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Abstract A self-consistent scheme taking into account the intragranular microstructure is applied for the
micromechanical modelling of the elastoplastic material behaviour during monotonic and sequential loading
paths. The intragranular description used in the model is initially based on experimental observations of the
dislocations evolution in body-centred cubic polycrystals. We have extended this description to face-centred
cubic materials. For each crystallite, three internal variables are introduced to describe the microstructural
features allowing to determine the mechanical characteristics of the grain. Next, a meso–macro transition
using an elastoplastic self-consistent model is used to deduce the polycrystal behaviour from the grain one.
A correct agreement is observed between simulations and experimental results at the mesoscopic and the
macroscopic levels.

1 Introduction

Technologic progress and industrial competitiveness require complex processes of pieces fabrication. The
forming processes usually involve multi-axial strain paths. Strain path changes are often limited by physical
phenomena such as ductility loss, damage, strain localization, striction, wrinkling and cleavage. Those depend
on both intergranular heterogeneities (texture, grain boundaries, and plastic or thermic incompatibilities)
and intragranular heterogeneities (dislocation microstructure, shear microband, precipitate). Optimizing such
technologies requires thus a good knowledge of the mechanical behaviour and an accurate modelling of the
plastic anisotropic behaviour of deformed materials.

During elastoplastic deformation, a dislocation structure is created, and grains are broken up into cell
blocks, further subdivided into cells (with low dislocation density) separated by dislocation walls (with high
dislocation density) [1]. Grains present then a strong heterogeneous substructure, source of third-order internal
stresses. The latter are responsible for ductility loss and material destruction.

A significant number of researchworks have been achieved over the last three decades in order to understand
andmodel the dislocation structure evolution during plastic deformation. One problemmet for the development
of an efficient polycrystal model is the plastic anisotropy consideration and the localization of the plastic strain
related to the formation of intragranular dislocation microstructure constituted of cells and walls [2–4]. The
influence of this microstructure is particularly significant considering sequential loadings which are mainly
used in metal forming [5]. A change in the strain path is then associated with hardening or softening effects
due to the plastic anisotropy induced by the previous loading, a phenomenon already pointed out by different
experimental studies [6–8]. In order to develop a relevant constitutive model, it is thus necessary to build an
accurate description of the dislocation microstructure in the context of monotonic and complex paths loads.
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So as to model the plastic deformation of a metallic polycrystal, a deductive method based on strain
mechanisms and scale transition methods like Taylor [9] or self-consistent (SC) models [10] can be used. The
mechanical state of the grains is considered as uniform. Consequently, the formation of the dislocation structure
is neglected. These approaches allow to predict correctly the yield surface, the crystallographic texture induced
by the plastic deformation, the intergranular stresses due to the initial and induced anisotropy duringmonotonic
loadings [11,12]. Nevertheless, this kind of description fails to reproduce the mechanical behaviour during
complex loading [13–15]. These methods do not, or weakly, take into account the formation, the evolution and
the stability of induced dislocation microstructures which are strongly path dependent.

Over the last decades, several studies have been performed to develop models which incorporate the
effects of dislocation heterogeneities on the mechanical response of a metallic material. The first attempt was
proposed byMughrabi [16]who introduced amodel inwhich the crystalwas considered as a compositematerial
constituted with hard dislocation walls of high local dislocation density separated by soft regions of low local
dislocation density. Based on Muller’s works [14], the present authors [17] have extended the elastoplastic
self-consistent model (EPSC) incorporating additional microstructure details at the grain scale. Two-level
homogenization approaches have been developed for the micromechanical modelling of the elastoplastic
material behaviour. At themicroscopic level, themechanical behaviour is described by different scale transition
models like the SC approach. The grain is then considered as a two-phase material (dislocations walls and
cells). The intragranular heterogeneities are highlighted by a non-localwork hardening, related to the two-phase
description. Next, a meso–macro transition, using the EPSC method, is applied to deduce the macroscopic
response of the cubic aggregates. Simulations based on the developed model demonstrate its ability to predict
the experimental response of FCC single crystals and polycrystals after moderate strain path changes.

