matrix hereafter. The idea for the formulation of transfer matrix in the antiplane shear problem was also
suggested earlier [10]. For the problem of multiple elliptic layers in plane elasticity, the transfer matrix method
was suggested in [18,19].

As stated previously, there is a relation between the two vectors {A1}4N and {A1p}2N shown by {A1}4N =
[H]4N×2N {A1p}2N in Eq. (21). By using this relation and Eqs. (35) and (40), we have

{A2}4N = [T21]4N×2N {A1p}2N , (42)

{A3}4N = [T31]4N×2N {A1p}2N (43)

where

[T21]4N×2N = [S21]4N×4N [H]4N×2N, (44)

[T31]4N×2N = [S31]4N×4N [H]4N×2N. (45)

From the above derivation, we see that if the vector {A1p}2N is evaluated from a numerical solution, the
solution for the three vectors {A1}4N , {A2}4N and {A3}4N by using Eqs. (21), (42) and (43), respectively, is
obtained.

2.4 Reduction in the transfer matrix from the properties of the complex potentials in the matrix and solution
of the problem

For solving the problem, we should use the particular property for the vector {A3}4N shown by Eq. (39). The
mentioned property is as follows: a(3)

1 = h1R, a
(3)
k = 0 (for k ≥ 2), b(3)

1 = h2R, b(3)
k = 0 (for k ≥ 2).

In Eq. (43), we can preserve some lines for positive power in the Laurent series expansion in the matrix
[T31]4N×2N and delete those lines for negative power, and obtain

{A3p}2N = [R31]2N×2N {A1p}2N (46)

where

{A3p}2N =
{
a(3)
1 · · · a(3)

N−1 a
(3)
N b(3)

1 · · · b(3)
N−1b

(3)
N

}T
. (47)

Note that thematrix [R31]2N×2N is obtained from thematrix [T31]4N×2N by using the above-mentioned property
shown by Eq. (31).

We prefer to write Eq. (46) in the form

[R31]2N×2N {A1p}2N = {A3p}2N . (48)

Clearly, Eq. (48) represents an algebraic equation for the unknown {A1p}2N ({A1p}2N = {a(1)
−N a(1)

−(N−1) · · ·
a(1)
−1 a

(1)
1 · · · a(1)

N−1 a
(1)
N }T). In addition, {A3p}2N ({A3p}2N = {a(3)

1 · · · a(3)
N−1 a

(3)
N b(3)

1 · · · b(3)
N−1 b

(3)
N }T) repre-

sents the right-hand term. Substituting a(3)
1 = h1R, a

(3)
k = 0 b(3)

1 = h2R, b
(3)
k = 0 (for k ≥ 2) [from
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Fig. 2 An elliptic inclusion with a crack (−c, c) c = √
a2 − b2 with elastic constants G1, κ1 embedded in the infinite matrix

with elastic constants G2, κ2

the condition (31)] in the vector {A3p}2N shown by Eq. (47) and solving the algebraic equation shown by Eq.
(48), we can get a solution for {A1p}2N .

As stated previously, after the vector {A1p}2N is evaluated from the numerical solution for Eq. (48),
we can obtain the solution for the three vectors {A1}4N , {A2}4N and {A3}4N by using Eqs. (21), (42)
and (43), respectively. Alternatively speaking, we obtain a numerical solution for the complex potentials
φ(1)(ς), ψ(1)(ς)φ(2)(ς), ψ(2)(ς), φ(3)(ς), ψ(3)(ς), respectively.

Finally, we can evaluate the stress intensity factor (SIF) at the crack tip by [19]

K1 = 2
√
2π(z − c) φ(1)∗′(z) |z→c = 2

√
2π(ω(ς) − c) φ(1)′(ς)/ω′ (ς) |ς→√

m (49)

or

K1 =
√

πc

R

(
N∑

k=−N

′ kek−1a(1)
k

)
with c =

√
a2 − b2, e = √

m = √
(a − b)/(a + b). (50)

3 Numerical examples for the infinite matrix case

Example 1 In the first example, the case for two phases is considered (Fig. 2). The elastic constants for the
inclusion and the matrix are denoted by G1, κ1 and G2, κ2, respectively. κ1 = κ2 = 1.8 is assumed in
the example. The inclusion has a shape of an ellipse with two half-axes “a” and “b.” In addition, a crack
(−c, c)(c = √

a2 − b2) is embedded in the inclusion. The remote loading σ∞
y is applied at infinity. In

computation, we truncate N = 55 terms in the Laurent series expansion for the complex potentials. Clearly,
the general technique used for the case of three phases can easily be used for the present example.

Under the conditions (i) b/a = 0.25, 0.5, 0.75 and 0.9, (ii) G2/G1 = 10, 2, 1, 0.5 and 0.1, and (iii) the
remote loading σ∞

y , the stress intensity factors can be expressed as

K1 = f1(b/a,G2/G1)σ
∞
y

√
πc,

(
with c =

√
a2 − b2

)
. (51)

The computed results for f1(b/a,G2/G1) are listed in Table 1.
It is seen from the plotted results that, in the case of G2/G1 = 10 or for a very weaker inclusion, the

non-dimensional SIFs generally take the value less than unity. For example, we have f1 |b/a=0.5G2/G1=10 =
0.1548 and f1 |b/a=0.5G2/G1=2 = 0.6130. Since a weaker inclusion has a lower traction response under some
deformation, this result is easy to see.
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Table 1 Non-dimensional stress intensity factors f1(b/a,G2/G1)(= K1/σ
∞
y

√
πc) [see Fig. 2 and Eq. (51)]

G2/G1 10 2 1 0.5 0.1
b/a=
0.25 0.1467 0.5992 1.0000 1.5682 3.9101
0.50 0.1548 0.6130 1.0000 1.5245 3.2993
0.75 0.1758 0.6497 1.0000 1.4052 2.2645
0.9 0.2099 0.7002 1.0000 1.2878 1.7240

Fig. 3 Non-dimensional stresses fN ,in(θ), fNT,in(θ), fT,in(θ) (in the interior side of the interface), fN ,ex(θ), fNT,ex(θ), fT,ex(θ)
(in the exterior side of the interface) in the case of (i) b/a = 0.5, (ii) remote loading σ∞

y and (iii) G2/G1 = 2 [see Fig. 2 and
Eqs. (52), (53)]

On the contrary, in the case of G2/G1 = 0.5 or G2/G1 = 0.1, or for a very rigid inclusion, the non-
dimensional SIFs generally take a value large than unity. For example, we have f1 |b/a=0.5G2/G1=0.5 = 1.5245
and f1 |b/a=0.5G2/G1=0.1 = 3.2993.

