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Abstract The paper presents a dual approach with respect to the local mean square error criterion to multi-
degree-of-freedom nonlinear systems under stationary Gaussian random excitation. It results in new values of
linearization coefficients that are obtained as global averaged values of all local linearization coefficients. Two
examples of typical two-degree-of-freedom nonlinear systems under zero-mean stationary Gaussian random
excitation are demonstrated. The results show that the accuracy of solutions by the proposed criterion is
significantly improved in comparison with the one by the classical equivalent linearization method, especially
when the nonlinearity is strong.

1 Introduction

Stochastic equivalent linearization or Gaussian equivalent linearization (GEL) proposed by Caughey [1] is a
popular method used for analysis of stochastic nonlinear systems. The method is based on the replacement
of a nonlinear oscillator under Gaussian excitation by a linear one under the same excitation. The standard
way of implementing this technique is that the coefficients of linearization are to be found from the classical
mean square error criterion which minimizes the equation error. Although the method is very efficient, its
accuracy decreases as nonlinearity is increasing and in many cases it results in unacceptable errors. For this
reason, a good deal of research has been conducted in recent decades on improving GEL, for example [2–6].
The method has also been investigated by many criteria [7–12]. In 2006, Crandall’s work [13] described a
number of interesting episodes in the history of the linearization technique that have arisen in the past half
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century. In 1995, based on the assumption that the global integration domain taken in the mean square error
criterion should be reduced to a local one where the response would be concentrated, Anh and Di Paola
[14] proposed a local mean square error criterion (LOMSEC). Further investigation [15–17] has showed an
improved accuracy of this criterion; however, the local domain in question was unknown and it has resulted
in the main disadvantage of LOMSEC. Recently a dual conception was proposed in the study of responses to
nonlinear systems [18] and has been developed in [19–21]. One significant advantage of the dual conception
is its consideration of two different aspects of a problem in question, which allows the investigation to be
more appropriate. In 2012, in a new development based on the dual conception to LOMSEC by Anh, Hung
and Viet [22], the authors proposed a global–local mean square error criterion (GLOMSEC) to single-degree-
of-freedom (SDOF) stochastic nonlinear systems, considering local and global levels, and thus new values of
linearization coefficients are obtained as global averaged values of all local linearization coefficients. Although
SDOF systems may provide an adequate mathematical representation of a considerable number of physical
problems, dynamic systemswithmulti-degrees-of-freedom (MDOF)must be used inmost cases of engineering.
Thus, it is needed to address the issue of application of GEL toMDOF systems subjected to random excitation.
The transition from the SDOF to theMDOF problem has been gradual over a half-century, and some researches
can be mentioned for example: Atalic and Utku [23] presented the GEL procedure for MDOF systems with
state space nonlinear equation of motion that are linearized according to the iterative scheme; Spanos [24]
developed GEL for symmetric or asymmetric MDOF nonlinear systems; Faravelli, Casciati and Singh [25]
provided two new procedures to GEL and their applicability to hysteretic systems; Casciati and Faravelli [26]
developed GEL for three-dimensional frames; Casciati, Faravelli and Venini [27] investigated complex and
plane structures under random excitation by means of the frequency domain method; Paola, Loppolo and
Muscolino [28] analysed MDOF systems under stochastic seismic; Falsone [30] developed GEL for MDOF
systems under parametric excitation; and others [31–33]. The above-mentioned researches are useful references
to this paper’s subject. This paper presents an extension of GLOMSEC to MDOF stochastic nonlinear systems
and implements two examples for demonstration. The same as results obtained by the analysis of SDOF
nonlinear systems [22], the numerical results for the two-degree-of-freedom nonlinear systems under white
noise excitation demonstrate a significant improvement in the accuracy of solutions, especially when the
nonlinearity is strong.

2 Formulation

We consider a MDOF nonlinear stochastic system in the following form:

Mq̈ + Cq̇ + Kq + �(q, q̇) = Q(t), (1)

where M = [mi j ]n×n,C = [ci j ]n×n, K = [ki j ]n×n are n × n constant matrices, defined as the inertia,
damping and stiffness matrices, respectively. �(q, q̇) = [�1�2 · · · �n]T is a nonlinear n-vector function of
the generalized coordinate vector q = [q1q2 · · · qn]T and its derivative q̇ = [q̇1q̇2 · · · q̇n]T . The symbol (T)
denotes the transpose of a matrix. The excitation Q(t) is a zero-mean stationary Gaussian random vector
process with the spectral density matrix SQ(ω) = [Si j (ω)]n×n , where Si j (ω) is the spectral density function
of elements Qi and Q j .

An equivalent linear system to the original nonlinear system (1) can be defined as

Mq̈ + (C + Ce)q̇ + (K + Ke)q = Q(t), (2)

where Ce = [cei j ]n×n, Ke = [kei j ]n×n are deterministic matrices. They are to be determined so that the

n-vector difference ε = [ε1, ε2, . . . , εn]T between the original and the equivalent system is minimized. For
the conventional linearization method, as shown in [29] by Roberts and Spanos, the matrices Ce, Ke and are
determined by the following criterion

E
{
εT ε
}

→ min
cei j ,k

e
i j

; (i, j = 1, 2, . . . , n), (3)

where E {.} denotes the mathematical expectation operation and cei j , k
e
i j are the (i, j) elements of the matrices

Ce, Ke and
ε = �(q, q̇) − Ceq̇ − Keq. (4)
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Upon utilizing the linearity property of the expectation operator E {.}, criterion (3) can be written in the
following form [29]

E
{
ε2α
}→ min

cei j ,k
e
i j

; (α = 1, 2, . . . , n). (5)

The necessary conditions for the criterion (5) to be true are

∂

∂cei j
E
{
ε2α
} = 0,

∂

∂kei j
E
{
ε2α
} = 0; (i, j = 1, 2, . . . , n). (6)

Utilizing equations (4) and (6), and implementing some necessary algebraic analyses, one obtains the expres-
sions to determine cei j , k

e
i j as follows

cei j = E

{
∂�i

∂q̇ j

}
, kei j = E

{
∂�i

∂q j

}
, (7)

where �i is the (i) element of �(q, q̇).
The spectral density matrix of the response process q(t) is of the form

Sq(ω) = [Sqi q j (ω)], (i, j = 1, 2, . . . , n), (8)

where Sqi q j (ω) is the (i, j)th element of Sq(ω).
Using the matrix spectral input–output relationship to the linear system (2), one gets

Sq(ω) = α(ω)SQ(ω)αT (ω), (9)

where α(ω) is the matrix of frequency response functions. It is known as

α(ω) = [−ω2M + iω(C + Ce) + (K + Ke)
]−1

. (10)

The mean values of the response can be calculated by the following equations:

E
{
qiq j
} =

∞∫

−∞
Sqi q j (ω)dω, E

{
qqT
}

=
∞∫

−∞
α(−ω)SQ(ω)αT (ω)dω,

E
{
q̇q̇T
}

=
∞∫

−∞
ω2α(−ω)SQ(ω)αT (ω)dω. (11)

Equations (2), (7), (9–11) establish a set of nonlinear algebraic equations to determine the mean values of the
response.