Peeters et al. [18] have developed a semi-phenomenological crystal plasticity model that incorporates more
details of the microstructural evolution at the grain scale (evolution of dislocation densities) and uses a full-
constraint Taylor model in order to describe the behaviour of BCC polycrystals. Karaman et al. [19] have used
a similar approach to model successfully the deformation of Hadfield steel with a viscoplastic self-consistent
scheme.Viatkina et al. [20] have proposed amicromechanicalmodel of a dislocation cell structure that accounts
for thematerial inhomogeneity and incorporates the internal stresses in a physically basedmanner. A composite
model was used to describe the material with its dislocation cell structure. This approach was successfully
applied to predict the macroscopic behaviour of FCC alloys after various strain path changes.

In the present work, we have used the Peeters et al. [21] framework to develop an elastoplastic model
that incorporates more details of the microstructure evolution at the grain scale in order to realistically repro-
duce the experimentally observed transients in the stress–strain responses of FCC polycrystals during strain
path changes. This work concentrates on the proper understanding and modelling of the contribution of the
dislocation cell structure to the strain path change effect. This microstructure modelling was coupled with a
self-consistent approach to calculate the macroscopic response level (Fig. 1). In order to validate our numerical
approach, a confrontation between the simulation results and those from different mechanical tests is done in
two steps. Initially, the simulation accuracy is evaluated by simulating the development of intergranular strains
during uniaxial loading of a Cu–Ni alloy (MONEL-400) as well as commercial purity aluminium. Neutron dif-
fractionmeasurements of the elastic strains are used as a reference [22,23]. The second step involves evaluating
the capability of the model to simulate the different aspects of the behaviour and the induced microstructure
during complex load paths. In this respect, uni-axial Bauschinger tests in tension–compression have been
carried out on AISI 316L austenitic stainless steel and aluminium alloy 6060 at room temperature.

Fig. 1 Model schematization
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2 The intragranular modelling

2.1 Intragranular heterogeneities description

We consider a metallic crystal with a cubic structure. We suppose that the main principal mechanism of plastic
deformation is the crystallographic glide defined by slip systems. A brief description of the microstructural
model is presented in this section. For more details, readers can refer to the following publications [18,21,24–
26].

At the early stage of a plastic deformation process, a dislocation activity appears and is characterized
by creation and mobility of dislocations along slip plans within grain. As the strain increases, dislocation
microstructure develops. This structure consists of dislocation boundaries with a high lattice misorientation
that envelop a number of cells to form cell blocks (see Fig. 2). The cell blocks develop in the material together
with the cells and influence the macroscopic mechanical response. Based on the model of Peeters et al.,
this intragranular substructure (cells and walls) is described by three different types of dislocation densities
introduced as internal variables in our model (Fig. 2):

• The overall dislocations stored within the cells as well as the cell boundary, i.e. cell dislocation density (ρ).
• The density of immobile dislocations (ρwd) stored in the cell block boundaries. This density parameter

conveys the dislocation tangle during plastic deformation, which is responsible for latent hardening during
strain path changes.

• The local directionally movable or polarized dislocation density (ρwp) in the dislocation sheet is assumed
to have a polarity or sign, i.e. it can take positive and negative values. It reflects the dislocations that are
immobilized on both sides of the sheet, but which can move again during reverse tests.

2.2 Formation of dense dislocation walls

In this section, we explain how dislocation walls are created and change during plastic deformation. The first
task to achieve in order to apply the model is to define the dislocation walls orientations relative to the crystal
lattice. The experimentally observed substructure geometry is generally complex and strongly dependent on
the grain orientation and the loading direction [24].

Peeters et al. [18] assume that each grain in BCC IF steels forms dense dislocation walls parallel to the
crystallographic planes on which the slip activity is the greatest, i.e. the dislocation walls have logically to
belong to the {110} or {112} planes families. They find that this condition is consistent with their transmission
electron microscopy (TEM) micrographies of dislocation walls. Experimentally [18,21,27,28], during the
deformation, BCC material get at most two families of dislocation walls with the following criteria: the
primary family of dislocation walls is generated parallel to the {110} planes of the most active slip system; the
second family of dislocation walls comes out in a similar way, i.e. parallel to the {112} planes of the second
active slip system. The orientation of the cell structure is logically related to the active deformation mode. The
orientation of the cell walls is commonly associated with the loading axis or the slip systems activated by the
applied load. In FCC single crystals, dislocation slips occur within one of the four close-packed {111} planes
along one of the three <110> directions. Based on experimental observations [4,25,29] and previous results
from Mahesh et al. [23], the model will develop, for each strain increment, two families of dislocation sheets
parallel to the {111} planes and on which the highest and second highest slip activity rate occurs.