As stated previously, all the distributions of stresses can be found from the solution based on the suggested
technique. In the case of b/a = 0.5 and the remote loading σ∞

y , the computed results for σN , σNT and σT in
the interior side of the interface, or from the inclusion side, are denoted by (Fig. 2)

σN = fN ,in(θ)σ∞
y , σNT = fNT,in(θ)σ∞

y , σT = fT,in(θ)σ∞
y (at point x = a cos θ, y = b sin θ). (52)

Similarly, the computed results for σN , σNT and σT in the exterior side of the interface, or from the matrix
side, are denoted by (Fig. 2)

σN = fN ,ex(θ)σ∞
y , σNT = fNT,ex(θ)σ∞

y , σT = fT,ex(θ)σ∞
y .

(at point x = a cos θ, y = b sin θ) (53)

For the case of (i) b/a = 0.5, (ii) remote loading σ∞
y and (iii) G2/G1 = 2, the computed results for

non-dimensional stresses fN ,in(θ), fNT,in(θ), fT,in(θ), fN ,ex(θ), fNT,ex(θ), fT,ex(θ) are plotted in Fig. 3.
Theoretically, there should be fN ,in(θ) = fN ,ex(θ) and fNT,in(θ) = fNT,ex(θ). From Fig. 3, we see that those
curves are merged together. This will prove that an accurate result is achieved in the present technique. On the
other hand, a significant difference can be found between the fT,in(θ) and fT,ex(θ). For example, from Fig. 3
we find fT,in(θ) |θ=180◦ = 1.368, fT,ex(θ) |θ=180◦ = 2.965 and fT,in(θ) |θ=180◦ < fT,ex(θ) |θ=180◦ .

Similarly, for the case of (i) b/a = 0.5, (ii) remote loading σ∞
y and (iii)G2/G1 = 0.5, the computed results

for non-dimensional stresses fN ,in(θ), fNT,in(θ), fT,in(θ), fN ,ex(θ), fNT,ex(θ), fT,ex(θ) are plotted inFig. 4.
The same results in computation, or fN ,in(θ) = fN ,ex(θ) and fNT,in(θ) = fNT,ex(θ), can be found fromFig. 4.
Contrary to the previous case, in this case we find fT,in(θ) |θ=180◦ = 1.690, fT,ex(θ) |θ=180◦ = 1.094 and
fT,in(θ) |θ=180◦ > fT,ex(θ) |θ=180◦ .
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Fig. 4 Non-dimensional stresses fN ,in(θ), fNT,in(θ), fT,in(θ) (in the interior side of the interface), fN ,ex(θ), fNT,ex(θ), fT,ex(θ)
(in the exterior side of the interface) in the case of (i) b/a = 0.5, (ii) remote loading σ∞

y and (iii) G2/G1 = 0.5 [see Fig. 2 and
Eqs. (52), (53)]

Fig. 5 Non-dimensional stress intensity factors g1(ρ−2
o ,G1/G2) [see Fig. 2 and Eq. (55)]

Example 2 In the second example, the case for two phases is considered (Fig. 2). In the example, the interface
is the substitution of ς = √

mρo exp(iθ)(ρo > 1) in the mapping function z = ω(ς) = R(ς + m/ς). In this
case, we have the following two half-axes for the interface:

aρo = c

2

(
ρo + 1

ρo

)
, bρo = c

2

(
ρo − 1

ρo

)
,

bρo

aρo
= ρ2

o − 1

ρ2
o + 1

with c =
√
a2 − b2. (54)

From Eq. (54) we see that if ρo → ∞, bρo/aρo → 1 or the interface becomes a large circle. The elastic
constants for the inclusion and the matrix are denoted by G1, κ1 and G2, κ2, respectively. κ1 = κ2 = 2.2 (to
coincide with the value used in [17]) is assumed in the example.

Under the conditions (i) ρ−2
o = 0.1, 0.2, . . ., 0.9, (ii) G1/G2 = 2, 1.5,1, 0.5 and 0.3 and (iii) the remote

loading σ∞
y , the stress intensity factors can be expressed as

K1 = g1(ρ
−2
o ,G1/G2)σ

∞
y

√
πc,

(
with c =

√
a2 − b2

)
. (55)

The computed results for g1(ρ−2
o ,G1/G2) are plotted in Fig 5. In addition, the previously obtained results

in [17] are also plotted in Fig. 5.
From the plotted results, we see that the differences for the computed results from different sources of

computation are minor. Those differences may come from the following factors. In the present study, the
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Fig. 6 Non-dimensional stress intensity factors g1(ρ−2
o ,G1/G2) [see Fig. 2 and Eq. (55)]

traction-free condition along the crack is satisfied in a weaker form. To this end, we can apply the following
operator 1

2π i

∫
Γ0

[. . .]ς j−1dς ( j = −N ,−(N − 1), . . ., −2, −1, 1, 2, . . ., N − 1, N ) to Eq. (14). In addition,
in Ref. [17], the traction-free condition along the crack is satisfied along the crack face by expanding the
complex potentials in Laurent series. Secondly, the terms truncated in two sources may not be the same.