Denotingby p(q) the stationary joint probability density function (PDF)of thevectorq = [q1, q2, . . . , qn]T ,
we can write criterion (5) in the following form

E
{
ε2α
} =

+∞∫

−∞
(n)

+∞∫

−∞
ε2α p(q)dq → min

cei j ,k
e
i j

; (α, i, j = 1, 2, . . . , n). (12)

The square error criterion (the classical criterion) is very efficient, however, its accuracy decreases as
nonlinearity is increasing and in many cases it leads to unacceptable errors. Thus, the problem of modifying
the classical criterion in order to improve the accuracy has attracted the attention of many researches [2–
12]. Since the integration is taken over the entire coordinate space (−∞, +∞), criterion (12) may be called
global mean square error criterion. In 1995, based on the assumption that the global integration domain taken
in the classical criterion should be reduced to a local one where the response would be concentrated, Anh
and Di Paola [14] proposed a local mean square error criterion (LOMSEC) and established an algorithm for
SDOF stochastic nonlinear systems. The further investigations [15–17] have developed LOMSEC to MDOF
stochastic nonlinear systems, in which criterion (12) is modified by

+q01∫

−q01

(n)

+q0n∫

−q0n

ε2α p(q)dq → minimum
cei j ,k

e
i j

, (13)
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where q01, q02, . . . , q0n are given positive values. The expected integrations in (13) can be transformed to
non-dimensional variables by q01 = rσq1, q02 = rσq2, . . . , q0n = rσqn with r a given positive value;
σq1, σq2, . . . , σqn are the normal deviations of random variables of q1, q2, . . . , qn , respectively. Thus, criterion
(13) leads to

E
[
ε2α
] =

+rσq1∫

−rσq1

(n)

+rσqn∫

−rσqn

ε2α p(q)dq → minimum
cei j ,k

e
i j

, (14)

where E [.] denotes the local mean values of random variables, which are taken as follows:

E [.] =
+rσq1∫

−rσq1

(n)

+rσqn∫

−rσqn

(.)p(q)dq →
For example

E
[
qiq j
] =

+rσq1∫

−rσq1

(n)

+rσqn∫

−rσqn

qiq j p(q)dq. (15)

InGEL, the valuesσq1, σq2, . . . , σqn are considered to be independent from cei j , k
e
i j in the process ofminimizing

(14). Criterion (14) results in the necessary conditions for determining cei j , k
e
i j as follows:

∂

∂cei j
E
[
ε2α
] = 0,

∂

∂kei j
E
[
ε2α
] = 0 (16)

It is seen from (14) to (16) that the elements of cei j , k
e
i j obtained by LOMSEC are functions depending on the

local mean values of random variables and also depending on r (i.e. cei j = cei j (r), k
e
i j = kei j (r)), which is not

explicitly expressed here.
Since the linearization coefficients cei j (r), k

e
i j (r) determined by (16) are functions depending on the parame-

ter r , they becomeconstant valueswhen r is determined. In this sense, the linearization coefficients cei j (r), k
e
i j (r)

can be called local linearization coefficients. Equations (2), (15) and (16) allow to determine the unknowns
cei j (r), k

e
i j (r) and the vector q(t) when r is given. Some advantages of LOMSEC can easily be seen as follows

[15–17]: First, by changing values of r , LOMSEC can create a series of various approximate solutions, and as
r = ∞, LOMSEC gives the same solution as the classical criterion does; LOMSEC also implies the existence
of a value (rexact) that in principle allows to obtain the exact solution, while this is impossible for the classical
criterion; the most important advantage of LOMSEC is that it enables to obtain much more accurate solutions
than the ones of the classical criterion [15–17]. The main disadvantage of LOMSEC, however, is that the local
domain of integration, namely in our case the value of r , is unknown and the open question is how to find it.
Recently a dual conception was proposed in the study of responses to nonlinear systems [18] and has been
developed in [19–21]. One of the significant advantages of the dual conception is that its consideration of
two different aspects of a problem in question allows the investigation to be more appropriate. Using the dual
approach to LOMSEC, it is suggested that instead of finding a special value of r one may consider its variation
in all the global domain of integration. Thus, the linearization coefficients cei j (r), k

e
i j (r) can be suggested as

global mean values of all local linearization coefficients as follows:

cei j =
〈
cei j (r)
〉
= Lim

s→∞
1

s

s∫

0

cei j (r)dr , kei j =
〈
kei j (r)
〉
= Lim

s→∞
1

s

s∫

0

kei j (r)dr , (17)

where 〈.〉 denotes conventionally the average of operators of deterministic functions.
Now Eqs. (2), (15), (16), (17) allow to determine the unknowns without specifying any value of r . The

dual approach to LOMSEC leads to a new criterion that may be called global–local mean square error criterion
(GLOMSEC).

3 Two-degree-of-freedom oscillator with nonlinear stiffness

For the purpose of proving the great advantage of GLOMSEC to the solution accuracy, this part investigates
a two-degree-of-freedom system with nonlinear stiffness under white noise excitation [32] which is described
by

ẍi + hẋi + ∂

∂xi
U (x1, x2) = wi (t), i = 1, 2, (18)
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where U (x1, x2) is the potential energy and is given by

U (x1, x2) = 1

2
ω2
1x

2
1 + 1

2
ω2
2x

2
2 + γ1x

4
1 + γ3x

2
1 x

2
2 + γ5x

4
2 (19)

and h, ω1, ω2, γ1, γ3, γ5 are positive constants; wi (t) with i = 1, 2 are the components of the vector w(t),
which is a zero-mean Gaussian white noise stationary random vector process with the following correlation
function:

Ki j (τ ) = E
{
wi (t)w j (t + τ)

} = 2π Siδi jδ(τ ), (i, j = 1, 2), (20)

where δ(τ ) is the Dirac delta function, δi j is the Kronecker symbol, S1, S2 are constant values of the spectral
density of the random excitations w1(t), w2(t), respectively.

3.1 Exact solution

In the case of the same spectral density of random excitations S1 = S2 = S0, the Fokker–Planck equation
gives an exact stationary PDF to system (18) as follows:

p(x1, x2) = C exp

{
− h

π S0
U (x1, x2)

}
, (21)

C =
⎛
⎝

∞∫

−∞

∞∫

−∞
exp

{
− h

π S0
U (x1, x2)

}
dx1dx2

⎞
⎠

−1

. (22)

Here C is the normalization constant.
The exact mean square responses are defined by

E
{
x2i
}
ex = C

+∞∫

−∞

+∞∫

−∞
x2i exp

{
− h

π S0
U (x1, x2)

}
dx1dx2, i = 1, 2. (23)

The exact solution (23) is used for evaluating relative errors of approximate solutions.

