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Abstract The present work considers fiber reinforced composite materials in which the fibers have more than
just a stiffening function. The composite is assumed to be composed of a non-conductingmatrix reinforcedwith
electroelastic fibers that conduct both current and heat in addition to supporting an applied load. The material
system is treated as equivalent homogenized material that is nonlinearly elastic and transversely isotropic with
the fiber direction as the direction of transverse isotropy. General constitutive equations are developed for the
stress, polarization vector, current density vector and heat flux in terms of the deformation, electric field vector
and temperature gradient. From these the special constitutive equations are extracted for a non-conducting
matrix with conducting reinforcing fibers.

1 Introduction

Composite materials consisting of a relatively soft matrix reinforced with stiff fibers are an important class
of engineering materials. Applications involve tires, hoses and soft biological tissues. Such materials are
often treated as equivalent homogenized material systems and are modeled as being nonlinearly elastic and
transversely isotropic with the fiber direction as the direction of transverse isotropy. Although such models
provide little insight into fiber/matrix interaction, they are useful for studying the overall structural influence
of the reinforcement. There is now a large body of literature on such studies. In these models, the fibers are
not capable of responding to external fields such as electromagnetic fields. Their sole function is to provide
stiffness in specific directions.

Before proceeding with the articulation of our problem of interest, namely situations wherein the fiber is
capable of being stimulated by external fields and not merely the applied traction, a few words concerning the
status of the “homogenization” of the fiber reinforced composites are warranted. In the real composite that is
made up of the matrix and the fiber, at any point belonging to the matrix, we usually have a material that is
isotropic. Also, with regard to the fiber itself, each point in the fiber might be isotropic or possess some other
symmetry. However, the inhomogeneous composite, when subject to deformations, globally might seem to
have preferential directional response, say that in the direction of the fibers. This does not mean that at every
point in the composite the symmetry is that which the global response seems to suggest; it is important to bear
in mind that notions such as material symmetry refer to response at a point in the material, and one should
not confuse the body’s inhomogeneity that leads to its global response having directional preference as being
an anisotropic body wherein at each material point the body has a certain material symmetry. Nonetheless, in
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view of the fact that the body globally responds with directional preference, in our case the direction along
which the fiber is aligned, we model the body as though it is transversely isotropic, knowing full well that this
is not strictly correct.

There is increasing interest in composite materials in which the fibers have more than just a stiffening func-
tion. The light weight requirements of advanced aerospace applications suggest the need for the development
of composites in which fibers perform several functions. There are numerous examples of multi-functional
fiber reinforced composites in biomechanics. The heart, uterus and bladder are reinforced by muscle fibers
that contract in response to electrical signals, and the brain has a distribution of fiber-like axons that transmit
signals. It can be expected that innovations in material science will lead to the production of reinforcing fibers
that can carry load as well as perform other functions. These examples motivate this paper, which is to develop
a constitutive theory for composite materials whose fibers are multi-functional.

Thework presented here is based on themethods developed in [1,2], and summarized in [3], for determining
the relations between tensors of various orders for different material symmetry groups. In an early application
of these methods, Pipkin and Rivlin [4] developed a constitutive equation for the electric current density vector
as a function of electric field and deformation assuming the material to be isotropic. They then [5] developed
constitutive equations for the electric current density vector, heat flux and magnetic induction as functions of
the electric field vector, magnetic induction vector and temperature gradient, again for isotropic materials, but
without considering deformation. Toupin and Rivlin [6] discussed electro-magneto-optical effects for isotropic
materials. Using the methods developed in [1,2], Rajagopal andWineman [7] developed a constitutive relation
for the stress in an electroactive solid in terms of the deformation and the electric field vector. Later, Dorfmann
and Ogden [8] developed a constitutive theory for nonlinear electroelastic materials within the context of
the thermodynamically based electromagnetic theory presented by Kovetz [9]. Recently, Bustamante and
Rajagopal have developed implicit constitutive relations to describe the response of electroelastic [10–12] and
magnetoelastic bodies.