Under the other conditions (i) ρ−2
o = 0, 0.1, 0.2, . . ., 0.9, 1, (ii) G1/G2 = 0, 0.1, 0.2, . . ., 1.0 and (iii)

the remote loading σ∞
y , the stress intensity factors are still expressed by Eq. (55). The computed results for

g1(ρ−2
o ,G1/G2) are plotted in Fig 6. In computation, the case for ρ−2

o = 0 is approximated by ρ−2
o = 10−5.

The result for ρ−2
o = 1 is derived from the computed results for ρ−2

o = 0.9 and ρ−2
o = 0.95 and usage of

an extrapolation. The case for G1/G2 = 0 is approximated by the case for G1/G2 = 10−3. In addition, the
previously obtained results in [17] are also plotted in Fig. 6.

From Fig. 6, we see that for the case of ρ−2
o → 0 or ρo → ∞, the results from two sources are nearly

the same. In addition, for the case of ρo → 1(ρo > 1) some differences are found from different sources of
computation. The reason for the difference has been explained previously.

Example 3 In the third example, the case for three phases is considered (Fig. 1). The elastic constants for the
inclusion, the elliptic layer and the matrix are denoted by G1, κ1, G2, κ2 and G3, κ3, respectively. We choose
κ1 = κ2 = κ3 = 1.8. The inclusion has a shape of an ellipse with two half-axes “a” and “b.” The elliptic layer
is bound by two interfaces Σ1 and Σ2, which are the mappings of the circles Γ1 (or ς = ρ1eiθ ∈ Γ1 with
ρ1 = 1) and Γ2 (or ς = ρ2eiθ ∈ Γ2), respectively. In the example, ρ2 = 1.5 is assumed.

The remote loading σ∞
y is applied at infinity. It is truncated at N = 55 terms in the Laurent series expansion

for the complex potentials. Clearly, the general technique used for the case of three phases can easily be used
in the present example.

In computation, we assume the following conditions: (i) ρ1 = 1, ρ2 = 1.5, (ii) b/a = 0.25, 0.5, 0.75, 0.9
and (iii) G3/G1 = β, 10, 2, 1, 0.5 and 0.1, G2/G1 = √

β = √
10 = 3.162,

√
2 = 1.414, 1,

√
0.5 = 0.7073

and
√
0.1 = 0.316, respectively.

The computed stress intensity factors can be expressed as

K1 = f2(b/a,G3/G1)σ
∞
y

√
πc with G2/G1 = √

G3/G1. (56)

The computed results for f2(b/a,G3/G1) are listed in Table 2.
As stated previously, all the distributions of stresses can be found from the suggested technique. In the case

of b/a = 0.5 and remote loading σ∞
y , the computed results for σN , σNT and σT in the interior side and the

exterior side of the first interface Σ1 (z = ω(ς) ∈ Σ1, ς = eiθ ∈ Γ1) are denoted by

σN = fN ,in1(θ)σ∞
y , σNT = fNT,in1(θ)σ∞

y , σT = fT,in1(θ)σ∞
y

(at point x = a cos θ, y = b sin θ in the interior side of the first interfaceΣ1), (57)

σN = fN ,ex1(θ)σ∞
y , σNT = fNT,ex1(θ)σ∞

y , σT = fT,ex1(θ)σ∞
y

(at point x = a cos θ, y = b sin θ, in the exterior side of the first interfaceΣ1). (58)
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Table 2 Non-dimensional stress intensity factors f2(b/a,G3/G1)(= K1/σ
∞
y

√
πc) with G2/G1 = √

G3/G1 [see Fig. 1 and
Eq. (56)]

G3/G1 10 2 1 0.5 0.1
b/a =
0.25 0.1746 0.6187 1.0000 1.5500 3.6793
0.50 0.1844 0.6376 1.0000 1.4792 2.9301
0.75 0.2092 0.6770 1.0000 1.3641 2.1312
0.9 0.2453 0.7212 1.0000 1.2714 1.7056

Fig. 7 Non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) (in the interior side of interface Σ1), fN ,ex1(θ), fNT,ex1(θ),

fT,ex1(θ) (in the exterior side of interface Σ1) in the case of (1) b/a = 0.5, (2) remote loading σ∞
y and (3) G2/G1 = √

2 =
1.414, G3/G1 = 2 [see Fig. 1 and Eqs. (57), (58)]

Similarly, the computed results for σN , σNT and σT in the interior side and the exterior side of the second
interface Σ2 (z = ω(ς) ∈ Σ2, ς = ρ2eiθ ∈ Γ2 with ρ2 = 1.5), are denoted by

σN = fN ,in2(θ)σ∞
y , σNT = fNT,in2(θ)σ∞

y , σT = fT,in2(θ)σ∞
y

(at point x = R(ρ2 + m/ρ2) cos θ, y = R(ρ2 − m/ρ2) sin θ

in the interior side of the second interfaceΣ2), (59)

σN = fN ,ex2(θ)σ∞
y , σNT = fNT,ex2(θ)σ∞

y , σT = fT,ex2(θ)σ∞
y

(at point x = R(ρ2 + m/ρ2) cos θ, y = R(ρ2 − m/ρ2) sin θ

in the exterior side of the second interfaceΣ2). (60)

In the first group of computation, assuming b/a = 0.5, G2/G1 = √
β, G3/G1 = β with

√
β =

1.414, β = 2, the computed results for non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) and
fN ,ex1(θ), fNT,ex1(θ), fT,ex1(θ) along the interface Σ1 are plotted in Fig. 7. From Fig. 7, we see that
fN ,in1(θ) = fN ,ex1(θ), fNT,in1(θ) = fNT,ex1(θ). That is to say, the continuity conditions for the stress compo-
nents σN and σNT along the interface are satisfied with higher accuracy in the numerical example. In addition,
we find that fT,in1(θ) �= fT,ex1(θ). For example, fT,in1(θ) |θ=180◦ = 1.547, fT,ex1(θ) |θ=180◦ = 2.059, and
fT,in1(θ) |θ=180◦ < fT,ex1(θ) |θ=180◦ .

