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Abstract A plane problem for an electrically permeable tunnel crack between two piezoelectric half-spaces
under concentrated loading applied to the crack faces and remote mixed-mode loading is studied. The elastic
displacement and potential jumps as well as the stresses and electrical displacement along the interface are
represented via sectionally holomorphic vector functions. At the crack tip, we assume closed crack faces with
frictionless contact at the crack tip. The problem is reduced to combined Dirichlet–Riemann boundary value
problems that are solved analytically. From these solutions, clear analytical expressions for characteristics
of the electromechanical field at the interface are derived. A transcendental equation, which determines the
point of separation of the open and closed section of the crack, is found. The stress intensity factors at the
crack tip and the energy release rate are calculated. The influence of the magnitude and the locations of the
applied concentrated loading upon the contact zone length and the associated fracture mechanical parameters
is considered.

1 Introduction

Due to the well-known mechanical–electrical coupling in piezoelectric ceramics, these kinds of materials
are found to have wide technological applications such as transducers, sensors and actuators. As with most
ceramicmaterials, a significant disadvantage of piezoelectric ceramics is their brittleness. Stress concentrations
at defects or inhomogeneities, such as cracks, cavities, or particles in a piezoelectric material, can contribute
to critical crack growth and subsequent mechanical failure or dielectric breakdown. Therefore, it is important
to understand and to be able to analyze the fracture characteristics of piezoelectric materials so that reliable
service life predictions of the pertinent devices can be conducted.

The problemof a crack in a homogeneous piezoelectricmaterial has receivedmuch attention in the literature
and has been studied intensively [1–7]. On the other hand, the problem of an interface crack in a piezoelectric
bimaterial, in spite of its importance, has not obtained due attention in the literature because of its complexity.
The first attempt to analyze the interface crack problem from a fracture mechanics point of view can be
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found in [8], where a finite crack at the interface of a piezoelectric material and a conductor subjected to a
far-field uniform tension is considered. Later, Kuo and Barnet [9], as well as Suo et al. [10] and Gao et al.
[11] investigated the problem of an interface crack between dissimilar anisotropic piezoelectric materials by
introducing the one-complex variable approach that simplified the calculations significantly. Weight function
analysis for interface cracks in dissimilar anisotropic piezoelectricmaterials has been proposed and investigated
byMa and Chen [12]. Stress singularities of an interface crack in a piezoelectric bimaterial have been explicitly
studied in [13,14] with respect to various boundary conditions on the crack faces. Analytical investigations
of near-tip fields in dissimilar piezoelectric media have been performed in [15,16]. A crack terminating at a
piezoelectric bimaterial interface was studied in [17].

It is worth to note that all mentioned results were performed within the framework of the so-called classical
interface crack model [18]. This model assumes that the crack is completely open and usually leads to an
oscillating singularity at the crack tips and physically unreal overlapping of the crack faces. To eliminate this
phenomenon, a contact zone model for a crack between isotropic materials was suggested by Comninou [19]
and further developed by Atkinson [20], Simonov [21], Gautesen and Dundurs [22], Loboda [23] and others.
The contact zone approach was applied to interface cracks in linear thermopiezoelectric media by Qin and
Mai [24], in magnetoelectroelastic materials by Herrmann et al. [25], Feng et al. [26], and for an electrically
permeable, impermeable and limited permeable crack in piezoelectric materials by Herrmann and Loboda
[27], Herrmann et al. [28] and Govorukha and Kamlah [29], respectively.

Most of the investigations related to an interface crack were performed for either tensile or simultaneous
tensile-shear loading acting far away from the crack. However, sometimes piezoelectric bimaterials possessing
interface cracks work under remote compression and shear fields together with concentrated loading on the
crack faces caused by a disjoining action in the crack region. Under pure compressive loading, the cracks
in homogeneous materials are usually closed, but interface cracks can be partially open in the presence of
additional shear loading. For isotropic bimaterials, this possibility was shown by Comninou and Schmueser
[30] using numerical methods and by Atkinson [20], Simonov [21] and Gautesen and Dundurs [22] in an
analytical way. The influence of a concentrated load at the crack faces in a homogeneous piezoelectric material
has been studied by Chen andHan [31] for a finite crack and byHou et al. [32] for a circular crack. The interface
cracks with contact zone between two different piezoelectric materials under distributed far-field loading have
been studied in [27–29]. However, to the best of the authors’ knowledge, the combined effect of a concentrated
crack face load and remote mixed-mode loading upon an interface crack in a piezoelectric bimaterial has not
been considered yet. As a matter of fact, this combination of the loads leads to the prediction of a peculiar
effect of the crack tip opening, which is worth being investigated theoretically from a fundamental point of
view.