3.2 LOMSEC

By utilizing (19), Eq. (18) can be rewritten in matrix form as
[
ẍ1
ẍ2

]
+
[
h 0
0 h

] [
ẋ1
ẍ2

]
+
[

ω2
1 0

0 ω2
2

][
x1
x2

]
+
[
4γ1x31 + 2γ3x1x22

4γ5x32 + 2γ3x21 x2

]
=
[

w1(t)

w2(t)

]
. (24)

Following Eq. (1), we denote

M =
[
1 0
0 1

]
, C =

[
h 0
0 h

]
, K =

[
ω2
1 0

0 ω2
2

]
, � =

[
4γ1x31 + 2γ3x1x22

4γ5x32 + 2γ3x21 x2

]
, x =

[
x1
x2

]
. (25)

The linear system to (24) is taken in the following form:

[
ẍ1
ẍ2

]
+
[
h 0
0 h

] [
ẋ1
ẍ2

]
+
[

ω2
1 + ke11 ke12

ke21 ω2
2 + ke22

][
x1
x2

]
=
[

w1(t)
w2(t)

]
, (26)

where kei j (i, j = 1, 2) are the linearization coefficients.
According to formula (4), the difference ε between (24) and (26) is

ε = �(x) − Kex, (27)
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where

ε =
[

ε1
ε2

]
, � =

[
�1
�2

]
=
[
4γ1x31 + 2γ3x1x22

4γ5x32 + 2γ3x21 x2

]
, Ke =

[
ke11 ke12
ke21 ke22

]
, x =

[
x1
x2

]
. (28)

Utilizing (16) for determining the components of Ke yields

∂

∂ke11
E
[
ε21
] = ∂

∂ke11
E
[(
4γ1x

3
1+2γ3x1x

2
2−ke11x1−ke12x2

)2]

= −4γ1E
[
x41
]− 2γ3E

[
x21 x

2
2

]+ ke11E
[
x21
]+ ke12E [x1x2] = 0,

∂

∂ke12
E
[
ε21
] = ∂

∂ke12
E
[(
4γ1x

3
1 + 2γ3x1x

2
2 − ke11x1 − ke12x2

)2]

= −4γ1E
[
x31 x2
]− 2γ3E

[
x1x

3
2

]+ ke11E [x1x2] + ke12E
[
x22
] = 0,

∂

∂ke21
E
[
ε22
] = ∂

∂ke21
E
[(
4γ5x

3
2 + 2γ3x

2
1 x2 − ke21x1 − ke22x2

)2]

= −4γ5E
[
x1x

3
2

]− 2γ3E
[
x31 x2
]+ ke21E

[
x21
]+ ke22E [x1x2] = 0,

∂

∂ke22
E
[
ε22
] = ∂

∂ke22
E
[(
4γ5x

3
2 + 2γ3x

2
1 x2 − ke21x1 − ke22x2

)2]

= −4γ5E
[
x42
]− 2γ3E

[
x21 x

2
2

]+ ke21E [x1x2] + ke22E
[
x22
] = 0. (29)

Since x1, x2 are independent as assumed, E
[
x2n+1
1 x2m+1

2

] = 0, and E
[
x2n1 x2m2

]
is expressed by (A.10)

and (A.11) in the Appendix. Thus, equation system (29) gives ke12(r) = ke21(r) = 0 and the equations for
determining ke11(r), k

e
22(r) as follows:

ke11(r) = 4γ1E
[
x41
]+ 2γ3E

[
x21 x

2
2

]

E
[
x21
] = 4γ12T2,r

(
E
{
x21
})2

2T0,r + 2γ32T1,r E
{
x21
}
2T1,r E

{
x22
}

2T1,r E
{
x21
}
2T0,r

= 4γ1E
{
x21
} T2,r
T1,r

+ 2γ3E
{
x22
} T1,r
T0,r

,

ke22(r) = 4γ5E
[
x42
]+ 2γ3E

[
x21 x

2
2

]

E
[
x22
] = 4γ52T0,r2T2,r

(
E
{
x22
})2 + 2γ32T1,r E

{
x21
}
2T1,r E

{
x22
}

2T0,r2T1,r E
{
x22
}

= 4γ5E
{
x22
} T2,r
T1,r

+ 2γ3E
{
x21
} T1,r
T0,r

, (30)

where, T0,r , T1,r , T2,r are defined by (A.9) in the Appendix as follows:

T0,r =
r∫

0

η(t)dt, T1,r =
r∫

0

t2η(t)dt, T2,r =
r∫

0

t4η(t)dt, η(t) = 1√
2π

e−t2/2. (31)

3.3 Conventional linearization method

Utilizing (31) with r → ∞, the following factors in (30) are defined:

T2,∞
T1,∞

=

∞∫
0
t4η(t)dt

∞∫
0
t2η(t)dt

= 3,
T1,∞
T0,∞

=

∞∫
0
t2η(t)dt

∞∫
0

η(t)dt
= 1. (32)

Equation system (30) and the values given by (32) allow determining ke11, k
e
22 by the conventional linearization

method:
ke11 = 12γ1E

{
x21
}+ 2γ3E

{
x22
}
, ke22 = 12γ5E

{
x22
}+ 2γ3E

{
x21
}
. (33)
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3.4 GLOMSEC

Utilizing (17) and (30), one obtains the equations for determining ke11, k
e
22 by GLOMSEC:

ke11 = 〈ke11(r)
〉 = Lim

s→∞
1

s

s∫

0

ke11(r)dr = 4γ1E
{
x21
}
Lim
s→∞

1

s

s∫

0

T2,r
T1,r

dr + 2γ3E
{
x22
}
Lim
s→∞

1

s

s∫

0

T1,r
T0,r

dr ,

ke22 = 〈ke22(r)
〉 = Lim

s→∞
1

s

s∫

0

ke22(r)dr = 4γ5E
{
x22
}
Lim
s→∞

1

s

s∫

0

T2,r
T1,r

dr + 2γ3E
{
x21
}
Lim
s→∞

1

s

s∫

0

T1,r
T0,r

dr . (34)

The limitation expressions in (34) can be approximately computed, and their outputs are

Lim
s→∞

1

s

s∫

0

T2,r
T1,r

dr ≈ 2.41189, Lim
s→∞

1

s

s∫

0

T1,r
T0,r

dr ≈ 0.83706. (35)

3.5 Approximate mean square responses

Under the assumption (20) and S1 = S2 = S0, the spectral density matrix Sw(ω) of w(t) is defined by

Sw(ω) =
[
S0 0
0 S0

]
. (36)

The matrix of frequency response function to linear system (26) is

α(ω) = [−ω2M + iωC + (K + Ke)
]−1

, (37)

where

M =
[
1 0
0 1

]
, C =

[
h 0
0 h

]
, K =

[
ω2
1 0

0 ω2
2

]
, K e =

[
ke11 ke12
ke21 ke22

]
, (38)

and ke12 = ke21 = 0, which are the outputs from the above analyses since the given assumption. Utilizing (38),
the formula (37) can be expanded as follows:

α(ω) =
[[−ω2 0

0 −ω2

]
+
[
iωh 0
0 iωh

]
+
[

ω2
1 + ke11 0

0 ω2
2 + ke22

]]−1

=
[−ω2 + iωh + ω2

1 + ke11 0

0 −ω2 + iωh + ω2
2 + ke22

]−1

=
[

(−ω2 + iωh + ω2
1 + ke11)

−1 0
0 (−ω2 + iωh + ω2

2 + ke22)
−1

]
. (39)

Introduce the following notations:

ω2
e11 = ω2

1 + ke11, ω2
e22 = ω2

2 + ke22, L(ω) = (−ω2 + iωh + ω2
e11

) (−ω2 + iωh + ω2
e22

)
. (40)

Utilizing (40), formula (39) can be replaced by

α(ω) = L(ω)

L(ω)

[
(−ω2 + iωh + ω2

e11)
−1 0

0 (−ω2 + iωh + ω2
e22)

−1

]

= 1

L(ω)

[−ω2 + iωh + ω2
e22 0

0 −ω2 + iωh + ω2
e11

]
. (41)