Under the same condition G2/G1 = √
β, G3/G1 = βwith β = 2, the computed results for non-

dimensional stresses fN ,in2(θ), fNT,in2(θ), fT,in2(θ) and fN ,ex2(θ), fNT,ex2(θ), fT,ex2(θ) along the interface
Σ2 are plotted in Fig. 8. In addition, we still find that fT,in2(θ) �= fT,ex2(θ). For example, fT,in2(θ) |θ=180◦ =
1.293, fT,ex2(θ) |θ=180◦ . = 1.763, and fT,in2(θ) |θ=180◦ < fT,ex2(θ) |θ=180◦ .

In the second group of computation, assuming b/a = 0.5, G2/G1 = √
β, G3/G1 = β with√

β = 0.707, β = 0.5, the computed results for non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ)
and fN ,ex1(θ), fNT,ex1(θ), fT,ex1(θ) along the interface Σ1 are plotted in Fig. 9. From the plotted results,
we see that fN ,in1(θ) = fN ,ex1(θ), fNT,in1(θ) = fNT,ex1(θ). That is to say, the continuity conditions for
the stress components σN and σNT along the interface are satisfied with higher accuracy. In addition, we
find that fT,in1(θ) �= fT,ex1(θ). For example, fT,in1(θ) |θ=180◦ = 2.241, fT,ex1(θ) |θ=180◦ = 1.745, and
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Fig. 8 Non-dimensional stresses fN ,in2(θ), fNT,in2(θ), fT,in2(θ) (in the interior side of interface Σ2), fN ,ex2(θ), fNT,ex2(θ),

fT,ex2(θ) (in the exterior side of interface Σ2) in the case of (1) b/a = 0.5, (2) remote loading σ∞
y and (3) G2/G1 = √

2 =
1.414, G3/G1 = 2 [see Fig. 1 and Eqs. (59), (60)]

Fig. 9 Non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) (in the interior side of interfaceΣ1), fN ,ex1(θ), fNT,ex1(θ),

fT,ex1(θ) (in the exterior side of interface Σ1) in the case of (1) b/a = 0.5, (2) remote loading σ∞
y and (3) G2/G1 = √

0.5 =
0.707, G3/G1 = 0.5 [see Fig. 1 and Eqs. (57), (58)]

fT,in1(θ) |θ=180◦ > fT,ex1(θ) |θ=180◦ . This result, or fT,in1(θ) |θ=180◦ > fT,ex1(θ) |θ=180◦ (in the case of
β = 0.5), is different from the result in the first group, where fT,in1(θ) |θ=180◦ < fT,ex1(θ) |θ=180◦ (in the
case of β = 2).

Similarly, under the samecondition the computed results for non-dimensional stresses fN ,in2(θ), fNT,in2(θ),
fT,in2(θ) and fN ,ex2(θ), fNT,ex2(θ), fT,ex2(θ) along the interface Σ2 are plotted in Fig. 10. In addition, we
still find that fT,in2(θ) �= fT,ex2(θ). For example, fT,in2(θ) |θ=180◦ = 1.312, fT,ex2(θ) |θ=180◦ . = 0.965, and
fT,in2(θ) |θ=180◦ > fT,ex2(θ) |θ=180◦ .

4 A crack embedded in multiple elliptic layers with different elastic properties for the exterior finite
elliptic matrix case

The problem for a crack embedded in multiple elliptic layers with different elastic properties for the exterior
finite elliptic matrix case is studied below (Fig. 11). This topic is first investigated in this paper.
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Fig. 10 Non-dimensional stresses fN ,in2(θ), fNT,in2(θ), fT,in2(θ) (in the interior side of interface Σ2), fN ,ex2(θ), fNT,ex2(θ),

fT,ex2(θ) (in the exterior side of interface Σ2) in the case of (i) b/a = 0.5, (ii) remote loading σ∞
y and (iii) G2/G1 = √

0.5 =
0.707, G3/G1 = 0.5 [see Fig. 1 and Eqs. (59), (60)]
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Fig. 11 Mapping relations: (a) the finite elliptic inclusion with two half-axes “a” and “b” with a crack (−c, c) c = √
a2 − b2 (in

the z-plane) and elastic constants G1, κ1 mapped into ring region
√
m < |ς | ≤ 1 (in the ς -plane with m = (a − b)/(a + b)),

(b) the elliptic layer bound by two interfaces Σ1 and Σ2 (in the z-plane) with elastic constants G2, κ2 mapped into ring region
bound by two circles Γ1 and Γ2, or ρ1 ≤ |ς | ≤ ρ2 with ρ1 = 1 (in the ς -plane), (c) the elliptic layer bound by two interfaces Σ2
and Σ3 (in the z-plane) with elastic constants G3, κ3 mapped into ring region bound by two circles Γ2 and Γ3, or ρ2 ≤ |ς | ≤ ρ3
(in the ς -plane)

4.1 Analysis for the exterior finite elliptic matrix case

For the exterior finite elliptic matrix case, the whole region is composed of three-phase composites: (i) the
elliptic inclusion with the elastic constantsG1, κ1. In addition, a crack (−cc)with c = √

a2 − b2 is embedded
in the inclusion. (ii) The elliptic layer bound by two interfaces Σ1 and Σ2 with the elastic constants G2, κ2,
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and (iii) the elliptic layer bound by two interfaces Σ2 and Σ3 with the elastic constants G3, κ3. In addition,
the normal traction “p” is applied along the boundary Σ3 (Fig. 11).

Clearly, since only the boundary condition at the exterior layer in this paper has a difference with respect
to that studied in the Sect. 2, Eqs. (1) to (27) and (32) to (45) are still useful in the present case.

However, the condition at the exterior layer is quite different from that in Sect. 2. In Sect. 2, or in the
infinite matrix case, for the vector {A3}4N we have the following property: a(3)

1 = h1R, a(3)
k = 0 (for k ≥ 2),

b(3)
1 = h2R, b(3)

k = 0 (for k ≥ 2). In addition, for the finite matrix case, the vector {A3}4N must satisfy the
traction boundary condition addressed below or Eq. (61).