Fig. 2 Schematic representation of the dislocationmicrostructure. ρ represents the dislocation density inside cells; ρwp represents
immobile dislocation density in walls; ρwd represents mobile dislocation density in walls
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Table 1 Families of dislocation walls [21,24]

No. of dislocation walls Family of walls

1 (111)
2

(
1̄11

)

3
(
11̄1

)

4
(
111̄

)

Four independent families of dislocationwalls can be defined and are listed inTable1 [24]. The intragranular
heterogeneities are assimilated to families of dislocation walls, parallel to the {111} planes having their most
dominants slip activities.

2.3 Dislocation density evolution

Each of the dislocation densities considered in themodel has an evolution law determined using thewell-known
Kocks-type law [30]: the evolution of dislocation density results from the competition between production and
annihilation rates of dislocations.

For FCC metals, the plastic deformation has been modelled assuming (110)<111> slip systems.
As mentioned before, FCC material is characterized by four independent families of dislocation walls.
nw
i (i = 1, 2, 3, 4) is the unit vector perpendicular to the existing generated dense sheet wall i and

ms (s = 1, . . . , 12), the unit vector along the slip direction of a system s. nw
i and ms allow to calculate

two terms needed in order to determine the different dislocation densities:

• For each currently generated dislocation wall i of an increment of deformation, the net flux of dislocations
is given by:

�i =
n∑

s=1

γ̇s

b
ms · nw

i (1)

where b represents the magnitude of the Burgers vector. The symbol n refers to the number of slip systems.
γ̇s is the slip rate on system s and can be positive or negative. When a slip system is coplanar with a
dislocation wall, the dislocation flux �i is equal to zero.

• The total slip rate on the plane of the i th most active slip system is:

�̇i =
∑

s:ubs ·uw
i =0

|γ̇s |. (2)

2.3.1 The currently generated dislocation walls

The evolution of the local density of immobile dislocations wd stored in walls can be further decomposed into
a storage term and a recovery term [30].

The evolution of the immobile dislocation density for each of the existing generated dislocation sheets will
thus be expressed as:

ρ̇wd
i =

(
Iwd

√
ρwd
i − Rwdρwd

i

)
�̇i

b
, (i = 1, 2) . (3)

Iwd and Rwd are, respectively, the storage and annihilation coefficients of dislocations.
During the plastic deformation, we observe the polarization of the dislocation walls: a mobile dislocation

is stopped and stored in a wall face (with sign), and the dislocation with opposite sign is stopped and stored
in the facing face. This phenomenon generates an asymmetry in the plastic slip resistance depending on the
considered direction. This result explains the elastic yield difference observed between the first and the second
loading (Bauschinger effect). In a reverse test, polarized dislocations move from the wall and annihilate with
dislocations stored inside the cell; this explains the transitional regime observed during strain path change.
With strain, these walls become polarized again, but in the opposite sign, and then the same behaviour as the
pre-strain is obtained.



Modelling of elastoplastic behaviour of metallic materials 2719

The storage and annihilation of polarized dislocations for each dislocation wall can be expressed by means
of the summation of those (storage and annihilation):

ρ̇
wp
i =

(
Iwp

√
ρwd
i + ∣

∣ρwp
i

∣
∣ sign (�i ) − Rwpρ

wp
i

)
|�i | . (4)

Iwp and Rwp become, respectively, the storage and annihilation coefficients of polarized dislocations.
In a reverse test, most of the active systems during the pre-strain remain active, but operate in the opposite

sense. The dislocation flux associated with a family of currently generated dense walls i is then reversed.
The polarized dislocations that have already been accumulated along walls can then easily move away and be
annihilated by dislocations of opposite sign, a phenomenon which can be expressed by the following equation:

ρ̇
wp
i = −Rrevρ

wp
i |�i | (5)

where Rrev is a material parameter; it goes with the rate of annihilation of the mobile dislocations responsible
for the polarity of the dense dislocation walls and consistent with the reversal of the flux.