In the present paper, a plane problem for an electrically permeable tunnel crack between two piezoelectric
half-spaces is considered with taking into account the mechanical contact of the crack faces. Exact analytical
solutions for such crack under the action of concentrated crack face loads and uniformly distributed remote
loads are obtained. The method used in the paper is valid for arbitrary loading conditions, but in this paper the
main attention is devoted to the case of compressive remote loading to investigate in particular the possibility
of crack opening under such loading.

2 General solution for transversely isotropic piezoelectric media

In the absence of body forces and free charges, the governing equations for a linear piezoelectric solid can be
expressed in Cartesian coordinates xi (i = 1, 2, 3) as [33]

σi j, j = 0, Di,i = 0, (1)

σi j = ci jklγkl − eki j Ek, Di = eiklγkl + εik Ek, (2)

γi j = (ui, j + u j,i )/2, Ei = −ϕ,i (3)

where a comma indicates partial differentiation with regard to the respective coordinate; ϕ is the electric
potential; ui , σi j , γi j , Ei and Di are the components of elastic displacements, stress, strain, electric field and
electric displacement, respectively, while ci jkl , ei jk and εi j are the elastic, piezoelectric and dielectric constants.
The subscripts in (1)-(3) range from 1 to 3, and Einstein’s summation convention is used in (1), (2).
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For a two-dimensional problem in the (x1, x3)-plane, a general solution of (1)-(3) can be given by Suo et
al. [10],

V = Af(z) + Af̄(z), (4)

t = Bf ′(z) + Bf̄ ′(z), (5)

where V = [u1, u2, u3, ϕ]T , t = [σ13, σ23, σ33, D3]T and f(z) consists of four analytic functions of the
respective variables zα = x1 + pαx3(α = 1, 2, 3, 4) as

f(z) = [ f1(z1), f2(z2), f3(z3), f4(z4)]
T .

Matrices A and B are determined from an eigenvalue problem [10] and are defined by the material constants;
pα are four distinct eigenvalues with positive imaginary parts.

Consider a bimaterial composed of two different piezoelectric half-planes x3 > 0 and x3 < 0, respectively.
In this case according to (4), (5), the solutions of (1)-(3) can be written for each domain in the form

V( j) = A( j)f ( j)(z) + A
( j)

f̄ ( j)(z), (6)

t( j) = B( j)f ′( j)(z) + B
( j)

f̄ ′( j)(z) (7)

where j = 1 stands for x3 > 0 and j = 2 for x3 < 0; the vector functions f (1)(z) and f (2)(z) are analytic in
the upper (x3 > 0) and the lower (x3 < 0) half-planes, respectively.

Furthermore, an analysis similar to [27] leads by means of the formulas (6), (7) to the expressions

〈
V′(x1)

〉 = Df ′(1)(x1) + Df̄ ′(1)(x1),

t(x1, 0) = B(1)f ′(1)(x1) + B
(1)
f̄ ′(1)(x1)

where D = A(1) − A
(2)
(
B

(2)
)−1

B(1). Here and afterwards, the brackets 〈...〉 denote the jump of the corre-

sponding function over the material interface, i.e.,
〈
V′(x1)

〉 = V′(1)(x1, 0) − V′(2)(x1, 0).
Introducing the vector function

W(z) =
{
Df ′(1)(z) for x3 > 0,

−Df
′(1)

(z) for x3 < 0,

one obtains
〈
V′(x1)

〉 = W+(x1) − W−(x1), (8)

t(x1, 0) = GW+(x1) − GW
−
(x1) (9)

where G = B(1)D−1, W±(x1) = W(x1 ± i0).
It follows from (8) that the vector function W(z) = [W1(z),W2(z),W3(z),W4(z)]T is analytical on the

whole complex plane, including the bonded parts of the material interface. Moreover, the matrix G and the
vector function W(z) are related to the matrix H and the vector function h(z) of the paper by Suo et al. [10]
according to H = iG−1,W(z) = −iHh(z), respectively.