3018 N. D. Anh et al.

Table 1 Mean square of x1 versus S0 = 1, h = 0.5, ω1 = 2, ω2 = 4, γ1 = γ3 = γ5 = γ (0.1 − 100)

γ E
{
x21
}
ex E

{
x21
}
co Error (%) E

{
x21
}
gl Error (%)

0.1 1.1782 1.1514 2.275 1.2028 2.088
1 0.6038 0.5567 7.801 0.6059 0.348
10 0.2252 0.2008 10.835 0.2220 1.421
100 0.0746 0.0659 11.662 0.0732 1.877

Utilizing (9), (11) together with (36), (41), one obtains a matrix of mean square elements as follows:

E
{
xxT
}

=
∞∫

−∞
α(−ω)Sw(ω)αT (ω)dω =

∞∫

−∞

1

L(ω)L(−ω)

[
r11(ω) 0
0 r22(ω)

]
dω, (42)

where
r11(ω) = S0

((−ω2 + ω2
e22

)2 + h2ω2
)

, r22(ω) = S0
((−ω2 + ω2

e11

)2 + h2ω2
)

. (43)

By expanding L(ω) in (40), one obtains a polynomial function of argument iω as follows:

L(ω) = R(iω) = λ4(iω)4 + λ3(iω)3 + λ2(iω)2 + λ1(iω) + λ0. (44)

The coefficients in (44) can be easily found by comparison with the respective coefficients of the expanded
L(ω), the results are

λ4 = 1, λ3 = 2h, λ2 = ω2
e11 + ω2

e22 + h2, λ1 = hω2
e11 + hω2

e22, λ0 = ω2
e11ω

2
e22. (45)

By applying formula of integrals presented in [29], the integrals in (42) can be computed as follows:

E
{
x21
} =

∞∫

−∞

r11(ω)dω

R(iω)R(−iω)
, E
{
x22
} =

∞∫

−∞

r22(ω)dω

R(iω)R(−iω)
. (46)

Then one gets

E
{
x21
} = π

λ4

∣∣∣∣∣∣∣

0 ξ2 ξ1 ξ0
−λ4 λ2 −λ0 0
0 −λ3 λ1 0
0 λ4 −λ2 λ0

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

λ3 −λ1 0 0
−λ4 λ2 −λ0 0
0 −λ3 λ1 0
0 λ4 −λ2 λ0

∣∣∣∣∣∣∣

−1

,

E
{
x22
} = π

λ4

∣∣∣∣∣∣∣

0 μ2 μ1 μ0
−λ4 λ2 −λ0 0
0 −λ3 λ1 0
0 λ4 −λ2 λ0

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

λ3 −λ1 0 0
−λ4 λ2 −λ0 0
0 −λ3 λ1 0
0 λ4 −λ2 λ0

∣∣∣∣∣∣∣

−1

, (47)

where

ξ2 = S0, ξ1 = S0(h
2 − 2ω2

e22), ξ0 = S0ω
4
e22;

μ2 = S0, μ1 = S0(h
2 − 2ω2

e11), μ0 = S0ω
4
e11; (48)

Combining (47) with either (33) or (34), we get close algebraic equation systems for determining the unknowns
ke11, k

e
22, E
{
x21
}
, E
{
x22
}
that are given by conventional method and GLOMSEC, respectively. Such close

algebraic equation systems are in general nonlinear and can be computed by numerical approaches.
Consider the system parameters to be S0 = 1, h = 0.5, ω1 = 2, ω2 = 4, γ1 = γ3 = γ5 = γ (0.1 − 100).

Denote by E
{
x2i
}
ex , E
{
x2i
}
co , E
{
x2i
}
gl themean square responses of xi (i = 1, 2)givenby the exact solution,

conventional method, and GLOMSEC, respectively. Tables 1 and 2 give the numerical results including the
relative errors.

Based on the relative errors of the approximate solutions with respect to the exact solution, it can be seen
that for the considered case, GLOMSEC gives the significant improvement in the accuracy of the solution
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Table 2 Mean square of x2 versus S0 = 1, h = 0.5, ω1 = 2, ω2 = 4, γ1 = γ3 = γ5 = γ (0.1 − 100)

γ E
{
x22
}
ex E

{
x22
}
co Error (%) E

{
x22
}
gl Error (%)

0.1 0.3768 0.3766 0.053 0.3793 0.663
1 0.3064 0.3028 1.175 0.3135 2.317
10 0.1699 0.1602 5.709 0.1727 1.648
100 0.0677 0.0612 9.600 0.0674 0.443

Fig. 1 PDF (21), with U = 0.5ω2
1x

2
1 + 0.5ω2

2x
2
2 + γ1x41 + γ3x21 x

2
2 + γ5x42

Fig. 2 PDF (21), with U = 0.5ω2
1x

2
1 − 0.5ω2

2x
2
2 + γ1x41 + γ3x21 x

2
2 + γ5x42

in comparison with the conventional GEL method, especially when the nonlinearity is strong. The authors
investigated lots of various values of the parameters, greater S0 included, the obtained outputs results in the
same remark as above.

PDF (21) of the considered case is symmetric as shown in Fig. 1 to arbitrary value of the parameters.
However, in the potential energy function (19) if the first term or the second one is negative, then PDF will
have two peaks, as shown in Fig. 2. Anh and Hung [16] applied LOMSEC for a Duffing system with two
peaks, which happen when the first-order stiffness term is negative (ẍ + 2hẋ −βx + εx3 = σ ξ̇(t)). The result
indicates that the GEL methods are not efficient (the solution errors are unacceptable) when the parameter ε is
small. However, when ε is larger, the solution accuracy by LOMSEC is significantly improved in comparison
with the conventional GEL.

Return to the considered system when the potential energy function is taken asU = 0.5ω2
1x

2
1 −0.5ω2

2x
2
2 +

γ1x41 + γ3x21 x
2
2 + γ5x42 and PDF shown in Fig. 2. The mean square responses of xi (i = 1, 2) given in Tables 3

and 4.
The results indicate that when γ is small (γ ≤ 1), the GEL methods are not efficient. However, when γ

is larger (γ >> 1), the solution accuracy by GLOMSEC is significantly improved in comparison with the
conventional GEL.
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Table 3 Mean square of x1 versus S0 = 1, h = 0.5, ω1 = 2, ω2 = 4, γ1 = γ3 = γ5 = γ (0.1 − 100)

γ E
{
x21
}
ex E

{
x21
}
co Error (%) E

{
x21
}
gl Error (%)

0.1 0.5082 1.1776 131.720 1.2274 141.519
1 0.4346 0.5980 37.600 0.6489 49.310
10 0.2078 0.1919 7.652 0.2107 1.396
100 0.0728 0.0650 10.714 0.0720 1.100

Table 4 Mean square of x2 versus S0 = 1, h = 0.5, ω1 = 2, ω2 = 4, γ1 = γ3 = γ5 = γ (0.1 − 100)

γ E
{
x22
}
ex E

{
x22
}
co Error (%) E

{
x22
}
gl Error (%)

0.1 39.3378 0.3872 9016 0.3886 9012
1 3.2700 0.3340 898 0.3445 895
10 0.3722 0.2850 23.428 0.3279 11.902
100 0.0867 0.0736 15.110 0.0828 4.498

F(t)

m2

m1

y2

y1

m1 m2

y1(t) y2(t)
F(t)