2.3.2 Non-currently generated dislocation walls

When a dense dislocation wall is not currently generated anymore, mainly due to a change of slip activity,
the dense dislocation walls are supposed to disintegrate themselves. The following equations are used for the
removal of the old dislocation structures:

ρ̇wd
i = − Rncg

b
ρwd
i �̇new, (6)

ρ̇
wp
i = − Rncg

b
ρ
wp
i �̇new. (7)

�̇new is the total slip rate on both of the crystallographic planes containing the highest slip activity. Rncg
indicates a parameter that characterizes the destruction of former dense dislocation walls.

2.3.3 Evolution of cell dislocation density ρ

During a monotonic loading, the evolution of the dislocation density ρ is expressed by the summation of a
storage term and an annihilation term:

ρ̇ = (
I
√

ρ − Rρ
)

∑
s |γ̇ s|
b

(8)

where I and R are, respectively, the immobilization and the annihilation parameters.
During a reverse test, the annihilation of dislocations inside cells will be more important than their storage.

This remark is valid for small strain, i.e. in the transient region of a reverse test. An additional source of
annihilation is added to Eq. (8) to take into account this phenomenon and leading to the following expression:

ρ̇ =
〈
(
I
√

ρ − Rρ
)

∑
s |γ̇ s |
b

− �R2ρ
ρbausch

ρ
wp
sat

∑
s |γ̇ s |
b

〉
(9)

where < x> = x when x > 0 and < x>= 0 otherwise. The parameter R2 reflects the importance of the
annihilation of the statistically stored dislocations within the cell by the remobilized directionally movable
dislocations associated with the dense dislocation sheets. The switch parameter � will activate (� = 1) or
not (� = 0) this additional term, depending on whether there is reversal of the flux associated with a family
of currently generated walls or not. The value of ρbausch will be different according to the number of reversed
fluxes. In summary, if only one flux is reversed, then ρbausch = ∣∣ρwp

i

∣∣; otherwise, ρbausch = ∑2
i=1

∣∣ρwp
i

∣∣.
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3 Mesoscopic modelling

3.1 Critical resolved shear stress

The physical quantities, defined previously, are incorporated into the critical resolved shear stress (CRSS)
definition. Consequently, the CRSS τ

g
c on a slip system g is composed of several contributions: (i) immobile

dislocations density; (ii) polarized dislocations density, (iii) cells dislocation density, (iv) the initial critical
resolved shear stress τ

g
c0 which takes into account all other microstructural phenomena (e.g. precipitates), and

(v) f, the volume fraction of the dislocation sheets:

τ
g
c = τ

g
c0 + (1 − f ) τCell + f

4∑

i=1

(
τwdig + τ

wp
ig

)
, (10)

with:

• τCell, the isotropic hardening caused by the statistically stored dislocation density within the cell:

τCell = αμb
√

ρ (11)

where α is the dislocation interaction parameter and μ, the shear modulus.
• τwdig , the latent hardening caused by the immobile dislocation density, stored in a family of walls i:

τwdig = αμb
√

ρwd
i

∣
∣mg · nw

i

∣
∣ . (12)

• τ
wp
ig , the latent hardening caused by the dislocation wall polarity, associated with a family of dislocation
walls i :

τ
wp
ig = αμb

〈√∣∣ρwp
i

∣∣mg · nw
i · sign

(
ρ
wp
i

)〉
. (13)

3.2 Slip system activation

Plastic deformation takes place when a slip system becomes active. Slip occurs if the resolved shear stress τ g

on a system g is equal to the critical value τ
g
c and if the system remains sufficiently loaded during the stress

evolution:

τ g = Rg : σ II = τ
g
c and τ̇ g = Rg : σ̇ II = τ̇

g
c (14)

where Rg is the Schmidt tensor on a system g.
A : B denotes the double scalar product AijklBklmn using the Einstein summation convention. If γ̇ g denotes

the slip rate on a system g, the Schmid criterion is thus given by:

γ̇ g = 0 when τ g < τ
g
c , (15.1)

γ̇ g = 0 when τ g = τ
g
c and τ̇ g < τ̇

g
c , (15.2)

γ̇ g > 0 when τ g = τ
g
c and τ̇ g = τ̇

g
c . (15.3)

The main problem is to determine which combination of slip systems will actually be activated at each
step of the plastic deformation path. In this case, all possible combinations of potentially active systems must
be scanned in order to find one that satisfies the previous conditions (15) simultaneously. Since it has to be
performed in a large deformation framework, running time considerations become one of the main problems
of the model. Moreover, this method can give several equivalent solutions for some hardening matrices. Franz
et al. [26] proposed a different formulation to resolve the problem of ambiguous selection of deformation
systems and reduce the running time of the computations. Their numerical results in the case of BCC single
crystals present a good agreement with the “classical” crystal plasticity based on the critical resolved shear
stress. This formulation has been extended to the polycrystalline model framework by Lorrain et al. [31].
The accuracy of the simulations has also been evaluated at the mesoscopic and macroscopic levels thanks to
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mechanical experiments (tensile tests, neutron diffraction). Based on the work of [26], the relations (15.1),
(15.2) and (15.3) can be expressed by the following equation:

γ̇ g = Kg(τ g, τ
g
c )τ̇ g. (16)

The slip rate is linked to the resolved shear stress rate through a function Kg . Among several possible regu-
larization functions, the following form is adopted here [31]:

Kg = 1

η

[
1

2

(
1 + tanh

(
k

(
τ g

τ
g
c

− 1

)))] [
1

2

(
1 + tanh

(
kτ̇ g))

] [
1

2

(
1 + tanh

(
kτ g))

]
(17)

where η and k are numerical parameters.
Considering an additional split up of strain rate ε̇II into elastic and plastic parts, ε̇II can be written as:

ε̇II = ε̇eII + ε̇pII. (18)

The plastic strain rate ε̇pII is related to the tensor Rg and the slip rate γ̇ g in the system g by the expression:

ε̇pII =
∑

g

Rg γ̇ g. (19)

Using the usual generalized Hooke’s law and Eq. (16), the slip rate related to a system g becomes:

γ̇ g = Kg τ̇ g = KgRg : σ̇ II = KgRg : c : ε̇eII (20)

where c is the elastic constant tensor at the grain level.
After calculations, one obtains the following slip rate expression:

γ̇ h =
(
δgh + KgRg : c : Rh

)−1
KgRg : c : ε̇II = Nhg : ε̇II. (21)

3.3 Mechanical behaviour at grain level

Considering relations (18) and (21), and the usual generalized Hooke’s law, the constitutive elastoplastic
relationship for the single crystal can be deduced:

σ̇ II =
(

c +
∑

h

∑

g

c : Rh : Nhg : c
)

: ε̇II (22)

with:

σ̇ II =  : ε̇II (23)

where  is the tensor of tangent elastoplastic moduli of the single crystal written as follows:

 = c +
∑

g

∑

h

c : Rg :
(
δgh + KgRg : c : Rh

)−1
KhRh : c. (24)
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4 Meso–macro transition scheme

The relation between stress and strain rates can be written for the mesoscopic scales and macroscopic scale as
follows:

σ̇ II =  : ε̇II and σ̇ I = L : ε̇ I (25)

where L is the macroscopic tangent modulus for the fictional average homogeneous medium.  corresponds
to the modulus defined above. σ̇ I and ε̇ I are, respectively, the macroscopic stress and strain rates.

The local strain and stress rates can be obtained classically through the localization A and concentration
B tensors:

ε̇II = [
I + Sesh : L−1 : ( − L)

]−1 : ε̇ I = A : ε̇ I , (26)

σ̇ II =  : [
I + Sesh : L−1 : ( − L)

]−1 : L−1 : σ̇ I = B : σ̇ I (27)

where Sesh is the Eshelby tensor.
The averages of the local stress and strain tensors over the volume must match the overall strain and stress.