We will focus our attention on a transversely isotropic piezoelectric material of the symmetry class 6mm
poled in the x3-direction, which has an essential practical significance. In this case, the matrix G has the
following structure:

G =

⎡

⎢⎢
⎣

ig11 0 g13 g14
0 ig22 0 0
g31 0 ig33 ig34
g41 0 ig43 ig44

⎤

⎥⎥
⎦ (10)

where all gi j are real and the relations g31 = −g13, g41 = −g14, g43 = g34 hold true.
The analysis of the matrix (10) shows that the stress–strain state in this case can be decoupled into an in-

plane and an out-of-plane problem. Because the out-of-plane problem is relatively simple, the main attention
will be devoted to the in-plane problem that is characterized by the displacements u1, u3 and the electric
potential ϕ.
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Fig. 1 A crack between two piezoelectric materials with open zone (c, a) and closed one (a, b)

3 Formulation of the problem and derivation of the basic relation

Consider a tunnel interface crack situated in the region c < x1 < b, x3 = 0 between two piezoelectric half-
spaces x3 > 0 (with matrices c(1)

i jkl , e
(1)
i jk and ε

(1)
i j of the physical properties) and x3 < 0 (with matrices c(2)

i jkl , e
(2)
i jk

and ε
(2)
i j ). It is assumed that the direction of the polarization of both materials is orthogonal to the crack faces.

The crack is loaded by the concentrated traction (P1, P3) applied to its faces at the prescribed point (d, 0) as
well as by far-field uniform stresses σ

( j)
33 = σ∞

33 , σ
( j)
13 = σ∞

13 and σ
( j)
11 = (σ∞

11

)
j ( j = 1, 2), which satisfy the

continuity conditions at the interface. Since the load does not depend on coordinate x2, a plane strain problem
in the (x1, x3)-plane can be considered (Fig. 1).

Following Comninou [19], we introduce a frictionless contact zone a < x1 < b at the right crack tip to
avoid an oscillating singularity, where the position of the point a is chosen arbitrarily for the time being. For
such an arbitrary position of point a, we have an artificial contact zone model, which is not physically justified,
but from this model the specific value of a for the contact zone length in the sense of Comninou will be found.
The corresponding conditions for a realistic contact zone length will be formulated in Sect. 6.

The electrical potential is assumed to be continuous across the whole interface. This type of condition of
continuity is completely justified for a crack filled with a conducting fluid. Furthermore, according to Gao
and Fan [5], even for cracks filled by air such a condition is more realistic than the condition of electrically
insulated crack faces. Thus the continuity and boundary conditions at the interface x3 = 0 are the following:

〈σ33〉 = 0, 〈σ13〉 = 0, 〈ϕ〉 = 0, 〈D3〉 = 0, x1 ∈ (−∞, ∞); (11)

〈u1〉 = 0, 〈u3〉 = 0, x1 /∈ (c, b); (12)

σ±
33 = −P3δ(x1 − d), σ±

13 = −P1δ(x1 − d), x1 ∈ (c, a), (13)

〈u3〉 = 0, σ±
13 = 0, x1 ∈ (a, b) (14)

where the superscripts + and – refer to the upper and lower boundary values, respectively, and δ(x1 − d) is
Dirac’s delta-function.

Using the expressions (8), (9), taking into account that 〈ϕ〉 = 0 for x1 ∈ (−∞, ∞) and performing the
analysis similar to Herrmann and Loboda [27], one arrives at the equations

σ33(x1, 0) + imσ13(x1, 0) = t[F+(x1) + γ F−(x1)], (15)
〈
u′
1(x1)

〉+ is
〈
u′
3(x1)

〉 = F+(x1) − F−(x1) (16)

where

s = g33 + mg13
t

, γ = −g31 + mg11
t

, t = g31 − mg11, m = −
√
g33
g11

.
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It is worth to note that the constantsm, s, t and γ have real values for certain classes of piezoelectric ceramics.
Besides, the unknown function F(z) is analytic in the whole plane including the bonded parts of the material
interface.

The above-mentioned formulations can be used to derive the solution for an interface crack in a piezoelectric
bimaterial under combined loadings as shown in Fig. 1. Because of the linearity of the formulated problem,
the solution of this problem requires the solution of the following problems:

(a) solution for an interface crack under concentrated loading;
(b) solution for an interface crack under remote mixed-mode loading.

