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Abstract In this article, a numerical solution method for the finite-strain rate-independent Cosserat theory of
crystal plasticity is developed. Based on a time-incremental minimization problem of the mechanical energy, a
limited-memoryBroyden–Fletcher–Goldfarb quasi-Newtonmethod applied to afinite-difference discretization
is proposed. First benchmark tests study the convergence to an analytic solution. Further simulations focus on
the investigation of rotation localization zones, the bending of a rod, and a torsion experiment.

1 Introduction

The Cosserat model, introduced in 1909 by the Cosserat brothers [11], is a general theory of continuum
mechanics that accounts for independent rotations. For decades, only a few publications dealt with the Cosserat
theory. Then, starting in the late 1950s, there came a Renaissance of the model, leading to the development
of the linear Cosserat theory; see [1,2,19,31,42,60] and [59] for further references. Also, the pioneering
work [18] introduced a new, direct approach, resulting in applications for shells, beams, and plates; see, e.g.,
[14,30,55,67]. Since then, the Cosserat model has been successfully applied to a wide range of different
problems, like directed fluids, liquid crystals, powders, or granular materials; see [3,9,15,20–23,33,37,62,64]
and others. Recent reviews on the Cosserat theory can be found in the survey articles [4,17,26,40,45,54].

From its construction, theCosseratmodel is a gradientmodel. In that, contrary to other establishedmodels in
elasto-plasticity like [34,41,56,57], it automatically induces a length scale, with the effect that the localization
zones always have a finite width.

The focus of this article lies in the development of a new algorithm for the finite-strain Cosserat theory
of crystal plasticity. Among the earlier numerical studies of Cosserat models, the articles [8,13,27,28,36,
46,47,51,66] are mentioned here, which investigate the infinitesimal elasto-plastic Cosserat model. In [29,
35,39], a numerical approach for the finite-strain case is introduced. Therein, fictitious, e.g., theoretically
hypothesized intermediate material configurations are postulated to get around the costly computation of
the micro-rotations. However, these intermediate configurations need not exist; see [44,53]. The algorithm
developed here constitutes an alternate approach. The computed micro-rotations also yield new insights on
rotation localization phenomena in deformed solids.

The article is organized in the following way. In Sect. 2, the finite-strain Cosserat model and the time-
incremental minimization ansatz of the mechanical energy functional are recalled. The latter puts the problem
in a framework suitable to the calculus of variations. Section 3 develops a quasi-Newton algorithm for the
numerical computation of the minimizers, which is based on a finite-difference scheme. The final section is
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devoted to numerical simulations. The article ends with a discussion of the results. To simplify reading, a
complete list of symbols is provided in the “Appendix.”

2 The Cosserat theory within the framework of large-strain rate-independent crystal plasticity

In the Cosserat theory of rate-independent large-strain crystal plasticity, the evolution of a plastically deformed
solid in the absence of surface tractions and surface couples is governed by the time-discrete minimization
problem [6],

E (ϕ, Re, γ ) :=
∫

Ω

⎡
⎣Wst(R

t
e DϕFp(γ )−1)+Wc(Ke)+ρ

( Ip∑
a=1

|γa−γ 0
a |

)2

− fext ·ϕ − Mext:Re+
Ip∑

a=1

|γa−γ 0
a |

(
σY −2ρ

Ip∑
a=1

κ0
a

)⎤
⎦ dx → min

(1)

subject to the initial and Dirichlet boundary conditions

ϕ(x, 0) = x, κ(·, 0) = κ0 in Ω,

ϕ = gD, Re = RD on ∂Ω.
(2)

RD either is fixed Dirichlet boundary data or is defined by

RD := polar(DgDF
−1
p ). (3)

Here, if A = UΣV t is the singular value decomposition (SVD) of a real tensor A, then the polar decomposition
is given by

polar(A) := UV t . (4)

In deriving (1), Lagrange coordinates are introduced with Ω ⊂ R
d denoting the undeformed reference con-

figuration of the material. The deformation of Ω is controlled by ϕ(t) that maps Ω diffeomorphically to the
deformed state Ωt at time t . Since ϕ(·, 0) = I, it holds det(Dϕ(t)) > 0 for all t ≥ 0.

At the heart of the Cosserat approach, the deformation tensor F := Dϕ is multiplicatively decomposed,

F = FeFp = ReUeFp, (5)

with Fe, Fp the elastic and plastic deformation tensors, Ue ∈ GL(Rd) the stretching component, and

Re ∈ SO(d) := {R ∈ GL(Rd) | det(R) = 1, Rt R = I}
the micro-rotations. In (5), Ue need not be symmetric and positive definite; i.e., the decomposition Fe = ReUe
is not the polar decomposition. By

Ke := Rt
e Dx Re = (Rt

e ∂x Re, R
t
e ∂y Re, R

t
e ∂z Re) (6)

the third-order (right) curvature tensor is denoted; fext(t),Mext(t) designate the external volume force densities
and external volume couples applied to the crystal body; σY > 0 is the yield stress.