Now we consider the boundary value condition along the boundary Σ3 (Fig. 11). In the present study, a
normal traction “p” is applied along the boundary Σ3. On the mapping plane, the condition can be expressed
as

φ(3)(ς) + ω(ς)

ω′(ς)
φ′(3)(ς) + ψ(3)(ς) = pω(ς) = pR(ς + m

ς
), (ς ∈ Γ3). (61)

After applying the following operator 1
2π i

∫
Γ3

{. . .}ς j−1dς, ( j = −N , −(N − 1), . . ., −2,−1, 1, 2, . . .,
N − 1, N ) to both sides of Eq. (61), we have the following algebraic equation:

[U]2N×4N {A3}4N = {q}2N (62)

where the matrix [U]2N×4N can be evaluated by the technique used previously. In addition, the vector {q}2N
can be expressed as

{q}2N = {0 0 . . . 0 . . . pR mpR 0 . . . 0 0}T
(or qN = pR, qN+1 = mpR, qk |k �=N or k �=N+1 = 0). (63)

Substituting Eq. (43) in (62), we will find

[U31]2N×2N {A1p}2N = {q}2N (64)

where

[U31]2N×2N = [U]2N×4N[T31]4N×2N. (65)

Finally, from Eq. (64) we can get a solution for the vector {A1p}2N . In addition, from the obtained vector
{A1p}2N ,we canobtain three vectors {A1}2N , {A2}2N and {A3}2N byusingEqs. (21), (42) and (43), respectively.
Alternatively speaking, the boundary value problem is finally solved.

4.2 Numerical example for the exterior finite elliptic matrix case

In the example, the case for three phases is considered (Fig. 11). The elastic constants for the inclusion and the
two elliptic layers are denoted by G1, κ1, G2, κ2 and G3, κ3, respectively. We choose κ1 = κ2 = κ3 = 1.8.
The inclusion has a shape of an ellipse with two half-axes “a” and “b.” The crack (−c, c) with c = √

a2 − b2

is embedded in the inclusion. The first elliptic layer is bound by two interfaces Σ1 and Σ2, which are the
mappings of the circles Γ1 (or ς = ρ1eiθ ∈ Γ1 with ρ1 = 1) and Γ2(or ς = ρ2eiθ ∈ Γ2), respectively. In the
example, ρ2 = 1.5 is assumed. The second elliptic layer is bound by the interfaces Σ2 and the boundary Σ3,
which are the mappings of the circles Γ2(or ς = ρ2eiθ ∈ Γ2) and Γ3(or ς = ρ3eiθ ∈ Γ2), respectively. In the
example, ρ3 = 2 is assumed (Fig. 11).

Along the exterior boundary Σ3, the loading σN = p is applied. It is truncated at N = 55 terms in the
Laurent series expansion for the complex potentials.

In the computation, we assume the following conditions: (i) ρ0 = √
m, ρ1 = 1, ρ2 = 1.5 and ρ3 = 2, (ii)

b/a = 0.25, 0.5, 0.75, 0.9, and (iii)G3/G1 = β =10, 2, 1, 0.5 and 0.1,G2/G1 = √
β = √

10 = 3.162,
√
2 =

1.414, 1,
√
0.5 = 0.7073 and

√
0.1 = 0.316, respectively.

The computed stress intensity factors can be expressed as

K1 = g(b/a,G3/G1)p
√

πc withG2/G1 = √
G3/G1 c =

√
a2 − b2. (66)
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Table 3 Non-dimensional stress intensity factors g(b/a,G3/G1)(= K1/p
√

πc) with G2/G1 = √
G3/G1 [see Fig. 11 and Eq.

(66)]

G3/G1 10 2 1 0.5 0.1
b/a=
0.25 0.6123 1.5352 2.1604 2.9431 5.4091
0.5 0.4797 1.1578 1.5680 2.0329 3.2295
0.75 0.4302 0.9609 1.2254 1.4842 2.0005
0.9 0.4431 0.8939 1.0804 1.2420 1.5109

The computed results for g(b/a,G3/G1) are listed in Table 3.
It is seen from the plotted results that, in the case of G2/G1 = 10 or for a very weak inclusion, the non-

dimensional SIFs (stress intensity factors) generally take a value smaller than their counterparts in the case
of G2/G1 = 1. For example, we have g |b/a=0.5G2/G1=10 = 0.4797 and g |b/a=0.5G2/G1=2 = 1.1578 and
g |b/a=0.5G2/G1=1 = 1.5680. Since a weaker inclusion has a lower traction response under some deformation,
this result is easy to see.

On the contrary, it is seen from the plotted results that, in the case of G2/G1 = 0.1 or for a very
rigid inclusion, the non-dimensional SIFs generally take a value larger than their counterparts in the case
of G2/G1 = 1. For example, we have g |b/a=0.5G2/G1=0.1 = 3.2295 and g |b/a=0.5G2/G1=0.5 = 2.0329 and
g |b/a=0.5G2/G1=1 = 1.5680. Since a rigid inclusion has a higher traction response under some deformation,
this result is easy to see.