The superposition of the above solutions gives an analytical solution of the considered problem.

4 An interface crack under a concentrated loading

Consider an interface crack (c, b) with a frictionless contact zone (a, b) in a piezoelectric bimaterial plane
(Fig. 1) under the action of a pure concentrated loading (P1, P3) applied at the point (d, 0) of both faces of a
crack.

The satisfaction of the conditions (13), (14) by means of the expressions (15), (16) leads to the inhomoge-
neous combined Dirichlet–Riemann boundary value problem

F+(x1) + γ F−(x1) = g(x1), x1 ∈ (c, a), (17)

Im F±(x1) = 0, x1 ∈ (a, b), (18)

with respect to the sectionally holomorphic function F(z), where g(x1) = −t−1(P3 + imP1)δ(x1 − d).
This problem is much more complicated and less studied than the Riemann–Hilbert problem. A solution

of a homogeneous problem associated with (17), (18) was found and applied to the analysis of a rigid stamp
in [34]. For the problem of an interface crack, the solution of the homogenous problem was developed by
Loboda [23]. Let us now consider the solution of the inhomogeneous problem (17), (18). Following Nahmein
and Nuller [34] and denoting by

X (z) = eiφ(z)

√
(z − c)(z − a)

,

with

φ(z) = 2ε ln

√
(b − a)(z − c)√

(b − c)(z − a) + √
(a − c)(z − b)

, ε = 1

2π
ln γ,

a particular solution of a homogeneous problem associated with (17), (18), Eq. (17) can be written as

F+(x1)

X+(x1)
− F−(x1)

X−(x1)
= g(x1)

X+(x1)
, x1 ∈ (c, a). (19)

A solution of Eq. (19) is [35]
F(z)

X (z)
= ω1(z) + ω2(z) (20)

where ω1(z) = 1
2π i

a∫

c

g(t)dt
X+(t)(t−z) and ω2(z) is an arbitrary analytic function on x1 ∈ (c, a). Taking into account

that X±(x1) is real on x1 ∈ (c, a), Eq. (18) leads to

Imω±
2 (x1) = H±(x1), x1 ∈ (a, b) (21)

where H±(x1) = −Im ω±
1 (x1). Equation (21) can be written as

Re[−iω±
2 (x1)] = H±(x1), x1 ∈ (a, b). (22)
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Using a solution of the Dirichlet problem (22) given by the formula (46.25) of [35], the function ω2(z) can be
written as

ω2(z) = Y (z)

2π

b∫

a

H+(t) + H−(t)

Y+(t)(t − z)
dt + 1

2π

b∫

a

H+(t) − H−(t)

t − z
dt (23)

where Y (z) =
√

z−a
z−b .

Transforming (23) with help of the relations [35],

b∫

a

dt

Y+(t)(t − z)(d − t)
= π i

d − z

[
1

Y (z)
− 1

Y (d)

]
,

we obtain

ω2(z) = i Im(I0)

z − d

[
1 − Y (z)

Y (d)

]

where

I0 = − P3 + imP1
2π i t X+(d)

.

Using formula (20), the solution of the inhomogeneous problem (17), (18) for trivial values of F(z) at infinity
can be written in the form

F(z) = X (z)

d − z

[
Re(I0) + iIm(I0)

Y (z)

Y (d)

]
. (24)

The obtained solution and the formula (16) lead to the following expressions for the derivatives of the dis-
placement jumps for x1 ∈ (c, a):

〈
u′
1(x1)

〉+ is
〈
u′
3(x1)

〉 = (1 + γ )eiφ
∗(x1)

i(d − x1)
√

γ (x1 − c)(a − x1)

[
Re(I0) + iIm(I0)

Y (x1)

Y (d)

]
. (25)

Similarly it follows from Eqs. (15), (16) and (24) that in the contact zone x1 ∈ (a, b)

σ33(x1, 0) = t (1 + γ )

(d − x1)
√

(x1 − c)(x1 − a)

{
Re(I0)

[
cosh φ̃(x1) + 1 − γ

1 + γ
sinh φ̃(x1)

]

+ Im(I0)

Y (d)

√
x1 − a

b − x1

[
sinh φ̃(x1) + 1 − γ

1 + γ
cosh φ̃(x1)

]}
, (26)

〈
u′
1(x1)

〉 = 2

(d − x1)
√

(x1 − c)(x1 − a)

{
Re(I0) sinh φ̃(x1) + Im(I0)

Y (d)

√
x1 − a

b − x1
cosh φ̃(x1)

}
, (27)

while for x1 > b

σ33(x1, 0) + imσ13(x1, 0) = t (1 + γ )X (x1)

d − x1

[
Re(I0) + iIm(I0)

Y (x1)

Y (d)

]
(28)

where

φ∗(x1) = 2ε ln

√
(b − a)(x1 − c)√

(b − c)(a − x1) + √
(a − c)(b − x1)

, φ̃(x1) = 2ε tan−1

√
(a − c)(b − x1)

(b − c)(x1 − a)
.