Interest in fiber reinforced composite materials led to the development of stress–strain relations for trans-
verse isotropy [13]. An important feature of these constitutive equations is that the process of imposing the
material symmetry restrictions introduces terms that can be identifiedwith the fiber stretch and the fiber tension.
Other quantities also arise in the constitutive equation whose interpretation is less clear. Merodio and Ogden
[14] suggested that these are related to the interaction between the fiber and the matrix. O’Neill and Spencer
[15] developed a constitutive equation for the heat flux vector as a function of the temperature gradient and
deformation for transversely isotropic materials. Material symmetry restrictions introduce several quantities,
one of which can be identified with the temperature gradient along a fiber.

A general observation concerning material symmetry is warranted. There are different points of view with
regarding the description of the material symmetry and the consequent constitutive representation of a body.
The original description of anisotropy seems to be restricted to invariance of response of the body to sub-groups
of rotations (see the discussion in Rajagopal [16]). However, symmetry considerations also consider invariance
to the full orthogonal group, namely rotations and inversions, and also unimodular transformations. From the
point of view of the experimentalist, while one can subject a body to rotations and determine the response of
the body, one cannot subject a body to inversions. Of course, one can subject another body whose internal
structure is the mirror image of the body of interest and consider response, but this is not the same body. Also,
while one can subject a body to a unimodular transformation like shear, and consider its response, this was
clearly not the intent of the original classification of anisotropy.

The present work is concerned with fiber reinforced composite materials in which the fibers are deformable
and can conduct electrical current and heat. Representations for transverse isotropy are developed for constitu-
tive equations for the stress, polarization vector, current density vector and heat flux in terms of the deformation,
electric field vector and temperature gradient. It is shown that each dependent variable depends on quantities
that have the physical interpretation of the components of the electric field vector and temperature gradient
along the stretched fiber. The constitutive assumptions, influence of superposed rigid body motions and mate-
rial symmetry restrictions are introduced in Sect. 2. Section 3 contains a description of the symmetry groups
associated with transverse isotropy. This section also provides the invariants used in developing constitutive
representations. The representations for the stress, polarization, electric current density and heat flux are de-
veloped in Sect. 4. Section 5 presents the special case of a non-conducting matrix with conducting reinforcing
fibers. Concluding comments are provided in Sect. 6.
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2 Formulation

Consider a composite material consisting of extensible elastic fibers distributed within an elastic matrix. It is
assumed that both constituents can conduct electrical currents when in an electrical field as well as conduct
heat when there is a temperature gradient and that both phenomena are affected by deformation. As has been
done when only mechanical effects are of interest, it is assumed that the fiber-matrix system can be represented
as an equivalent homogenized nonlinear elastic transversely isotropic material that conducts both electrical
current and heat.

LetX and x denote, respectively, the position vectors of a particle in the reference and current configurations.
They are related by the motion x = x(X, t) for which the corresponding deformation gradient is F = ∂x/∂X.
The right and left Cauchy-Green tensors are C = FTF and B = FFT , respectively.

Guided by the discussions in [4–6,8,17], it is assumed that the total stress tensor T, the polarization vector
P, the electrical current density vector J and the heat flux vector q are functions of the deformation gradient
F, the electric field vector E and the spatial temperature gradient g = ∂θ/∂x.

In thermodynamic treatments of nonlinear electroelasticity, i.e., [8], a free energy ψ is introduced that is
assumed to depend on the above list of independent variables. Considerations based on the second law of
thermodynamics show that ψ is independent of the temperature gradient g = ∂θ/∂x. It is also shown that T
is expressed in terms of ∂ψ/∂F and P is expressed in terms of ∂ψ/∂E. Thus, T and P depend on F and E but
not g.