In (1), it is assumed that plastic deformations occur along Ip ≥ 1 a priori given material-dependent single-
slip systems only. These slip systems are specified by tensors ma⊗na , where ma denotes the slip vector and
na the slip normal of slip system a, 1 ≤ a ≤ Ip. These vectors satisfy |ma | = |na | = 1 and ma ·na = 0.

For γ = (γa)1≤a≤Ip ∈ R
Ip , it is set

Fp = Fp(γ ) := I +
Ip∑

a=1

γama⊗na . (7)

This formula is derived by integration from the rate form. For other time integrators, see [63]. As a result of
plastic deformation, due to structural changes within the material like the increase in immobilized dislocations
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inside the crystal structure, hardening occurs [7,12]. By the infinite latent-hardening assumption [10], it is
sufficient to consider only one active slip system at time. Numerically, the algorithm selects the first slip
system which is active. In the model, κ ∈ R

Ip is a set of hardening parameters. In (1), the simple ansatz for

the energy of stored dislocations [5] V (κ) := ρ
(∑Ip

a=1 κa
)2 with a constant ρ > 0 has been used.

By Wst the stretching part of the mechanical stored energy density is denoted, Wc is the curvature part due
to (micro-)rotations. The last two functionals are defined by, cf [5,45],

Wst(Ue) := μ‖ symUe−I‖2 + μc‖ skw(Ue−I)‖2 + λ

2

∣∣tr(Ue−I)
∣∣2, (8)

Wc(Ke) := μ2‖Ke‖2 := μ2‖Dx Re‖2 = μ2

3∑
k=1

‖∂xk Re‖2. (9)

In these formulas, μ2 := μ
2 L

2
c , where Lc > 0 is an internal length scale, μ > 0, λ > 0 are Lamé parameters,

and μc ≥ 0 is the Cosserat couple modulus. Equation (9) is a special case of the general form

Wc(Ke) := μ
L1+p
c

2

(
1 + α4L

q
c‖Ke‖q

) (
α5‖ sym Ke‖2 + α6‖ skw Ke‖2 + α7|tr(Ke)|2

) 1+p
2

after setting α4 := 0, α5 = α6 := 1, α7 := 0, and p := 1. In (8), sym A := 1
2 (A + At ), skw A := 1

2 (A − At )
denote the symmetric and skew-symmetric part of a tensor A, respectively, and tr(A) := ∑

i Aii is the trace
operator, ‖A‖ := √

tr(At A) the Frobenius matrix norm. As usual, · is the inner product in R
d , u · v :=∑d

i=1 uivi . For A, B ∈ R
d×d , A : B := tr(At B) = ∑d

i, j=1 Ai j Bi j denotes the inner product in R
d×d . For a

general introduction to tensor calculus in plasticity, see, e.g., [32,38].
Equation (1) introduces a family of time-discrete minimization problems. The concept goes back to [50]

and permits the application of the calculus of variations to plasticity. For a fixed discrete time step h > 0 and
known (γ 0, κ0) at time t , the new (ϕ, Re, γ ) representing values at time t + h are calculated from (1). Finally,

κa := κ0
a − |γa − γ 0

a |, 1 ≤ a ≤ Ip (10)

is set and (γ, κ) become the initial values of the next time step.
Starting from a material free of dislocations, κ(·, 0) = 0, as a consequence of the hardening law (10),∑Ip

a=1 κa(t + h) ≤ ∑Ip
a=1 κ(t) ≤ 0 for all times t . Therefore, −2ρ

∑Ip
a=1 κ0

a ≥ 0 in (1) specifies the increase
in the yield stress σY due to stored dislocations.

3 Numerical solution method

For the rest of this article, Ω ⊂ R
3, i.e., d = 3. When selecting a numerical solution scheme for (1),

the first fundamental observation is that due to the presence of the non-local term Wc(Ke) ∼ ‖Dx Re‖2
in E , the minimization cannot be carried out for each discretization point separately. As now Re needs to be
computed, the optimization step of theCosseratmodel ismorememory-demanding than the previous numerical
approaches [29,35,39]. Secondly, it is not possible to reformulate (1) and use F = Dϕ directly instead of ϕ
as an argument of E , since the condition curl(F) = 0 may be violated; i.e., the computed F need not be a
gradient.

Following the ideas in [6], for the computation and storage of Re ∈ SO(3), a non-unique parametrization
by Euler angles is used.
For α = (α1, α2, α3) ∈ R

3, letting sk := sin(αk), ck := cos(αk) for k = 1, 2, 3,

Re(α) := Q3(α3)Q2(α2)Q1(α1) (11)

:=
⎛
⎝ 1 0 0
0 cosα3 sin α3
0 − sin α3 cosα3

⎞
⎠
⎛
⎝ cosα2 0 − sin α2

0 1 0
sin α2 0 cosα2

⎞
⎠
⎛
⎝ cosα1 sin α1 0

− sin α1 cosα1 0
0 0 1

⎞
⎠

=
⎛
⎝ c1c2 s1c2 −s2
c1s2s3 − s1c3 c1c3 + s1s2s3 c2s3
s1s3 + c1s2c3 s1s2c3 − c1s3 c2c3

⎞
⎠ . (12)