Once the function F(z) has been found, the explicit expressions for normal component of the electric displace-
ment at the material interface can be derived from Eqs. (8) and (9) as

D3(x1, 0) = g41g33 − g43g31
g33

〈
u′
1(x1)

〉+ g43
g33

σ33(x1, 0), for x1 ∈ (c, b);

D3(x1, 0) = g43
g33

σ33(x1, 0), x1 > b.
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5 An interface crack under a remote mixed-mode loading

Consider now again the finite length interface crack (c, b) with a frictionless contact zone (a, b) depicted
in Fig. 1, and assume that the concentrated loading is equal to zero, and a uniform mixed-mode loading
σ

( j)
33 = σ∞

33 , σ
( j)
13 = σ∞

13 and σ
( j)
11 = (

σ∞
11

)
j ( j = 1, 2), which satisfies the continuity conditions at the

interface, is prescribed at infinity.
The interface conditions of the problem coincide with Eqs. (11)–(14) provided P1 = P3 = 0 is valid, and

the following homogeneous combined Dirichlet–Riemann boundary value problem:

F+(x1) + γ F−(x1) = 0, x1 ∈ (c, a), (29)

Im F±(x1) = 0, x1 ∈ (a, b), (30)

for the sectionally holomorphic function F(z) holds true.
By using Eq. (15) and the prescribed remote loads, the conditions at infinity for the function F(z)can be

written as

F(z)|z→∞ = σ∞
33 + imσ∞

13

t (1 + γ )
. (31)

The general solution of the problem (29), (30) can be represented according to [23] in the form

F(z) = P(z)X1(z) + Q(z)X2(z) (32)

where

X1(z) = ieiφ(z)

√
(z − c)(z − b)

, X2(z) = eiφ(z)

√
(z − c)(z − a)

,

P(z) = C0 + C1z, Q(z) = D0 + D1z.

The real coefficients C0, C1, D0, D1 can be found from the conditions (31) at infinity in the form

C1 = 1

t (1 + γ )

(
mσ∞

13 cosβ − σ∞
33 sin β

)
, D1 = 1

t (1 + γ )

(
mσ∞

13 sin β + σ∞
33 cosβ

)
,

C0 = −β1D1 − c + b

2
C1, D0 = β1C1 − c + a

2
D1

where

β = ε ln
λ

(1 + √
1 − λ)2

, β1 = ε
√

(a − c)(b − c).

The parameter λ = b−a
b−c defines the relative length of the contact zone of the crack faces and will be found

later.
Substituting the formula (32) into (15), (16) and taking into account that F+(x1) = F−(x1) for x1 > b

and F−(x1) = −F+(x1)/γ for x1 ∈ (c, a), the following expressions are obtained for the stresses and the
derivatives of the displacement jumps at the material interface for x1 > b:

σ33(x1, 0) + imσ13(x1, 0) = t (1 + γ )eiφ(x1)

√
x1 − c

[
Q(x1)√
x1 − a

+ i
P(x1)√
x1 − b

]
, (33)

D3(x1, 0) = g43
g33

[
σ33(x1, 0) − σ∞

33

]
,

for x1 ∈ (c, a):

〈
u′
1(x1)

〉+ is
〈
u′
3(x1)

〉 = (1 + γ )eiφ
∗(x1)

√
γ (x1 − c)

[
P(x1)√
b − x1

− i
Q(x1)√
a − x1

]
, (34)

D3(x1, 0) = g41g33 − g43g31
g33

〈
u′
1(x1)

〉− g43
g33

σ∞
33 ,
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for x1 ∈ (a, b):

σ33(x1, 0) = t (1 + γ )P(x1)√
(x1 − c)(b − x1)