1

2c1

k2

(a) (b)

Fig. 3 Two-degree-of-freedom system with nonlinear damping and stiffness. a Two-storey building structure. b Equivalent
mass-spring-damper model

4 Two-degree-of-freedom oscillator with nonlinear damping and stiffness

4.1 Equation of motion

Consider a two-storey building structure shown in Fig. 3a [29]. Here, the structuremay be idealized as two rigid
massesm1 andm2,whichmovehorizontally as the result of appliedfluctuating force F(t) actingonmassm1.An
equivalent two-degree-of-freedommodel of the structure is then shown in Fig. 3b. The absolute displacements
of m1 and m2 measured from the static equilibrium position are denoted by y1 and y2, respectively. Mass m1
is connected to the foundation by a linear damper with coefficient c1 and a nonlinear spring of the linear-
plus-cubic type with coefficient k1, whereas m1 and m2 are connected by a linear spring of stiffness k2 and a
nonlinear damper of the linear-plus-quadratic typewith coefficient c2. The force of the nonlinear spring is given
by k1y1(1+δ1y21 ), whereas the force in the nonlinear damper is given by c2(ẏ2− ẏ1)(1+δ2 |ẏ2 − ẏ1|). Assume
that F(t) = m1 p(t), where p(t) is obtained bypassingwhite noise through a linear first-order filter. The spectral
density function Sp(ω) of p(t) is assumed to be a first-order spectrum with form Sp(ω) = S0/(α2 + ω2),
where α, S0 are constants. The equation of motion of the equivalent model in terms of the coordinates y1 and
y2 may be written as

m1 ÿ1 + c1 ẏ1 − k2(y2 − y1) + k1y1(1 + δ1y
2
1 ) − c2(ẏ2 − ẏ1)(1 + δ2 |ẏ2 − ẏ1|) = m1 p(t),

m2 ÿ2 + k2(y2 − y1) + c2(ẏ2 − ẏ1)(1 + δ2 |ẏ2 − ẏ1|) = 0. (49)

Since the nonlinear damping element force and the linear spring force depend on relative velocity and relative
displacement, respectively, it is convenient to introduce the following transformation:

q1 = y1, q2 = y2 − y1. (50)
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Denote

ω2
1 = k1

m1
, ω2

2 = k2
m2

, μ = m2

m1
, β1 = δ1k1

m1
, β2 = δ2c2

m2
, ζ1 = c1

2
√
k1m1

, ζ2 = c2
2
√
k2m2

. (51)

Utilizing (50) and (51), system (49) can be rewritten as

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 − 2μζ2ω2q̇2 − μω2

2q2 + β1q
3
1 − μβ2q̇2 |q̇2| = p(t),

q̈1 + q̈2 + 2ζ2ω2q̇2 + ω2
2q2 + β2q̇2 |q̇2| = 0. (52)

Apply the standard form (1) to system (52), in which the matrices are defined as

M =
[
1 0
1 1

]
,C =
[
2ζ1ω1 −2μζ2ω2
0 2ζ2ω2

]
, K =
[

ω2
1 −μω2

2

0 ω2
2

]
, � =
[

β1q31 − μβ2q̇2 |q̇2|
β2q̇2 |q̇2|

]
,

Q(t) =
[
p(t)
0

]
. (53)

4.2 LOMSEC

The equivalent linear system to (52) is taken in standard form as in Eq. (2). The difference ε between (52) and
the equivalent linear equation is defined by (4) to be

ε = �(q, q̇) − Ceq̇ − Keq, (54)

where

ε =
[

ε1
ε2

]
, �(q, q̇) =

[
�1
�2

]
=
[

β1q31 − μβ2q̇2 |q̇2|
β2q̇2 |q̇2|

]
, Ce =

[
ce11 ce12
ce21 ce22

]
,

q̇ =
[
q̇1
q̇2

]
, Ke =

[
ke11 ke12
ke21 ke22

]
, q =

[
q1
q2

]
. (55)

Equation (54) and the matrices given by (55) result in the following equation:

ε =
[

ε1
ε2

]
=
[

β1q31 − μβ2q̇2 |q̇2| − ce11q̇1 − ce12q̇2 − ke11q1 − ke12q2
β2q̇2 |q̇2| − ce21q̇1 − ce22q̇2 − ke21q1 − ke22q2

]
. (56)

Utilizing (16) for determining the components of Ce and Ke yields

∂

∂ce11
E
[
ε21
] =−β1E

[
q31 q̇1
]+μβ2E [q̇1q̇2 |q̇2|]+ce11E

[
q̇21
]+ce12E [q̇1q̇2]+ke11E [q1q̇1]+ke12E [q̇1q2]=0,

∂

∂ce12
E
[
ε21
] =−β1E

[
q31 q̇2
]+μβ2E

[
q̇22 |q̇2|
]+ce11E [q̇1q̇2]+ce12E

[
q̇22
]+ ke11E [q1q̇2] + ke12E [q2q̇2] = 0,

∂

∂ce21
E
[
ε22
] = −β2E [q̇1q̇2 |q̇2|] + ce21E

[
q̇21
]+ ce22E [q̇1q̇2] + ke21E [q1q̇1] + ke22E [q̇1q2] = 0,

∂

∂ce22
E
[
ε22
] = −β2E

[
q̇22 |q̇2|
]+ ce21E [q̇1q̇2] + ce22E

[
q̇22
]+ ke21E [q1q̇2] + ke22E [q2q̇2] = 0,

∂

∂ke11
E
[
ε21
] =−β1E

[
q41
]+ μβ2E [q1q̇2 |q̇2|]+ce11E [q1q̇1]+ce12E [q1q̇2]+ke11E

[
q21
]+ke12E [q1q2]=0,

∂

∂ke12
E
[
ε21
] =−β1E

[
q31q2
]+μβ2E [q2q̇2 |q̇2|]+ce11E [q̇1q2]+ce12E [q2q̇2]+ke11E [q1q2]+ke12E

[
q22
]=0,

∂

∂ke21
E
[
ε22
] = −β2E [q1q̇2 |q̇2|] + ce21E [q1q̇1] + ce22E [q1q̇2] + ke21E

[
q21
]+ ke22E [q1q2] = 0,

∂

∂ke22
E
[
ε22
] = −β2E [q2q̇2 |q̇2|] + ce21E [q̇1q2] + ce22E [q2q̇2] + ke21E [q1q2] + ke22E

[
q22
] = 0. (57)
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In order to simplify the calculation, it is assumed that the responses q1 and q2 are independent. Moreover, as
known that if q(t) is a stationary Gaussian random process with zero mean, so is q̇(t). Besides, a stationary
random process is orthogonal to its derivative, so q1, q2 are independent from q̇1, q̇2, respectively.