Although the intent here is to develop representations for constitutive equations using themethods presented
in [1–3], it is useful to incorporate the above mentioned simplifications obtained from thermodynamical
considerations. Thus, the assumed constitutive relations are:

T = T(F,E), (1)

P = P(F,E), (2)

J = J(F,E, g), (3)

q = q(F,E, g). (4)

Consideration of the influence of superposed rigid body rotations shows that (1)–(4) have the forms:

T = F�T (C,FTE)FT , (5)

P = F�P(C,FTE), (6)

J = F�J (C,FTE,FTg), (7)

q = F�q(C,FTE,FTg). (8)

For notational convenience, let e = FTE and g̃ = FT g.
LetM denote a transformation of amaterial symmetry group. It is assumed that the samematerial symmetry

group applies to all of the constitutive relations (5)–(8). Standard arguments show that the response functions
in (5)–(8) are subject to these restrictions:

�T (MTCM,MT e) = MT�T (C, e)M, (9)

�P(MTCM,MT e) = MT�P(C, e), (10)

�J (MTCM,MT e,MT g̃) = MT�J (C, e, g̃), (11)

�q(MTCM,MT e,MT g̃) = MT�q(C, e, g̃). (12)

The method for imposing these restrictions, developed in [1,2] and summarized in [3], is briefly reviewed
here. Let u be an arbitrary vector and define the scalar functions:

�̂(T ) = u · �Tu, (13)

�̂(P) = �P · u, (14)

�̂(J ) = �J · u, (15)

�̂(q) = �q · u. (16)
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It then follows from (9) to (12) that

�̂(T )(MTCM,MT e,MTu) = �̂(T )(C, e,u), (17)

�̂(P)(MTCM,MT e,MTu) = �̂(P)(C, e,u), (18)

�̂(J )(MTCM,MT e,MT g̃,MTu) = �̂(J )(C, e, g̃,u), (19)

�̂(q)(MTCM,MT e,MT g̃,MTu) = �̂(q)(C, e, g̃,u). (20)

Thus, �̂(T ), �̂(P), �̂(J ) and �̂(q) are scalar invariants under the transformations of the symmetry group. �̂(T )

is quadratic in the components of u, while �̂(P), �̂(J ) and �̂(q) are linear in the components of u. Each can be
expressed in terms of a basic set of invariants, an integrity basis, with those depending on u playing a particular
role. Before providing further details, it is necessary to specify certain aspects of transverse isotropy.

3 Transverse isotropy

Let ao be a unit vector along the fibers in the reference configuration. This defines the preferred direction for
transverse isotropy. Transverse isotropy is characterized by the following transformations [15]:M(α)—rotation
about ao through angle α, RT—reflection in a plane containing ao, RL—reflection in a plane perpendicular to
ao, D—rotation through π about an axis perpendicular to ao. These generate five distinct material symmetry
groups: T1 : [M(α)]; T2 : [M(α), RT ]; T3 : [M(α),RL ]; T4 : [M(α),RT ,RL ]; T5 : [M(α),D].

As mentioned earlier, in the laboratory, one would only be able to determine the response by rotating a
sample. That is, the only symmetries that can be tested with respect to the body are T1 and T5. While another
body whose structure corresponds to that which can be obtained by transformations belonging to T2, T3 and
T4 can be tested, we have to bear in mind that one cannot obtain a new body from one that is being tested
by members belonging to T2, T3 and T4. Here, we shall interpret material symmetry within the context of
the definition given in [15]. The body whose symmetry group is given by T1 is referred to as a rotationally
transversely isotropic body. In this study, we shall be primarily interested in the constitutive representation for
rotationally transversely isotropic bodies.

As is shown in [18], the invariants of C, e, g̃ and u under any of these material symmetry groups are
isotropic invariants of C, e, g̃, u and ao. These invariants for group T1 are listed here in two sets.

3.1 Invariants of C, e, g̃ and ao

These consist of the following:

I ′
1 = trC, I ′

2 = 1

2

[
trC2 − tr(C)2

]
, I ′

3 = det(C),

I ′
4 = ao · Cao, I ′

5 = ao · C2ao,

I ′
6 = e · e, I ′

7 = e · Ce, I ′
8 = e · C2e,

I ′
9 = g̃ · g̃, I ′

10 = g̃ · Cg̃, I ′
11 = g̃ · C2g̃,

I ′
12 = e · ao, I ′

13 = e · Cao, I ′
14 = e · C2ao,

I ′
15 = g̃ · ao, I ′

16 = g̃ · Cao, I ′
17 = g̃ · C2ao

I ′
18 = e · g̃, I ′

19 = e · Cg̃, I ′
20 = e · C2g̃, (21)

and

Ĩ1 = [
e,Ce,C2e

]
, Ĩ2 = [

g̃,Cg̃,C2g̃
]
, Ĩ3 = [

ao,Cao,C2ao
]
,

Ĩ (ABC)
4 =

[
CAe,CBe,CCao

]
, Ĩ (ABC)