[
sinh φ̃(x1) + 1 − γ

1 + γ
cosh φ̃(x1)

]

+ t (1 + γ )Q(x1)√
(x1 − c)(x1 − a)

[
cosh φ̃(x1) + 1 − γ

1 + γ
sinh φ̃(x1)

]
, (35)

〈
u′
1(x1)

〉 = 2√
x1 − c

[
P(x1)√
b − x1

cosh φ̃(x1) + Q(x1)√
x1 − a

sinh φ̃(x1)

]
, (36)

D3(x1, 0) = g41g33 − g43g31
g33

〈
u′
1(x1)

〉+ g43
g33

[
σ33(x1, 0) − σ∞

33

]
.

6 Behavior of the solution at singular points and the determination of the contact zone
length in the sense of Comninou

In this section, the behavior of the stresses as well as the displacement jumps at the right crack tip and at the
ends of the contact zone is considered. At the left crack tip, there is an oscillating singularity considered in
detail by Beom [13], and therefore, no special attention will be given to this point.

As it follows from the analysis of the formulas (28) and (33), the normal stress is limited for x1 → b + 0.
On the other hand, the shear stress is singular for x1 → b + 0 as well as the normal stress for x1 → a + 0.
The following stress intensity factors (SIFs) are introduced to characterize these singularities:

K1 = lim
x1→a+0

√
2π(x1 − a)σ33(x1, 0), K2 = lim

x1→b+0

√
2π(x1 − b)σ13(x1, 0). (37)

Using relations (26), (28) and (33), (35) leads to the expressions

K1 =
√
2πγ (b − c)

1 + λ

{√
1 − λ

(
mσ∞

13 sin β + σ∞
33 cosβ

)+ 2ε
(
mσ∞

13 cosβ − σ∞
33 sin β

)}

+
√

2(1 − θ)

π(b − c)(1 − λ)(θ − λ)

{
P3 cosφ∗(d) + mP1 sin φ∗(d)

}
, (38)

K2 = 1

m

√
π(b − c)

2

{
mσ∞

13 cosβ − σ∞
33 sin β − 2ε

√
1 − λ

(
mσ∞

13 sin β + σ∞
33 cosβ

)}

+1 + γ

m

√
1 − θ

2πγ θ(b − c)

{
mP1 cosφ∗(d) − P3 sin φ∗(d)

}
(39)

where

θ = b − d

b − c
.

The asymptotic behavior of the main characteristics of the electromechanical field at the points a and b can
be represented via the SIFs in the form

σ33(x1, 0)|x1→a+0 = K1√
2π(x1 − a)

, (40)

σ13(x1, 0)|x1→b+0 = K2√
2π(x1 − b)

, (41)

〈u1(x1)〉x1→b−0 = − 4mK2

t (1 + γ )

√
b − x1
2π

, (42)

〈u3(x1)〉x1→a−0 = (1 + γ )K1

stγ

√
a − x1
2π

. (43)



Influence of concentrated loading on opening of an interface crack 2387

It follows from formulas (40)–(43) that the SIFs K1 and K2 completely define the behavior of the stresses as
well as the displacement jumps at the right crack tip and at the ends of the contact zone.

The energy release rate (ERR) at the right crack tip can be represented in the form [33]

G = lim
�l→0

1

2�l

⎧
⎨

⎩

a+�l∫

a

σ33(τ, 0) 〈u3(τ − �l)〉 dτ +
b+�l∫

b

σ13(τ, 0) 〈u1(τ − �l)〉 dτ

⎫
⎬

⎭
. (44)

It should be noted that the electrical part of the ERR is equal to zero because of the vanishing jump of the
potential ϕ along the whole interface. Substituting expressions (40)–(43) into (44), one gets after the evaluation
of the integrals the expression

G = (1 + γ )K 2
1

8stγ
− mK 2

2

2t (1 + γ )
. (45)

The obtained formulas are mathematically correct for any position of the point a, and the associated interface
crackmodelwas called an artificial contact zonemodel [27].However, the obtained solutionbecomesphysically
correct only if the following additional conditions are satisfied:

σ33(x1, 0) ≤ 0 for x1 ∈ (a, b), 〈u3(x1)〉 ≥ 0 for x1 ∈ (c, a). (46)

These conditionsmean that the normal stress in the contact region is compressive and that there is no overlapping
of the crack faces. In this case, a contact zone in the sense of Comninou [19] is present at the crack tip.