Following some algebraic calculations, these conditions give access to the overall elastoplastic tensor L as a
weighted average of the mesoscopic tensor l:

L =
〈
 : [

I + Sesh : L−1 : ( − L)
]−1

〉
. (28)

Equation (28) is a nonlinear implicit equation because Sesh depends on the unknown L in the framework of
elastoplastic self-consistent theory. The Eshelby tensor is calculated by an integral equation [32] that takes
the plastic anisotropy fully into account. This equation is solved iteratively. Once L is known, and specifying
an overall stress or strain increment, the model can give the corresponding stress or strain tensors for each
orientation. Therefore, the mechanical response of the polycrystal can be described.

5 Numerical results

In this section, the capability of the enhancedmodel to predict themechanical behaviour ofmetallic polycrystals
subjected to monotonic and complex load paths is verified at two scales: mesoscopic and macroscopic.

In order to perform numerical simulations, the model parameters associated with physical variables must
be identified. Their values are chosen to be coherent with those given in the literature.

For FCC metals, the plastic deformation has been modelled assuming (110)<111> slip systems. Identical
initial critical resolved shear–stress τc0 has been chosen for each deformation mode. This CRSS is determined
in order to reproduce the experimental yield stress. The values of k and η (Eqs. 17, 18) for each material have
been determined comparing the experimental results with our model under monotonic loading (in terms of
main active deformation systems and crystal reorientation). The immobilization parameters (I, Iwd, Iwp) and
the recovery parameters (R, Rwd, Rwp, R2, Rrev, Rncg) have been adjusted so that the model fits properly
the experimental pre-strain curve. This method of identification must be viewed with utmost caution since it
can lead to several numerical solutions. Thereafter, it would be thus interesting to develop an optimization
approach based on experimental and statistical analysis in order to reduce the interval of each parameter.

5.1 Prediction of intergranular strains

As a first step, the model has been used to predict the development of elastic lattice strains during monotonic
uniaxial loading. Clausen and Lorentzen [22,23] havemeasured lattice strains in commercial purity aluminium
loaded up to 3% total strain with in situ neutron diffraction measurements. Holden et al. [9] have carried out
a similar study on MONEL-400 (Cu–Ni alloy) samples during an uniaxial tensile test up to 5% total strain.
Lattice strains have been determined along the loading direction for 111 and 220 reflections. The elastic
single-crystal stiffness (GPa) for aluminium (MONEL-400) is as follows [9,33]: c11 = 107.3(220.8), c12 =
60.9(148), c44 = 28.3(107.4).

The initial texture is considered as isotropic and described by three randomly generated Euler’s angles.
Lattice rotation and thus texture changes are incorporated in themodel. Themodel calculationswere performed
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Fig. 3 Simulated and experimental macroscopic tensile curves for aluminium and MONEL-400

Table 2 Material parameters used for aluminium and for MONEL-400

τc0 (MPa) k η α I Iwd Iwp ρ0 (m−2) R (m) Rwd (m) Rwp (m) Rncg (m) Rrev (m) R2 (m)

Aluminium
11 0.5 150 0.1 10−2 3 10−1 10−1 109 10−9 10−9 10−9 10−9 5 × 10−9 5 × 10−9

MONEL-400
69 1.7 180 0.13 0.2 3 × 10−1 10−1 3 × 109 5 × 10−9 5 × 10−9 5 × 10−9 5 × 10−9 10 × 10−9 10 × 10−9

0

200

400

600

0 1 2 3

L
at

tic
e 

st
ra

in
 (x

10
-6

)

Macroscopic strain (%)

Aluminum: Experimental (220)

Aluminum: Simulation (220)
0

600

1200

1800

0 1 2 3 4 5

L
at

tic
e 

st
ra

in
 (x

10
-6

)

Macroscopic strain (%)

Monel-400: Experimental (220)

Monel-400: Simulation (220)

Fig. 4 Simulated and experimental elastic lattice strains for the 220 reflection for aluminium and MONEL-400
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Fig. 5 Simulated and experimental elastic lattice strains for the 111 reflection for aluminium and MONEL-400

for a set of 1000 spherical inclusions. This number of crystallites has been chosen to simulate the polycrystalline
aggregate in an efficient way.