5 =
[
CAe,CBao,CCao

]
,

Ĩ (ABC)
6 =

[
CAe,CBe,CC g̃

]
, Ĩ (ABC)

7 =
[
CAe,CB g̃,CC g̃

]
,

Ĩ (ABC)
8 =

[
CAg̃,CB g̃,CCao

]
, Ĩ (ABC)

9 =
[
CAg̃,CBao,CCao

]
,

Ĩ (ABC)
10 =

[
CAg̃,CBe,CCao

]
(22)
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where [a,b, c] denotes the scalar triple product of vectors a,b, c.

3.2 Invariants of C, e, g̃ , ao and u

This set of invariants contains those listed in (21) and (22) along with

J1 = u · u, J2 = e · u, J3 = g̃ · u, J4 = ao · u,

J5 = u · Cu, J6 = u · C2u, J7 = ao · Cu, J8 = ao · C2u,

J9 = e · Cu, J10 = e · C2u, J11 = g̃ · Cu, J12 = g̃ · C2u, (23)

and the scalar triple products,

J̃ (ABC)
1 =

[
CAao,CBao,CCu

]
, J̃ (ABC)

2 =
[
CAao,CBu,CCu

]
,

J̃ (ABC)
3 =

[
CAe,CBe,CCu

]
, J̃ (ABC)

4 =
[
CAe,CBu,CCu

]
,

J̃ (ABC)
5 =

[
CAg̃,CB g̃,CCu

]
, J̃ (ABC)

6 =
[
CAg̃,CBu,CCu

]
,

J̃ (ABC)
7 =

[
CAao,CB g̃,CCu

]
, J̃ (ABC)

8 =
[
CAao,CBe,CCu

]
,

J̃ (ABC)
9 =

[
CAg̃,CBe,CCu

]
. (24)

For the purpose of economy of presentation, the exponents A, B,C in the scalar triple products take on the
values 0, 1, 2. Some of the scalar triple products may be expressible in terms of other invariants and therefore
may be eliminated from the list. In other words, the set of invariants in (22) and (24) may be reducible.
Moreover, as pointed out in [15], some of the scalar triple products change sign under the transformations of
groups T2 through T5. Their squares and products must then be considered in the list of invariants, as was done
in [15]. If these can be expressed as polynomials of other invariants, then they need not be included in (22) and
(24). The determination of such relations for these material symmetry groups is beyond the scope of this work.
Even in the simpler case when there is only heat conduction and the electric field is not considered, Spencer
[18] devoted several publications to this issue. Indeed, it will be shown that for the particular application
considered later, i.e., the specialization of these results to fiber reinforced composites, it may not require the
development of an irreducible set.

4 Constitutive relations

Let e = FTE and g̃ = FT g be substituted in the invariants (21). With use of the Cayley–Hamilton theorem,
this leads to an equivalent set of invariants now expressed in terms of B, E, g and ao:

I1 = trB, I2 = 1

2

[
trB2 − tr(B)2

]
, I3 = det(B),

I4 = Fao · Fao, I5 = Fao · BFao,
I6 = E · E, I7 = E · BE, I8 = E · B2E,

I9 = g · g, I10 = g · Bg, I11 = g · B2g,

I12 = E · Fao, I13 = E · BFao, I14 = E · B2Fao,
I15 = g · Fao, I16 = g · BFao, I17 = g · B2Fao,

I18 = E · g, I19 = E · Bg, I20 = E · B2g. (25)

The scalar triples in (22) can be expressed in terms of B, E, g and ao in a similar manner. The resulting
expressions will play no role in the special theory to be presented later and therefore are omitted.