An analytical analysis and numerical verifications show that inequalities (46) hold true if the crack closes
smoothly at the point a, i.e.,

lim
x1→a−0

√
a − x1

〈
u′
3(x1)

〉 = 0,

which is equivalent to the equation K1 = 0. Due to the formulas (34) and (38), both of these equations can be
written in the form of the transcendental equation

(b − c)
√

γ

1 + λ

{
(1 − λ)

(
mσ∞

13 sin β(λ) + σ∞
33 cosβ(λ)

)+ 2ε
√
1 − λ

(
mσ∞

13 cosβ(λ) − σ∞
33 sin β(λ)

)}

+ 1

π

√
1 − θ

θ − λ

{
P3 cosφ∗(λ) + mP1 sin φ∗(λ)

} = 0, (47)

with respect to λ, where

β(λ) = ε ln
λ

(1 + √
1 − λ)2

, φ∗(λ) = 2ε ln

√
λ(1 − θ)√

θ − λ + √
θ(1 − λ)

.

In general, Eq. (47) has to be solved numerically, and the maximum root λ0 from the interval (0, 1) should
be taken, since this value is the contact zone length in the sense of Comninou. It should be noted that the
second inequality of (46) cannot be satisfied in the zone of oscillation near the left crack tip. However, for
the considered loadings, this zone is negligibly small, namely on the order of 10−8 as compared to the crack
length. Thus, it does not influence the electromechanical characteristics at the right crack tip, which is the one
we discuss in detail in the following.

7 Numerical results and discussion

The main attention of the following numerical analysis will be devoted to the combination of a concentrated
crack face loading and remote distributed shear and compressive loading.

The numerical analysis has been performed for a bimaterial composed of piezoelectric ceramics PZT-5H
(the upper material) and PZT-4 (the lower one). The material properties of these materials were taken from [36]
and [3], respectively. The crack was situated in the segment (−10, 10)mm. The position of the concentrated
loading at the crack faces is defined by the parameter θ = b−d

b−c . The remote shear stress was assumed to be equal
σ∞
13 = −10MPa, and the normal stress was defined by the formula σ∞

33 = ωσ∞
13 with varying values of ω > 0.

We shall discuss the influence of the remote shear stress in the presence of a compressive normal stress and the
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Table 1 Relative contact zone length λ0, the SIF K20 and the ERR G0 for different values of the normal stress σ∞
33

ω λ0
K20

σ∞
13

√
b−c

− G0·103
σ∞
13 (b−c)

0.4 0.0904 1.281 0.1470
0.5 0.1810 1.277 0.1461
0.6 0.2543 1.274 0.1455
0.7 0.3126 1.272 0.1450
0.8 0.3596 1.270 0.1446
0.9 0.3981 1.269 0.1443
1.0 0.4304 1.267 0.1440
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Fig. 2 Crack opening for different values of applied loads σ∞
33

concentrated loading defined by the components P1 and P3. The specific values of remote and the concentrated
loads are chosen to ensure the formation of a longer contact zone near the right crack tip. Furthermore, for a
position θ of the concentrated load in the left half of the crack faces, the oscillating singularity at the left crack
tip is assumed to have negligible influence on the fields at the right crack tip. In the opposite case, the problem
can be reduced to the considered one by simple transposition of the upper and lower semi-infinite spaces.

The variation of the relative contact zone length λ0, the SIF of the shear stress K20 = K2|λ=λ0 at the right
crack tip and the ERR G0 = G|λ=λ0 with respect to normal load σ∞

33 , defined by parameter ω, for P1 = 0,
P3 = 2 ·105 N/m and θ = 0.75 are presented in Table 1. It follows from the presented results that increasing ω
leads to an increase in the relative contact zone length. In contrast to λ0, the SIF K20 and the ERR G0 depend
very slightly on the compressive loading σ∞

33 . This means that the possibility of the crack propagation under
remote compressive-shear loading is mostly defined by shear loading.