As stated previously, all the distributions of stresses can be found from the suggested technique. In the
case of b/a = 0.5 and loading σN = p along Σ3 (Fig. 11), the computed results for σN , σNT and σT in the
interior side and the exterior side of the first interface Σ1 (z = ω(ς) ∈ Σ1, ς = eiθ ∈ Γ1) are denoted by

σN = fN ,in1(θ)p, σNT = fNT,in1(θ)p, σT = fT,in1(θ)p

(at point x = a cos θ, y = b sin θ in the interior side of the first interfaceΣ1), (67)

σN = fN ,ex1(θ)p, σNT = fNT,ex1(θ)p, σT = fT,ex1(θ)p

(at point x = a cos θ, y = b sin θ, in the exterior side of the first interfaceΣ1). (68)

Similarly, the computed results for σN , σNT and σT in the interior side and the exterior side of the second
interface Σ2 (z = ω(ς) ∈ Σ2, ς = ρ2eiθ ∈ Γ2 with ρ2 = 1.5), are denoted by

σN = fN ,in2(θ)p, σNT = fNT,in2(θ)p, σT = fT,in2(θ)p

(at point x = R(ρ2 + m/ρ2) cos θ, y = R(ρ2 − m/ρ2) sin θ

in the interior side of the second interfaceΣ2), (69)

σN = fN ,ex2(θ)p, σNT = fNT,ex2(θ)p, σT = fT,ex2(θ)p

(at point x = R(ρ2 + m/ρ2) cos θ, y = R(ρ2 − m/ρ2) sin θ

in the exterior side of the second interfaceΣ2). (70)

In the first group of computations, assuming b/a = 0.5, G2/G1 = √
β, G3/G1 = β with

√
β =

1.414, β = 2, the computed results for the non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) and
fN ,ex1(θ), fNT,ex1(θ), fT,ex1(θ) along the interface Σ1 are plotted in Fig. 12. From Fig. 12, we see that
fN ,in1(θ) = fN ,ex1(θ), fNT,in1(θ) = fNT,ex1(θ). That is to say, the continuity conditions for the stress
components σN and σNT along the interface are satisfied with higher accuracy in the numerical example. In
addition, we find that fT,in1(θ) �= fT,ex1(θ). For example, fT,in1(θ) |θ=180◦ = 2.585, fT,ex1(θ) |θ=180◦ =
3.315, and fT,in1(θ) |θ=180◦ < fT,ex1(θ) |θ=180◦ .

Under the same condition G2/G1 = √
β, G3/G1 = β with β = 2, the computed results for the non-

dimensional stresses fN ,in2(θ), fNT,in2(θ), fT,in2(θ) and fN ,ex2(θ), fNT,ex2(θ), fT,ex2(θ) along the interface
Σ2 are plotted in Fig. 13. In addition, we still find that fT,in2(θ) �= fT,ex2(θ). For example, fT,in2(θ) |θ=180◦ =
1.574, fT,ex2(θ) |θ=180◦ . = 2.010, and fT,in2(θ) |θ=180◦ < fT,ex2(θ) |θ=180◦ .

In the second group of computation, assuming b/a = 0.5, G2/G1 = √
β, G3/G1 = βwith

√
β =

0.707, β = 0.5, the computed results for non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) and
fN ,ex1(θ), fNT,ex1(θ), fT,ex1(θ) along the interface Σ1 are plotted in Fig. 14. From the plotted results, we
see that fN ,in1(θ) = fN ,ex1(θ), fNT,in1(θ) = fNT,ex1(θ). That is to say, the continuity conditions for
the stress components σN and σNT along the interface are satisfied with higher accuracy. In addition, we
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Fig. 12 Non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) (in the interior side of the interface Σ1), fN ,ex1(θ),
fNT,ex1(θ), fT,ex1(θ) (in the exterior side of the interface Σ1) in the case of (i) b/a = 0.5, (ii) boundary loading σN = p
and (iii) G2/G1 = √

2=1.414, G3/G1 = 2 [see Fig. 11 and Eqs. (67), (68)]

Fig. 13 Non-dimensional stresses fN ,in2(θ), fNT,in2(θ), fT,in2(θ) (in the interior side of interface Σ2), fN ,ex2(θ), fNT,ex2(θ),
fT,ex2(θ) (in the exterior side of interface Σ2) in the case of (1) b/a = 0.5, (2) boundary loading σN = p and (3) G2/G1 =√
2 = 1.414, G3/G1 = 2 [see Fig. 11 and Eqs. (69), (70)]

find that fT,in1(θ) �= fT,ex1(θ). For example, fT,in1(θ) |θ=180◦ = 2.733, fT,ex1(θ) |θ=180◦ = 2.287, and
fT,in1(θ) |θ=180◦ > fT,ex1(θ) |θ=180◦ . This result, or fT,in1(θ) |θ=180◦ > fT,ex1(θ) |θ=180◦ (in the case of
β = 0.5), is different from the result in the first group, where fT,in1(θ) |θ=180◦ < fT,ex1(θ) |θ=180◦ (in the
case of β = 2).

Similarly, under the samecondition the computed results for non-dimensional stresses fN ,in2(θ), fNT,in2(θ),
fT,in2(θ) and fN ,ex2(θ), fNT,ex2(θ), fT,ex2(θ) along the interface Σ2 are plotted in Fig. 15. In addition,
we still find the result fT,in2(θ) |θ=180◦ > fT,ex2(θ) |θ=180◦ . In addition, we find fT,in2(θ) |θ=90◦ max =
1.787, fT,ex2(θ) |θ=90◦ max = 1.363.

5 Conclusions

The continuity conditions for traction and displacement have been introduced in Eqs. (32) and (33). In addition,
those conditions were reduced in the following weaker form:



2824 Y. Z. Chen

Fig. 14 Non-dimensional stresses fN ,in1(θ), fNT,in1(θ), fT,in1(θ) (in the interior side of interface Σ1), fN ,ex1(θ), fNT,ex1(θ),
fT,ex1(θ) (in the exterior side of interface Σ1) in the case of (i) b/a = 0.5, (ii) boundary loading σN = p and (iii) G2/G1 =√
0.5 = 0.707, G3/G1 = 0.5 [see Fig. 11 and Eqs. (67), (68)]

Fig. 15 Non-dimensional stresses fN ,in2(θ), fNT,in2(θ), fT,in2(θ) (in the interior side of interface Σ2), fN ,ex2(θ), fNT,ex2(θ),
fT,ex2(θ) (in the exterior side of interface Σ2) in the case of (i) b/a = 0.5, (ii) boundary loading σN = p and (iii) G2/G1 =√
0.5 = 0.707, G3/G1 = 0.5 [see Fig. 11 and Eqs. (69), (70)]

1

2π i

∫
Γ1

{
(φ(1)(ς) + ω(ς)