Several of the invariants in (25) represent physical quantities of interest. Invariant I4 represents the square
of the fiber stretch ratio. Invariants I6 and I9 represent the magnitudes of the electric field and temperature
gradients, respectively. Invariants I12 and I15, respectively, represent the components of the electric field and
temperature gradient along the stretched fiber. Let Î denote the set of these invariants, i.e.,

Î = [I4, I6, I9, I12, I15] . (26)
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4.1 Representation for the stress

Let �̂(T ) = ∑
φ

(T )
α Ĵ (α) in which φ

(T )
α is a function of the invariants in (21) and (22) that do not depend on

g̃ and Ĵ (α) is a polynomial that is quadratic in the components of vector u and formed from the invariants in
(23) and (24) that do not depend on g̃,

�̂(T ) = φo J
(T )
1 + φ

(T )
1 J 22 + φ

(T )
2 J 24 + φ

(T )
3 J2 J4 + φ

(T )
4 J5 + φ

(T )
5 J6 + φ

(T )
6 J 27

+ φ
(T )
7 J 28 + φ

(T )
8 J 29 + φ

(T )
9 J 210 + φ

(T )
10 J2 J7 + φ

(T )
11 J2 J8 + φ

(T )
12 J2 J9

+ φ
(T )
13 J2 J10 + φ

(T )
14 J4 J7 + φ

(T )
15 J4 J8 + φ

(T )
16 J4 J9 + φ

(T )
17 J4 J10 + φ

(T )
18 J7 J8

+ φ
(T )
19 J7 J9 + φ

(T )
20 J7 J10 + φ

(T )
21 J8 J9 + φ

(T )
22 J8 J10 + φ

(T )
23 J9 J10 + �̂(T )∗ . (27)

�̂
(T )∗ represents a summation over polynomials formed from the invariants in (24) that are quadratic in u as

well as a summation over the exponents A, B,C in the scalar triple products as they take on the values 0, 1, 2.
An explicit listing of these terms would substantially lengthen the expression for �̂(T ). Some of the terms
may vanish, for example, the term with J̃ ABC

1 in which A = B. Others may be expressible in terms of other
invariants and therefore may be eliminated from the list. However, for the purposes of this paper, it is sufficient
to just describe the structure of the terms represented by �̂

(T )∗ .
The tensor �T in (13) is recovered by the operation

(�T )i j = ∂2�̂(T )

∂ui∂u j
. (28)

The expression obtained by combining (5) and (28), and then setting e = FTE, is simplified with the use of
the Cayley–Hamilton theorem. This leads to a constitutive equation for T in terms of B,E and Fao,

T = α(T )
o I + α

(T )
1 B + α

(T )
2 B2

+ sym
([

α̂(T )
o I + α̂

(T )
1 B + α̂

(T )
2 B2

]
Fao ⊗

[
β̂(T )
o I + β̂

(T )
1 B + β̂

(T )
2 B2

]
Fao

)

+ sym
([

α̂
(T )
3 I + α̂

(T )
4 B + α̂

(T )
5 B2

]
E ⊗

[
β̂

(T )
3 I + β̂

(T )
4 B + β̂

(T )
5 B2

]
E

)

+ sym
(
Fao ⊗

[
α̂

(T )
6 I + α̂

(T )
7 B + α̂

(T )
8 B2

]
E

)

+ sym
(
BFao ⊗

[
α̂

(T )
9 I + α̂

(T )
10 B + α̂

(T )
11 B2

]
E

)

+ sym
(
B2Fao ⊗

[
α̂

(T )
12 I + α̂

(T )
13 B + α̂

(T )
14 B2

]
E

)
+ F�∗

TF
T , (29)

where�∗
T represents the termsobtained fromsubstituting �̂

(T )∗ in (28) andwhere sym (A ⊗ B) = A⊗B+B⊗A.
An example of the terms arising from F�∗

TF
T can be seen by noting that vectors whose components are given

by CAao and CBe can be written as FTBA−1Fao and FTBBE, respectively. Then, J̃ ABC
8 with C = 0 would

introduce a term of the form
(
FTBA1Fao × FTBB1E

)

i

(
FTBA2Fao × FTBB2E

)

j

+
(
FTBA1Fao × FTBB1E

)

j

(
FTBA2Fao × FTBB2E

)

i
. (30)

The scalar coefficients in (29) are now functions of the invariants I1–I8 and I12–I14 in (25) and the invariants
in (22) that do not depend on g̃, were they to be re-expressed in terms of B,E and Fao.