The model parameters have been determined fitting the experimental macroscopic tensile curves plotted
in Fig. 3. The parameter values are listed in Table2. The predicted lattice strains are plotted in Figs. 4 and 5.
The experimental data are also shown in these plots. The accuracy on the experimental lattice strains is about
10−4.
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Table 3 Chemical compositions of aluminium alloy 6060 and AISI 316L austenitic stainless steel

Si (%) Fe (%) Ng (%) Ti (%)

Aluminium alloy 6060
0.46 0.19 0.47 0.01

C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Ni (%) Mo (%) Cu (%) N (%) Co (%)

AISI 316L austenitic stainless steel
0.015 0.31 1.44 0.028 0.021 16.51 10.46 2.13 0.18 0.02 0.04

Figure3 shows that the model enables a very accurate representation of the measured macroscopic stress–
strain curves using the fitted parameters shown in Table2. The relative deviation between experimental and
simulation results is around 2% for both materials. This is a first validation for the model on a macroscopic
scale in monotonic loading for FCC structure.

In order to validate the model at mesoscopic scale, neutron diffraction has been used (Figs. 4, 5) for
aluminium and MONEL-400 materials. The development of lattice strains is nonlinear once the specimen
reaches the plastic regime. The model predicts this development on the elastic and plastic regimes. For the 220
reflection, the numerical predictions show a better agreement with experimental results. At 3% macroscopic
strain for aluminium, the relative deviation is 3%. For MONEL-400, this deviation reaches 2% at 5% total
strain. For the 111 reflection, the relative deviation is close to 0% at 3% macroscopic strain for aluminium but
reaches 9% at 5% total strain for MONEL-400.

In a general way, the obtained results show that the model is able to predict the material behaviour at the
mesoscopic and the macroscopic scales for FCC materials under monotonic loading.

In the next section, we will evaluate the ability of the model to simulate correctly the different physi-
cal aspects of the behaviour and the induced microstructure during uniaxial Bauschinger tests in tension–
compression and compression–tension.

5.2 Prediction of Bauschinger effect

5.2.1 Materials and mechanical tests

The materials studied are an AISI 316L austenitic stainless steel and an aluminium alloy 6060. Their chemical
compositions are detailed in Table3. The specimens were cylindrical with a 20-mm diameter and a 140-mm
length. Optical microscopy and scanning electron microscopy (SEM) experiments have been performed on
the samples in order to reveal the grain size and morphology. Observations (not presented here) revealed an
average grain size of 15µm for the austenitic stainless steel and 90µm for aluminium. The grain morphology
study of two materials shows spherical forms.

For our simulations, the elastic single-crystal stiffness (GPa) for aluminium alloy 6060 (AISI 316L
austenitic stainless steel) is as follows: c11 = 104.54(248.35), c12 = 59.22(99.35), c44 = 25.88(70.43).

The initial residual stresses (longitudinal and transversal) were analysed in our laboratory with a four-
circle XRD 3003 PTS SEIFERT goniometer using Kα chromium radiation and equipped with 0.5mm diameter
collimator. The diffraction peaks [(220) plane for austenitic stainless steel and (311) plane for aluminium alloy]
were collected by a position-sensitive detector. Using Bragg’s law, the interplanar spacing was calculated
from diffraction peaks displacements for AISI 316L austenitic stainless steel. The modified sin2ψ method
for determining the stress field in anisotropic materials was used in order to study the stress evolution in our
stainless steel sample. The initial residual stresses measured in our materials are negligible (around± 10MPa).

Several tension–compression and compression–tension tests with different pre-strains in tension (2, 4, 5,
6 and 10% for AISI 316L austenitic stainless steel; and 2, 3, 4 and 5% for aluminium 6060) were performed
(Figs. 6, 7).

From experimental results (Figs. 6, 7), some remarks can be listed:

• For the first loading, the elastoplastic transient parts have a low radius of curvature as compared to the
transient parts of the second one.

• During the reverse test, the transient part radius of curvature is important if the pre-strain is important.
• During the second loading, the stress values are higher than the first loading at the same strain.
• The yield strength for the second loading is lower than the first one.