ω′(ς)
φ′(1)(ς) + ψ(1)(ς))

−(φ(2)(ς) + ω(ς)

ω′(ς)
φ′(2)(ς) + ψ(2)(ς))

}
ς j−1dς = 0 ( j = −N , . . . ,−1, 1, . . . , N ), (71)

1

2π i

∫
Γ1

{
1

2G1
(κ1φ

(1)(ς) − ω(ς)

ω′(ς)
φ′(1)(ς) − ψ(1)(ς))

− 1

2G2
(κ2φ

(2)(ς) − ω(ς)

ω′(ς)
φ′(2)(ς) − ψ(2)(ς))

}
ς j−1dς = 0 ( j = −N , . . . , −1, 1, . . . , N ). (72)

After using Eqs. (71) and (72), the transfer matrix for the continuity conditions for traction and displacement
is therefore obtained. In fact, Eqs. (71) and (72) represent a kind of weight residue formulation, or a weaker
formulation for the boundary conditions along the interface.
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In fact, for example, if we expand the term (φ(1)(ς) + ω(ς)

ω′(ς)
φ′(1)(ς) + ψ(1)(ς)) in a Laurent series, the

derivation for the continuity conditions shown by Eqs. (32) and (33) must be complicated. It is seen that the
weaker formulation shown by Eqs. (71) and (72) is a particular advantage in the present paper.

Appendix A: Derivation of the transfer matrix from continuity conditions for traction and displacement
along the interface

First of all, we define two particular integrals as follows:

I1 = 1

2π i

∫
Γ1

ςn−1dς, (n-integer) (A.1)

I2 = 1

2π i

∫
Γ1

ςn

ς2 − q2
dς, (n-integer) (A.2)

where Γ1 denotes a circle with radius ρ1, and “q” is a positive real value with property q > ρ1 (Fig. 16).
Clearly, we have

I1 = 1

2π i

∫
Γ1

ςn−1dς = δn (A.3)

where

δn = 1 for n = 0, and δn = 0 for n �= 0. (A.4)

In addition, we have [16]

I2 = 1

2π i

∫
Γ1

ςn

ς2 − q2
dς = 1

2π i

∫
Γ1

1

2q
(

1

ς − q
− 1

ς + q
)ςndς = hn(q)Δn (A.5)

where

hn(q) = −1 − (−1)n

2
qn−1, (A.6)

Δn = 1 for n ≤ −1, and Δn = 0 for n ≥ 0. (A.7)

Clearly, for the point ς ∈ Γ1, or ς = ρ1eiθ , we have (Fig. 16)

ςς = ρ2
1 , or ς = ρ2

1

ς
. (A.8)

In addition, we define two complex potentials as follows:

φ(1)(ς) =
N∑

k=−N

′a(1)
k ςk, ψ(1)(ς) =

N∑
k=−N

′b(1)
k ςk (ς = ρeiθ , ρo < ρ ≤ ρ1), (A.9)

φ(2)(ς) =
N∑

k=−N

′a(2)
k ςk, ψ(2)(ς) =

N∑
k=−N

′b(2)
k ςk (ς = ρeiθ , ρ1 ≤ ρ ≤ ρ2). (A.10)

Fig. 16 A path Γ1 for integration
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By using Eqs. (A.3) and (A.9), we have

1

2π i

∫
Γ1

φ(1)(ς)ς j−1dς = 1

2π i

∫
Γ1

N∑
k=−N

′a(1)
k ςk+ j−1dς =

N∑
k=−N

′δk+ j a
(1)
k , (A.11)

After using Eqs. (4), (5), (A.8) and (A.9), along ς ∈ Γ1 or ς = ρ1eiθ , we will find

ω(ς)

ω′(ς)
φ′(1)(ς) = − 1

ς2 − q2

(
ρ2
1

m
ς2 + ρ2

1

)
N∑

k=−N

′ka(1)
k ρ2k

1 ς−k, with q = ρ2
1√
m

. (A.12)

In addition, by using Eqs. (A.5) and (A.12) we have

1

2π i

∫
Γ1

ω(ς)

ω′(ς)
φ′(1)(ς)ς j−1dς = −ρ2

1

m

N∑
k=−N

′k ρ2k
1 a(1)

k h−k+ j+1(q)Δ−k+ j+1

−ρ2
1

N∑
k=−N

′k ρ2k
1 a(1)

k h−k+ j−1(q)Δ−k+ j−1. (A.13)

By using Eqs. (A.8) and (A.9), along ς ∈ Γ1 or ς = ρ1eiθ , we have

ψ(1)(ς) =
N∑

k=−N

′ρ2k
1 b(1)

k ς−k, (A.14)

1

2π i

∫
Γ1

ψ(1)(ς)ς j−1dς = 1

2π i

∫
Γ1

N∑
k=−N

′ρ2k
1 b(1)

k ς−k+ j−1dς =
N∑

k=−N

′ρ2k
1 δ−k+ j b

(1)
k . (A.15)

Similarly, along ς ∈ Γ1 or ς = ρ1eiθ we will obtain

1

2π i

∫
Γ1

φ(2)(ς)ς j−1dς =
N∑

k=−N

′δk+ j a
(2)
k , (A.16)

1

2π i

∫
Γ1

ω(ς)

ω′(ς)
φ′(2)(ς)ς j−1dς = −ρ2

1

m

N∑
k=−N

′k ρ2k
1 a(2)

k h−k+ j+1(q)Δ−k+ j+1

−ρ2
1

N∑
k=−N

′k ρ2k
1 a(2)

k h−k+ j−1(q)Δ−k+ j−1, (A.17)

1

2π i

∫
Γ1

ψ(2)(ς)ς j−1dς =
N∑

k=−N

′ρ2k
1 δ−k+ j b

(2)
k . (A.18)

It is known that the continuity condition for the traction and displacement along the interface Σ1, or along
Γ1 in the mapping plane in Fig. 1, can be expressed as follows:

φ(1)(ς) + ω(ς)

ω′(ς)
φ′(1)(ς) + ψ(1)(ς) = φ(2)(ς) + ω(ς)

ω′(ς)
φ′(2)(ς) + ψ(2)(ς), (ς ∈ Γ1), (A.19)

1

2G1
{κ1φ(1)(ς) − ω(ς)

ω′(ς)
φ′(1)(ς) − ψ(1)(ς)} = 1

2G2
{κ2φ(2)(ς) − ω(ς)

ω′(ς)
φ′(2)(ς) − ψ(2)(ς)}, (ς ∈ Γ1).