For an incompressible material, the first term in (29) would be replaced by −pI with p representing an
arbitrary spherical stress and invariant I3 would be dropped from the list in (25). The tensorial structure of
the first three terms in (29) is the same as for an isotropic elastic solid. When considering an isotropic matrix
reinforced with fibers, these three terms are usually interpreted as representing the contribution of the matrix.
The tensorial structure of the next group of terms, containing B and Fao, is the same as in the constitutive
equation for a transversely isotropic material. It has been shown in [15,18] that some of the tensor products in
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this group can be expressed in other tensors and invariants and thus can be eliminated from (29). In other words,
there is no loss in generality if β̂

(T )
1 = β̂

(T )
2 = 0. The tensorial structure of the third group of terms, containing

B and E, appears in the constitutive equations for an isotropic electroelastic material in [7,8]. Similarly, there
is no loss in generality if β̂

(T )
4 = β̂

(T )
5 = 0. The remaining tensorial terms in (29) are unique to the present

constitutive theory and introduce effects that arise from the interaction of the electric field, the deformation
and transverse isotropy. It may be possible to express some of these in terms of other tensors and invariants,
thereby reducing the complexity of the constitutive equations, but such a study is beyond the scope of the
present work. The scalar coefficients in (29) introduce additional interactions through their dependence on the
invariants I7, I8 and I12–I14 in (25). It should be noted that the material symmetry considered in [7,8] was the
full orthogonal group. Phenomena arising from triple scalar invariants such as in (22) did not appear and were
not studied.

4.2 Representation for the polarization

Let �̂(P) = ∑
φ

(P)
α Ĵ (α) in which φ

(P)
α is a function of the invariants in (21) and (22) that do not depend on g̃

and Ĵ (α) is an invariant of (23) or (24) that does not depend on g̃ and is linear in the components of vector u :

�̂(P) = φ(P)
o J2 + φ

(P)
1 J4 + φ

(P)
2 J7 + φ

(P)
3 J8 + φ

(P)
4 J9 + φ

(P)
5 J10 + �̂(P)∗ . (31)

�̂
(P)∗ represents terms constructed from the scalar triple products in (24). Comments similar to those following

(27) apply here also.
The vector �P in (14) is recovered by the operation

(�P)i = ∂�̂(P)

∂ui
. (32)

The expression obtained by combining (6) and (32), setting e = FTE, and then simplifying with the use of
the Cayley–Hamilton theorem leads to

P =
[
α̂

(P)
0 I + α̂

(P)
1 B + α̂

(P)
2 B2

]
E +

[
α̂

(P)
4 I + α̂

(P)
5 B + α̂

(P)
6 B2

]
Fao + F�∗

P (33)

where �∗
P represents the terms obtained from substituting �̂

(P)∗ in (32). The scalar coefficients in (33) are now
functions of the invariants I1–I8 and I12–I14 in (25) and the invariants in (22) that do not depend on g̃, were
they to be re-expressed in terms of B,E and Fao.

An example of the terms contained in �̂
(P)∗ can be seen by considering the invariant J̃ ABC

8 with A = B =
C = 0 in (24). It would generate the term

det(F)E × B−1Fao. (34)

The tensorial structure of the first expression in (33), withB andE, appears in the polarization vector developed
in [8]. The terms with Fao are introduced by transverse isotropy.