These remarks agree with previous works [34].
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Fig. 6 Simulated and experimental stress–strain curves for aluminium alloy 6060 (a) and AISI 316L austenitic steel (b) during
tensile–compression tests

-240

-140

-40

60

160

-3 -2 -1 0

m
ac

ro
sc

op
ic

 st
re

ss
 (M

Pa
)

Macroscopic strain (%)

Exprerimental

Simulation

-500

-300

-100

100

300

-7 -5 -3 -1

M
ac

ro
sc

op
ic

 st
re

ss
 (M

Pa
)

Macroscopic strain (%)

Experimental

Simulation

(a) (b)

Fig. 7 Simulated and experimental stress–strain curves for aluminium alloy 6060 (a) and AISI 316L austenitic steel (b) during
compression–traction tests

Fig. 8 Initial X-ray diffraction pole figures obtained on (200) and (111) diffracting planes of aluminium alloy 6060 (a) and AISI
316L austenitic steel (b)

5.2.2 Comparison between experimental and predicted results

The simulation results are compared to the experimental data (Figs. 6, 7). Texture measurements were analysed
with a four-circleXRD3003 PTSSEIFERTgoniometer. Kα copper radiationwas used. TheX-ray beamoutput
collimator had a 0.5-mm diameter. The diffraction peaks were recorded with a position-sensitive detector. We
have measured incomplete pole figures (PF) on a 5×5◦ grid with tilt and azimuth angles ranging from 0 to 60◦
and 0 to 360◦, respectively. For each experimental direction, the diffraction pattern has been adjusted using
a nonlinear least-squares analysis and assuming pseudo-Voigt peak profiles in order to evaluate background
noise and obtain peak intensities.

The orientation distribution function calculationwas performedwith experimental {111}, {220} and {200}
polefigureswith the help of theWIMValgorithm implemented in theBEARTEXprogrampackage [35] (Fig. 8).



2726 J. Fajoui et al.

Table 4 Parameters used for aluminium alloy 6060 and for AISI 316L austenitic stainless steel

τc0 (MPa) k η α I Iwd Iwp ρ0 (m−2) R (m) Rwd (m) Rwp (m) Rncg (m) Rrev (m) R2 (m)

Aluminium alloy 6060
72 0.5 100 0.1 0.1 0.3 0.1 1011 8 × 10−9 8 × 10−9 8 × 10−9 8 × 10−9 11 × 10−9 11 × 10−9

AISI 316L austenitic stainless steel
60 0.9 200 0.3 0.2 0.35 0.2 5 × 109 7 × 10−9 7 × 10−9 7 × 10−9 7 × 10−9 15 × 10−9 15 × 10−9

The initial texture is described by the three experimental Euler’s angles. The model calculations were
performed for a set of 1000 spherical inclusions. Thematerial parameters (Table4) have been determined fitting
the experimental monotonic tensile curve (Figs. 7, 8). Whatever the material, a good correlation is obtained
with the reference data. All experimental characteristics including the Bauschinger effect and the macroscopic
work hardening are reproduced by the model for the tension–compression and compression–tension loadings
at different pre-strain. For aluminium samples, the relative deviation of both results is between 0 and 10%.
For AISI 316L austenitic stainless steel, the relative deviation is around 8%.

6 Conclusion

In this paper, a newapproachhas beendeveloped in order to predict the elastoplastic behaviour of polycrystalline
FCC materials under both monotonic and sequential loadings. This approach is based on a coupling between
an intragranular description and a homogenization method. The dislocation density evolution is taken as
an internal variable that can be set to one of the three following densities: the cell dislocation density, the
immobile dislocations density and the directionally movable dislocation density. This description reproduces
the softening and hardening phenomena observed during plasticity and allows to determine the grain behaviour.
The meso–macro transition performed by an EPSC model is used to deduce the macroscopic behaviour of the
polycrystal.

Different numerical results concerning the prediction of macroscopic and mesoscopic behaviour of poly-
crystal with FCC symmetry are presented, and a correct agreement is observed between the simulation data
and the experimental results.
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