By denoting x = (x1, x2, x3, x4)T = (q1, q̇1, q2, q̇2)T , we can utilize formulas (A.10), (A.11) and (A.13) in

the appendix to calculate the local means in (70) and note that E
[
x2n+1
i x2m+1

j

]
= 0(i 	= j). Thus, system (70)

leads to the following result of the linearization coefficients which are considered as the functions depending
on r

ce11(r) = 0, ce12(r) = −μβ2E
[
q̇22 |q̇2|
]

E
[
q̇22
] = −μβ22

(
E
{
q̇22
})3/2

Tt3,r
2T1,r E

{
q̇22
} = −μβ2

(
E
{
q̇22
})1/2 Tt3,r

T1,r
,

ce21(r) = 0, ce22(r) = β2E
[
q̇22 |q̇2|
]

E
[
q̇22
] = β22

(
E
{
q̇22
})3/2

Tt3,r
2T1,r E

{
q̇22
} = β2

(
E
{
q̇22
})1/2 Tt3,r

T1,r
,

ke11(r) = β1E
[
q41
]

E
[
q21
] = β12T2,r

(
E
{
q21
})2

2T1,r E
{
q21
} = β1E

{
q21
} T2,r
T1,r

, ke12(r) = 0,

ke21(r) = 0, ke22(r) = 0. (58)

where T1,r , T2,r are defined by (A.9) and Tt3,r is defined by (A.13) in the Appendix as follows:

T1,r =
r∫

0

t2η(t)dt, T2,r =
r∫

0

t4η(t)dt, Tt3,r =
r∫

0

t3η(t)dt, here η(t) = 1√
2π

e−t2/2. (59)

4.3 Conventional linearization method

Utilizing (59) with r → ∞, the following factors in (58) are defined

Tt3,∞
T1,∞

=

∞∫
0
t3η(t)dt

∞∫
0
t2η(t)dt

= 2

√
2

π
,

T2,∞
T1,∞

=

∞∫
0
t4η(t)dt

∞∫
0
t2η(t)dt

= 3. (60)

Equation system (58) and the values given by (60) allow determining cei j , k
e
i j by the conventional linearization

method

ce11 = 0, ce12 = −2

√
2

π
μβ2
(
E
{
q̇22
})1/2

, ce21 = 0, ce22 = 2

√
2

π
β2
(
E
{
q̇22
})1/2

,

ke11 = 3β1E
{
q21
}
, ke12 = 0, ke21 = 0, ke22 = 0. (61)

4.4 GLOMSEC

Formula (17) and equation system (58) allow determining cei j , k
e
i j by GLOMSEC:

ce11 = 0, ce12 = 〈ce12(r)
〉 = Lim

s→∞
1

s

s∫

0

ce12(r)dr = −μβ2
(
E
{
q̇22
})1/2

Lim
s→∞

1

s

s∫

0

Tt3,r
T1,r

dr ,

ce21 = 0, ce22 = 〈ce22(r)
〉 = Lim

s→∞
1

s

s∫

0

ce22(r)dr = β2
(
E
{
q̇22
})1/2

Lim
s→∞

1

s

s∫

0

Tt3,r
T1,r

dr ,

ke11 = 〈ke11(r)
〉 = Lim

s→∞
1

s

s∫

0

ke11(r)dr = β1E
{
q21
}
Lim
s→∞

1

s

s∫

0

T2,r
T1,r

dr , ke12 = 0,

ke21 = 0, ke22 = 0. (62)
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The limitation expressions in (62) can be approximately computed, their outputs are

Lim
s→∞

1

s

s∫

0

Tt3,r
T1,r

dr ≈ 1.39831, Lim
s→∞

1

s

s∫

0

T2,r
T1,r

dr ≈ 2.41189. (63)

4.5 Approximate mean square responses

As assumed in section (4.1) that the spectral density function Sp(ω) of p(t) has the form Sp(ω) =
S0/(α2 + ω2), so the spectral density matrix SQ(ω) shall be

SQ(ω) =
[
S0/(α2 + ω2) 0
0 0

]
. (64)

The matrix of frequency response function to standard form (2) of the equivalent linear system is

α(ω) = [−ω2M + iω(C + Ce) + (K + Ke)
]−1

(65)

The matrices in (65) were determined herein before in (53), (55), (61), (62), which are

M=
[
1 0
1 1

]
, C=

[
2ζ1ω1 −2μζ2ω2
0 2ζ2ω2

]
, Ce =

[
0 ce12
0 ce22

]
, K =

[
ω2
1 −μω2

2
0 ω2

2

]
, Ke =

[
ke11 0
0 0

]
.

(66)
The values of cei j defined in (58) as well as (61) and (62) result as a consequence to be

ce12 = −μce22 (67)

Denote

ζ2e = ζ2 + ce22
2ω2

, ω2
e = ω2

1 + ke11 (68)

Utilizing (66–68) for expanding (65), the matrix of the frequency response function is found as follows:

α(ω) =
[

α11(ω) α12(ω)
α21(ω) α22(ω)

]
=
[−ω2 + 2iζ1ω1ω + ω2

e −2iμζ2eω2ω − μω2
2−ω2 −ω2 + 2iζ2eω2ω + ω2

2

]−1

. (69)

Matrix (69) gives elements αi j (ω), (i, j = 1, 2) as follows:

α11(ω) = −ω2 + 2iζ2eω2ω + ω2
2(−ω2 + 2iζ1ω1ω + ω2

e

) (−ω2 + 2iζ2eω2ω + ω2
2

)− ω2
(
2iμζ2eω2ω + μω2

2

) ,

α12(ω) = 2iμζ2eω2ω + μω2
2(−ω2 + 2iζ1ω1ω + ω2

e

) (−ω2 + 2iζ2eω2ω + ω2
2

)− ω2
(
2iμζ2eω2ω + μω2

2

) ,

α21(ω) = ω2
(−ω2 + 2iζ1ω1ω + ω2

e

) (−ω2 + 2iζ2eω2ω + ω2
2

)− ω2
(
2iμζ2eω2ω + μω2

2

) ,

α22(ω) = −ω2 + 2iζ1ω1ω + ω2
e(−ω2 + 2iζ1ω1ω + ω2

e

) (−ω2 + 2iζ2eω2ω + ω2
2

)− ω2
(
2iμζ2eω2ω + μω2

2

) . (70)

In order to establish a close equation system for determining the unknowns, the mean square responses
E
{
q21
}
, E
{
q22
}
, E
{
q̇22
}
must be defined. Utilizing (11), (64) and (69), we obtain the following results:
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E
{
qqT
} =
[
E
{
q21
}

E {q1q2}
E {q1q2} E

{
q22
}
]

=
∞∫

−∞

[
α11(−ω) α12(−ω)
α21(−ω) α22(−ω)

] [
S0/(α2 + ω2) 0
0 0

] [
α11(ω) α21(ω)
α12(ω) α22(ω)

]
dω

=
∞∫

−∞

S0
α2 + ω2

[
α11(ω)α11(−ω) α11(−ω)α21(ω)
α11(ω)α21(−ω) α21(ω)α21(−ω)

]
dω, (71)

E
{
q̇q̇T
} =
[
E
{
q̇21
}

E {q̇1q̇2}
E {q̇1q̇2} E

{
q̇22
}
]

=
∞∫

−∞
ω2
[

α11(−ω) α12(−ω)
α21(−ω) α22(−ω)

] [
S0/(α2 + ω2) 0
0 0

] [
α11(ω) α21(ω)
α12(ω) α22(ω)

]
dω

=
∞∫

−∞

S0ω2

α2 + ω2

[
α11(ω)α11(−ω) α11(−ω)α21(ω)
α11(ω)α21(−ω) α21(ω)α21(−ω)

]
dω. (72)

Now E
{
q21
}
, E
{
q22
}
, E
{
q̇22
}
can be obtained from (71) and (72) as follows:

E
{
q21
} = S0

∞∫

−∞

|α11(ω)|2
α2 + ω2 dω = S0

∞∫

−∞

r11(ω)

R(iω)R(−iω)
dω,

E
{
q22
} = S0

∞∫

−∞

|α21(ω)|2
α2 + ω2 dω = S0

∞∫

−∞

r21(ω)

R(iω)R(−iω)
dω,

E
{
q̇22
} = S0

∞∫

−∞

ω2 |α21(ω)|2
α2 + ω2 dω = S0

∞∫

−∞

ω2r21(ω)

R(iω)R(−iω)
dω, (73)

where

r11(ω) = ξ2ω
4 + ξ1ω

2 + ξ0, r21(ω) = ω4,

R(iω) = λ5(iω)5 + λ4(iω)4 + λ3(iω)3 + λ2(iω)2 + λ1(iω) + λ0. (74)

The coefficients in (74) are determined as follows:

ξ2 = 1, ξ1 = ω2
2

(
4ζ 2

2e − 2
)
, ξ0 = ω4

2,

λ5 = 1, λ4 = α + 2ζ1ω1 + 2ζ2eω2 + 2μζ2eω2,

λ3 = ω2
2 + ω2

e + μω2
2 + 4ζ1ζ2eω1ω2 + α (2ζ2eω2 + 2ζ1ω1 + 2μζ2eω2) ,

λ2 = 2ζ1ω1ω
2
2 + 2ζ2eω2ω

2
e + α
(
ω2
2 + 4ζ1ζ2eω1ω2 + ω2

e + μω2
2

)
,

λ1 = ω2
eω

2
2 + α
(
2ζ1ω1ω

2
2 + 2ζ2eω2ω

2
e

)
, λ0 = αω2

eω
2
2. (75)

By computational calculation, the integrals in (73) give the following results:

E
{
q21
} = π S0

λ5

∣∣∣∣∣∣∣∣∣∣∣

0 0 ξ2 ξ1 ξ0

−λ5 λ3 −λ1 0 0
0 −λ4 λ2 −λ0 0
0 λ3 −λ3 λ1 0
0 0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

λ4 −λ2 λ0 0 0
−λ5 λ3 −λ1 0 0
0 −λ4 λ2 −λ0 0
0 λ5 −λ3 λ1 0
0 0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣

−1

,
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Table 5 Mean square of qi versus ω1 = ω2 = 1, ζ1 = 0.05, ζ2 = 0.2, μ = 1, α = 2, S0 = 1, β2 = 0.05, β1(0.01 − 5)

β1 E
{
q21
}
MC E

{
q21
}
co Error (%) E

{
q21
}
gl Error (%) E

{
q22
}
MC E

{
q22
}
co Error (%) E

{
q22
}
gl Error (%)

0.01 1.9258 2.0210 4.943 2.0842 8.225 0.8856 0.8870 0.158 0.9046 2.145
0.05 1.4307 1.4336 0.203 1.5366 7.402 0.8288 0.8172 1.399 0.8435 1.774
0.10 1.1421 1.1229 1.681 1.2246 7.223 0.7743 0.7627 1.498 0.7933 2.454
0.20 0.8809 0.8360 5.097 0.9247 4.972 0.7104 0.6930 2.449 0.7273 2.379
0.50 0.5875 0.5353 8.885 0.5993 2.008 0.6042 0.5822 3.641 0.6195 2.532
1.00 0.4226 0.3733 11.666 0.4196 0.710 0.5166 0.4891 5.323 0.5270 2.013
2.00 0.3017 0.2593 14.054 0.2913 3.447 0.4289 0.3924 8.510 0.4292 0.070
5.00 0.1950 0.1619 16.974 0.1813 7.026 0.3114 0.2685 13.776 0.3008 3.404

Table 6 The mean square of qi versus ω1 = ω2 = 1, ζ1 = 0.05, ζ2 = 0.2, μ = 1, α = 2, S0 = 1, β2 = 2, β1(0.01 − 5)

β1 E
{
q21
}
MC E

{
q21
}
co Error (%) E

{
q21
}
gl Error (%) E

{
q22
}
MC E

{
q22
}
co Error (%) E

{
q22
}
gl Error (%)

0.01 1.8728 2.0255 8.154 2.0225 7.993 0.2737 0.2428 11.290 0.2648 3.252
0.05 1.4442 1.5122 4.709 1.5662 8.448 0.2464 0.2160 12.338 0.2397 2.719
0.10 1.1931 1.2178 2.070 1.2842 7.636 0.2268 0.1970 13.139 0.2208 2.645
0.20 0.9381 0.9307 0.065 0.9973 6.311 0.2025 0.1746 13.778 0.1978 2.321
0.50 0.6360 0.6110 3.931 0.6658 4.685 0.1665 0.1427 14.294 0.1638 1.622
1.00 0.4581 0.4281 6.549 0.4711 2.838 0.1397 0.1189 14.889 0.1377 1.432
2.00 0.3230 0.2930 9.288 0.3250 0.619 0.1148 0.0967 15.767 0.1128 1.742
5.00 0.1988 0.1732 12.877 0.1937 2.565 0.0854 0.0711 16.745 0.0836 2.108

E
{
q22
} = π S0

λ5

∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0 0
−λ5 λ3 −λ1 0 0
0 −λ4 λ2 −λ0 0
0 λ5 −λ3 λ1 0
0 0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

λ4 −λ2 λ0 0 0
−λ5 λ3 −λ1 0 0
0 −λ4 λ2 −λ0 0
0 λ5 −λ3 λ1 0
0 0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣

−1

,

E
{
q̇22
} = π S0

λ5

∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0
−λ5 λ3 −λ1 0 0
0 −λ4 λ2 −λ0 0
0 λ5 −λ3 λ1 0
0 0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

λ4 −λ2 λ0 0 0
−λ5 λ3 −λ1 0 0
0 −λ4 λ2 −λ0 0
0 λ5 −λ3 λ1 0
0 0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣

−1

. (76)

Combine (76) with either (61) or (62), one gets close nonlinear algebraic equation systems for determining
the unknowns that given by the conventional method and GLOMSEC, respectively. These equation systems
are solved by computationally numerical procedures.

Tables 5 and 6 present the numerical results ofmean square responses of qi (i = 1, 2) versus two cases of the
given parameters of system (52). For evaluating the relative error, a Monte-Carlo simulated solution to system
(52) that is presented in [33] shall be used. Denote E

{
q2i
}
MC , E

{
q2i
}
co , E
{
q2i
}
gl mean square responses of

qi (i = 1, 2) given by Monte-Carlo simulation, the conventional method and GLOMSEC, respectively.
Based on the relative errors of the approximate solutions with respect to Monte-Carlo simulated solution,

it is seen that generally when the nonlinearity is strong, GLOMSEC gives significant improvement on the
accuracy of solution in comparison with the conventional GEL method.