(A.20)

It is seen that the continuation conditions shown by Eqs. (A.19) and (A.20) are expressed in the continuous
form, which is formulated along the interface ς ∈ Γ1 with ς = ρ1eiθ (Fig. 1). Now we want to convert two
conditions in a discrete form. To this end, we can apply the following operator:

1

2π i

∫
Γ1

{. . .}ς j−1dς, ( j = −N , −(N − 1), . . .,−2,−1, 1, 2, . . ., N − 1, N ) (A.21)
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to both side of Eqs. (A.19) and (A.20). After making the mentioned operation, from Eqs. (A.19) and (A.20)
we have

[M1]4N×4N {A1}4N = [M2]4N×4N{A2}4N (A.22)

where the two vectors are defined by

{A1}4N = {a(1)
−N a(1)

−(N−1) · · · a(1)
−1 a

(1)
1 · · · a(1)

N−1 a
(1)
N b(1)

−N b(1)
−(N−1) · · · b(1)

−1 b
(1)
1 · · · b(1)

N−1 b
(1)
N }T, (A.23)

{A2}4N = {a(2)
−N a(2)

−(N−1) · · · a(2)
−1 a

(2)
1 · · · a(2)

N−1 a
(2)
N b(2)

−N b(2)
−(N−1) · · · b(2)

−1 b
(2)
1 · · · b(2)

N−1 b
(2)
N }T. (A.24)

In Eqs. (A.23) and (A.24), the vectors {A1}4N and {A2}4N are composed of the coefficients in the Laurent
series expansion for the complex potentials φ(1)(ς), ψ(1)(ς), φ(2)(ς), ψ(2)(ς) shown by Eqs. (A.9) and
(A.10), respectively.

From Eq. (A.22), we have

{A2}4N = [S21]4N×4N{A1}4N (A.25)

where

[S21]4N×N = [M−1
2 ]4N×4N [M1]4N×4N. (A.26)

In Eq. (A.25), [M−1
2 ]4N×4N represents the inverse matrix of [M2]4N×4N.

Appendix B: Asymptotic solution for a small crack in the inclusion

In the case of the remote stresses σ∞
x and σ∞

y (Fig. 17), for solving the inclusion problem we can assume the
following complex potentials in the inclusion:

φ(1)(ς) = f R

(
ς + m

ς

)
, orφ(1)∗(z) = f z, (B.1)

ψ(1)(ς) = gR

(
ς + m

ς

)
, orψ(1)∗(z) = gz (B.2)

where “ f ” and “g” are two real constants.
After using the mapping relation shown by Eq. (4), the complex potentials for the matrix in the mapping

plane will be

φ(2)(ς) = RΓ ς +
∞∑
k=0

ck
ςk

, (ck—some real constant coefficients), (B.3)

ψ(2)(ς) = RΓ1ς +
∞∑
k=0

dk
ςk

, (dk—some real constant coefficients) (B.4)

(a) (b)

Fig. 17 a An inclusion in an infinite matrix, b a small crack with length “2e”in the inclusion
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where

Γ = σ∞
x + σ∞

y

4
, Γ1 = σ∞

y − σ∞
x

2
. (B.5)

After using the displacement and traction continuity conditions along the elliptic interface, we can get an
algebraic equation for “ f ” and “g,” and the final solution is as follows [20]:

f = 1

4Δ

{
(1 − (1 + m2)β)(σ∞

x + σ∞
y ) − 2mβ(σ∞

y − σ∞
x )

}
, (B.6)

g = 1

4Δ

{
−2m(1 − α − β)(σ∞

x + σ∞
y ) + 2(α + β)(σ∞

y − σ∞
x )

}
(B.7)

where

α = G2κ1 + G1

G1(1 + κ2)
, β = G1 − G2

G1(1 + κ2)
, (B.8)

Δ = (α + β)(1 − β) − m2β(2 − α − β). (B.9)

From Eq. (1), we can evaluate the stress components in the inclusion (Fig. 17)

σ in
x = 2 f − g = 1

2Δ

{[
1 + m(1 − α − β) − (1 + m2)β

]
(σ∞

x + σ∞
y ) − (α + β + 2mβ)(σ∞

y − σ∞
x )

}
,

(B.10)

σ in
y = 2 f + g = 1

2Δ

{[
1 − m(1 − α − β) − (1 + m2)β

]
(σ∞

x + σ∞
y ) + (α + β − 2mβ)(σ∞

y − σ∞
x )

}
.

(B.11)

It is assumed that a small crack with length “2e” is placed in the comparatively large inclusion. In addition,
we have the following stress intensity factor solution:

K1 = σ in
y

√
πe, (B.12)

If we let σ∞
x = pσ∞

y , K1 can be written in the form

K1 = δσ∞
y

√
πe (B.13)

where

δ = 1

2Δ

{[
1 − m(1 − α − β) − (1 + m2)β

]
(1 + p) + (α + β − 2mβ)(1 − p)

}
, (B.14)

In a particular case of the circular inclusion, or a = b and m = 0, we have

δ = 1

2Δ
{(1 − β)(1 + p) + (α + β)(1 − p)} (B.15)

where

Δ = (α + β)(1 − β), (B.16)

Clearly, Eq. (B.15) can be rewritten as

δ = 1

2

{
1 + p

α + β
+ 1 − p

1 − β

}
. (B.17)

The result shown by Eqs. (B.13) and (B.16) was first obtained in [17].
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