In Fig. 2, the graphs of the crack opening are presented for P1 = 0, P3 = 2 · 105 N/m, θ = 0.75 and
different values of the normal compressive stress σ∞

33 , defined by parameter ω = 0.4, 0.8, 1.2 (line 1, 2, and
3, respectively). It is interesting to note that in spite of the normal stress being compressive, the crack opening
remains positive not only in the immediate vicinity of the concentrated force, but in a much wider region that
varies in dependence on the magnitude of the normal stress. Variations of the normal stress in the contact
zone for the same external loads as in Fig. 2 are presented in Fig. 3. It is clearly seen from Figs. 2 and 3
that for all considered loadings the crack remains open in the intervals (c, a) and the normal stress remains
negative in the interval (a, b). This means that the inequalities (46) are satisfied at any point of the crack
region. It is worth to be mentioned as well that according to (26), (27) and (34), (35)

〈
u′
3(x1)

〉 |x1→a−0 → 0
and σ33(x1, 0)|x1→a+0 → 0, therefore, the crack is closed smoothly at the point a. This statement is evidently
confirmed by Figs. 2 and 3.

Themost dangerous stress component at the crack tip is the shear stress σ13(x1, 0) in the ligament, i.e., in the
neighborhood to the right of the crack tip b. The variations of this stress along thementioned zone are presented
in Fig. 4 for different shear loads σ∞

13 = −2.5MPa (line 1), σ∞
13 = −5MPa (line 2) and σ∞

13 = −10MPa
(line 3) with fixed σ∞

33 = −5MPa and P1 = 0, P3 = 2 × 105 N/m, θ = 0.75. It is observed clearly from this
figure that the absolute value of σ13(x1, 0) increases with the increase in magnitude of the applied shear load.
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Fig. 3 Normal stress σ33(x1, 0) in the contact zone for different values of applied loads σ∞
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Fig. 4 Shear stress σ13(x1, 0) in the ligament at the crack tip b for different values of applied loads σ∞
13

Additional numerical analysis showed that the shear stress σ13(x1, 0) in the neighborhood to the right of the
crack depends very slightly on the compressive loading σ∞

33 .
Figures 5 and 6 show, respectively, the variation of the relative contact zone length λ0 and the ERR G0

for various locations of the applied concentrated loading, defined by parameter θ . Again, the positions have
been chosen in the left half of the cracked region in order to minimize the effect of the oscillating singularity
at the left crack tip on the contact zone at the right crack tip. The results are obtained for different normal
loads σ∞

33 = −4MPa (line 1), σ∞
33 = −8MPa (line 2) and σ∞

33 = −12MPa (line 3) with fixed shear load
σ∞
13 = −10MPa. It follows from the presented figures that the variation of the position of the concentrated

force can retard or enhance the relative contact zone length and the stress level in the vicinity of the crack tip.
An increase in parameter θ (i.e., decrease in d) leads to an increase in the relative contact zone length λ0 and a
decrease in the energy release rateG0. Thus, according to the maximum energy release rate criterion, the closer
the applied concentrated mechanical load approaches the left crack tip, the easier growth and propagation of
the right crack tip will be.
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Fig. 5 Dependencies of the relative contact zone length λ0 with respect to the location of the applied concentrated loads θ for
different values of normal loads σ∞
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Fig. 6 Dependencies of the ERR G0 with respect to the location of the applied concentrated loads θ for different values of normal
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8 Conclusions

A crack between two piezoelectric materials under concentrated loading applied to the crack faces and remote
mixed-mode loading is considered. It is assumed that in this case there are open and closed parts of the crack,
and frictionless crack faces contact is adopted in its closed part.

Using representations of displacements and stresses by means of piecewise analytic functions, the problem
is reduced to a combined Dirichlet–Riemann boundary value problem. Using the exact analytical solution of
this problem, the analytical expressions for the displacement jumps and for the stresses along the interface
are presented. The stress intensity factors and the energy release rates are found in closed form. The contact
zone length in a Comninou’s sense has been derived as a particular case of the obtained solution. Namely, the
transcendental equation for the determination of this length has been obtained.

The numerical results are presented in the form of Table 1 and Figs. 2, 3, 4, 5 and 6. These results show
that a zone of open crack faces is present for all considered loadings. For a compressive normal stress, the
shear stress plays the determinative role concerning the possibility of crack growth. At the same time, the
stress intensity factor of the shear stress and the energy release rate depend very slightly on the magnitude of
the compressive loading. The influence of the magnitude and locations of the applied concentrated loading
upon the contact zone length and the associated fracture mechanical parameters has been demonstrated. It was
shown that an increase in the distance from the concentrated force to the crack tip leads to an increase in the
relative contact zone length and a decrease in the energy release rate.
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