5 Conclusion

GLOMSEC was first proposed in the previous study [22] where the algorithm formulated and investigations
were targeted at SDOF nonlinear systems under zero-mean stationary Gaussian random excitation. This study
develops the proposed technique toMDOF nonlinear systems under the same excitation. Themode of formula-
tion of the algorithm is alsomainly based on the classical GEL, in which a key problem is to define thematrix of
equivalent linearization coefficients. There are two important improvements to formulaGLOMSEC: Firstly, the
matrix of equivalent linearization coefficients is definedbyusingLOMSEC, and the elements of thismatrix shall
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be functions depending on the non-dimensional parameter r which is the local domain of integration. Secondly,
based on the dual conception, r is considered as varying in the global domain of integration. Thus, the constant
linearization coefficients can be suggested as global mean values of all local linearization coefficients. In order
to evaluate the accuracy of the solution given by the proposed technique, the paper presents two examples
to be typical two-degree-of-freedom nonlinear systems under the excitation as mentioned, and the numerical
results indicate an outstanding advantage of GLOMSEC that when the nonlinearity is strong, GLOMSEC
gives significant improvement in the accuracy of solution in comparison with the classical GEL method.

However, two points should be further investigated: The first, the examples considered in the paper are just
for a two-degree-of-freedom system, so the systems with higher-degree-of-freedom need investigation; The
second, in some applications, for example, the reliability evaluation problem, like for the tails in the PDF, may
be interesting to assume a weigh in the local value. In this way, we may have a loss of accuracy in the mean
square value, but a greater accuracy in the evaluation of the PDF where the weight is greater.

Acknowledgments This research is funded byVietnamNational Foundation for Science andTechnologyDevelopment (NAFOS-
TED) under Grant Number “107.04-2013.19”. The authors would like to say thank you to the reviewers for the sound comments
and suggestions to the paper.

Appendix

Suppose that the components of the vector x = (x1, x2, . . . , xn)T are zero-mean stationary Gaussian random
variables. Denote by E{.} global mean values of random variables, which are taken as follows:

E {.} =
+∞∫

−∞
(n)

+∞∫

−∞
(.)p(x)dx, (A.1)

where p(x) is the stationary joint probability density function. For the Gaussian random processes with zero
mean (E{xi } = 0), one has the following general expressions for expectations [3,12]:

E {x1x2 . . . x2n+1} = 0, E {x1x2 . . . x2n} =
∑

all dependent pairs

⎛
⎝∏

i 	= j

E
{
xi x j
}
⎞
⎠, (A.2)

where the number of independent pairs is equal to (2n)!/(2nn!). For example, some consequences from (A.2)
are as follows:

E {x1x2x3} = 0,

E {x1x2x3x4} = E {x1x2} E {x3x4} + E {x2x3} E {x1x4} + E {x1x3} E {x2x4} ,

E {x1x2x3x4x5} = 0. (A.3)

If xi and x j (i 	= j) are uncorrelated, i.e. independent, then E{xi x j } = 0 and E{x2n+1
i x2m+1

j } = 0. Besides,
formula (A.2) results in the following consequences:

E
{
x2ni x2mj

}
= E
{
x2ni
}
E
{
x2mj

}
= (2n − 1)!! (E {x2i

})n
(2m − 1)!!

(
E
{
x2j

})m
, (A.4)

where n and m are natural numbers.
Denote by [.] the local mean values of random variables, which are taken as follows:

E [.] =
+x01∫

−x01

(n)

+x0n∫

−x0n

(.)p(x)dx, (A.5)
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where x01, x02, . . . , x0n are given positive values. The expected integrations in (A.5) can be transformed to
non-dimensional variables by x01 = rσx1, x02 = rσx2, . . . , x0n = rσxn , where σx1, σx2 . . . , σxn are the
normal deviations of random variables, respectively, and r is a given positive value:

E [.] =
+rσx1∫

−rσx1

(n)

+rσxn∫

−rσxn

(.)p(x)dx . (A.6)

Due to the symmetry of the expected integrations in (A.6), hereby (A.2) and (A.3) are also applied to the local

mean values. If xi and x j (i 	= j) are uncorrelated, i.e. independent, then E
[
xi x j
] = 0 and E

[
x2n+1
i x2m+1

j

]
=

0. Moreover, all higher even-order local means E
[
x2ni x2mj

]
can be expressed in terms of second order global

means E
{
x2i
}
and E
{
x2j

}
as presented hereafter:

The stationary joint probability density function of xi and x j has the following form

p(xi , x j ) = p(xi )p(x j ), p(xi ) = 1√
2πσxi

exp

[
− x2i
2σ 2

xi

]
, p(x j ) = 1√

2πσx j
exp

[
− x2j
2σ 2

x j

]
, (A.7)

where σxi , σx j are the normal deviations of random variables, respectively. By replacing xi = tσxi , x j = tσx j
and using formulas (A.6), (A.7), one gets

E
[
x2ni x2mj

]
=

+rσxi∫

−rσxi

x2n p(xi )dxi

+rσx j∫

−rσx j

x2m p(x j )dx j

=
r∫

−r

t2nσ 2n
xi

1√
2πσxi

e−t2σ 2
xi/2σ

2
xiσxidt

r∫

−r

t2mσ 2m
x j

1√
2πσx j

e−t2σ 2
x j /2σ

2
x jσx jdt

= 2σ 2n
xi

r∫

0

t2m
1√
2π

e−t2/2dt2σ 2m
x j

r∫

0

t2m
1√
2π

e−t2/2dt . (A.8)

Introduce σ 2n
xi = (E {x2i

})n
, σ 2m

x j =
(
E
{
x2j

})m
since xi and x j are zero-meanGaussian random variables

and use the following replacements:

Tn,r =
r∫

0

t2nη(t)dt, Tm,r =
r∫

0

t2mη(t)dt, η(t) = 1√
2π

e−t2/2. (A.9)

Thus, one gets

E
[
x2ni x2mj

]
= E
[
x2ni
]
E
[
x2mj

]
= 2Tn,r

(
E
{
x2i
})n

2Tm,r

(
E
{
x2j

})m
. (A.10)

If n = 0,m 	= 0 or n 	= 0,m = 0, then (A.10) leads to the following results, respectively:

E
[
x0i x

2m
j

]
= 2T0,r2Tm,r

(
E
{
x2j

})m
, E
[
x2ni x0j

]
= 2Tn,r

(
E
{
x2i
})n

2T0,r , with T0,r =
r∫

0

η(t)dt .

(A.11)

In (A.10) and (A.11), if r → ∞, one gets the same result as (A.4) of the classical case.
Consider the local mean of x2i |xi | that arises in an example of the paper. By exactly the same way as pre-

sented in formula (A.8) and noting that x2i |xi | is an even function, its local mean can be determined as follows:
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E
[
x2i |xi |
] =

+rσxn∫

−rσxn

x2i |xi | p(xi )dxi = 2

+rσxn∫

0

x3i p(xi )dxi

= 2

r∫

0

t3σ 3
xi

1√
2πσxi

e−t2σ 2
xi /2σ

2
xiσxidt =2σ 3

xi

r∫

0

t3η(t)dt (A.12)

where η(t) is given by (A.9). Moreover, since σ 2
xi = E

{
x2i
}
, formula (A.12) can be rewritten as

E
[
x2i |xi |
] = 2
(
E
{
x2i
})3/2

r∫

0

t3η(t)dt = 2
(
E
{
x2i
})3/2

Tt3,r where Tt3,r =
r∫

0

t3η(t)dt . (A.13)

If we consider that x = (x1, x2, . . . , xn)T is the displacement vector, then ẋ = (ẋ1, ẋ2, . . . , ẋn)T is the velocity
vector and we also obtain exactly the same formulas, respectively, for the random variables of velocity.
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