4.3 Representation for the electrical current density

Let �̂(J ) = ∑
φ

(J )
α Ĵ (α) in which φ

(J )
α is a function of the invariants in (21) and (22) and Ĵ (α) is an invariant

of (23) or (24) that is linear in the components of the vector u :

�̂(J ) = φ(J )
o J2 + φ

(J )
1 J3 + φ

(J )
2 J4 + φ

(J )
3 J7 + φ

(J )
4 J8

+ φ
(J )
5 J9 + φ

(J )
6 J10 + φ

(J )
7 J11 + φ

(J )
8 J12 + �̂(J )∗ . (35)

�̂
(J )∗ represents terms constructed from the scalar triple products in (24). Comments similar to those following

(27) also apply here.
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The tensor �J in (15) is recovered by the operation

(�J )i = ∂�̂(J )

∂ui
. (36)

The expression obtained by combining (7) and (36), setting e = FTE and g̃ = FT g, and then simplifying with
the use of the Cayley–Hamilton theorem, leads to

J =
[
α̂

(J )
0 I + α̂

(J )
1 B + α̂

(J )
2 B2

]
E +

[
α̂

(J )
4 I + α̂

(J )
5 B + α̂

(J )
6 B2

]
Fao

+
[
α̂

(J )
7 I + α̂

(J )
8 B + α̂

(J )
9 B2

]
g + F�∗

J . (37)

The scalar coefficients in (37) are now functions of the invariants in (25) and the invariants in (22), were
they to be re-expressed in terms of B,E, g and Fao.The term in �̂

(J )∗ generated by invariant J̃ ABC
9 with

A = B = C = 0 is
det(F)g × E. (38)

4.4 Representation for the heat flux

The constitutive equation for q has the same mathematical form as for J. Thus,

q =
[
α̂

(q)
0 I + α̂

(q)
1 B + α̂

(q)
2 B2

]
E +

[
α̂

(q)
4 I + α̂

(q)

5 B + α̂
(q)
6 B2

]
Fao

+
[
α̂

(q)
7 I + α̂

(q)
8 B + α̂

(q)
9 B2

]
g + F�∗

q . (39)

The scalar coefficients in (39) are now functions of the invariants in (25) and the invariants in (22), were they
to be re-expressed in terms of B,E, g and Fao.

5 Non-conducting matrix with conducting fibers

The constitutive Eqs. (29), (33), (37) and (39) were developed for a general transversely isotropic nonlinear
electroelastic solid that conducts electrical current and heat. The equations are quite complex, with many terms
and scalar coefficients that are functions of many invariant arguments. In order to be useful, these equations
should be simplified in accordance with a particular application. The present work considers the simplest
theory for a composite material composed of a non-conducting matrix reinforced with electroelastic fibers that
conduct both current and heat.

Equation (29) for the stress reduces to

T = α(T )
o I + α

(T )
1 B + α

(T )
2 B2 + α

(T )
4 Fao ⊗ Fao. (40)

Scalar coefficients α
(T )
o , α(T )

1 and α
(T )
2 depend only on invariants I1, I2 and I3 while α

(T )
4 depends on invariants

I4. I6 and I12. The first three terms in (40) represent the stress carried by the matrix, and the last term represents
the normal stress carried by the fibers. The stress in the matrix depends only on the deformation of the matrix,
while the stress in the fibers is affected by fiber stretch and the electric field along the fibers.

Equation (33) for the polarization becomes

P = α
(P)
0 Fao. (41)

The polarization vector is in the direction of the deformed fiber and is affected by fiber stretch and the electric
field along the fibers through the dependence of α

(P)
0 on invariants I4. I6 and I12. Equation (37) for the electric

current density becomes
J = α

(J )
0 Fao. (42)

The electrical current is along the deformed fiber and is affected by fiber stretch, the electric field along the
fibers and heat conduction along the fibers through the dependence of α

(J )
0 on the invariants in (26). Finally,

Eq. (39) for the heat flux becomes
q = α

(q)
0 Fao. (43)

Remarks similar to those for the current apply here.
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6 Concluding comments

In this paper, we have obtained representations for various physical quantities such as the stress, polarization,
electric current density and heat flux vector for a composite body comprised of a matrix embedded with fibers
that are aligned along a particular direction. These representations are very complex and involve material
moduli which are functions of various relevant invariants and are just too cumbersome to be useful. In fact, no
experimental program can be envisaged which will provide adequate information concerning these material
functions. Thus, it is left to the modeler to simplify these constitutive representations based on physical insight
for the specific initial-boundary value problem under consideration. Our intent was to provide the general
representation which can then be simplified.
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