2424 T. Blesgen

The right-hand side of (11) defines a rotation for any argument α ∈ R
3 and themapping α �→ Re(α) ∈ SO(3) is

onto.Equation (11) does not prefer oneof the three spatial coordinates and, in contrast to other parameterizations
by Euler angles where two elementary rotations Qk are along the same coordinate axis, implies, see [6] for a
detailed derivation,

Wc(Ke(α)) = 2
μ

2
L2
c

(
|∇α1|22 + |∇α2|22 + |∇α3|22

)
=: 2μ2|∇α|22. (13)

Here, the Euclidean norm |x |2 := (∑3
k=1 x

2
k

) 1
2 in R

3 has been introduced. Of course, computing spatial
derivatives ofα by (13) is faster than computingderivatives of Re. In addition, the introductionofα automatically
ensures R = Re(α) ∈ SO(3) and helps to interpret the numerical results.

For theminimization ofE , it is desirable to applyNewton’smethod, but clearly, |·| in (1) is not differentiable
at the origin. To overcome this obstacle, for chosen small ε > 0, the modulus |x | is replaced by

rε(x) :=
⎧⎨
⎩

x, x > ε,

x2/ε, −ε ≤ x ≤ +ε,
−x, x < −ε.

(14)

With (14), (11), and (13), the minimization (1) becomes

Eε(ϕ, α, γ ) =
∫

Ω

⎡
⎣Wst(R

t
e (α)DϕFp(γ )−1) + 2μ2|∇α|22 − fext ·ϕ − Mext : Re(α)

+ρ
( Ip∑
a=1

rε(γa−γ 0
a )

)2 +
Ip∑

a=1

rε(γa−γ 0
a )

(
σY −2ρ

Ip∑
a=1

κ0
a

)⎤
⎦ dx → min

(15)

subject to the boundary conditions
ϕ = gD, α = αD on ∂Ω (16)

with αD such that Re(αD) = RD.
The spatial discretization of (15) is based on finite differences with equidistant spacing in each direction.

For simplicity, let Ω = (0, L1) × (0, L2) × (0, L3), and dk ∈ N be the number of discretization points in
direction xk , k = 1, 2, 3. For mesh points

(yi jk)0≤i≤d1, 0≤ j≤d2, 0≤k≤d3 := (iη1, jη2, kη3)i jk ∈ Ω (17)

with equal spacings

η1 := L1

d1
, η2 := L2

d2
, η3 := L3

d3
, (18)

the integral is approximated by the Newton–Cotes formula (d notifies the dependence on (d1, d2, d3))

Eε(ϕ, α, γ ) =
∫

Ω

eε(x) dx ≈ Ed
ε := η1η2η3

8

d1∑
i=0

d2∑
j=0

d3∑
k=0

Ni jk eε(yi jk) (19)

which is exact up to second order and where the weights in 3D are given by

Ni jk =

⎧⎪⎪⎨
⎪⎪⎩

1, if yi jk is a corner of Ω,

2, if yi jk is at an edge of Ω,

4, if yi jk is on a face of Ω,
8, if yi jk ∈ Ω.

(20)

On the right of (19), the integrand eε of Eε depends on (ϕ, α, γ ) evaluated at the nodes yi jk . Combined, (19),
(7), and (11) provide an approximation of Eε by a discrete functional Ed

ε : Xd → R for the space

Xd :=
{
(ϕ, α, γ )(yi jk)

∣∣∣ 0 ≤ i ≤ d1, 0 ≤ j ≤ d2, 0 ≤ k ≤ d3
} ∼= R

D
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with dimension

D := (6 + Ip)(d1 + 1)(d2 + 1)(d3 + 1).

For the computation of ∇α in (13), central differences are used where feasible and one-sided difference
quotients are employed near ∂Ω .

For the approximate numerical solutionof (15), the regularity of Ed
ε and the variational structure is exploited.

A discrete solution to (15) is computed numerically with a limited-memory Broyden–Fletcher–Goldfarb–
Shanno approach [48]. The L-BFGS-algorithm is a quasi-Newtonmethodwhere theHessian is never computed
or stored explicitly. Instead, only information from the past k steps is used to compute a rank-one approximation
of the Hessian. For this update, 4kD operations are required. The algorithm [48, Algorithm 2] has thus a
complexity of O(kD) where typically k ≤ 40 for D = 104. Therefore, the L-BFGS method is a powerful tool
for large problems. This method is combined with the inexact Moré–Thuente line searcher, which satisfies the
strong Wolfe conditions; see [43] for details.

A proof of convergence of the L-BFGS method is only known when the objective functional is twice
continuously differentiable and convex [48]. Here, the convexity of Ed

ε fails (due to non-convexity in ϕ), but
the L-BFGS method converges nevertheless.

For the application of the L-BFGS method, it remains to compute

DEd
ε (ϕ, α, γ ) =

(∂Ed
ε

∂ϕ
,
∂Ed

ε

∂α
,
∂Ed

ε

∂γ

)
.

The results are summed up in the following lemma.

Lemma 1 Let Wst be given by (8), Wc be given by (9). Let 0 ≤ I ≤ d1, 0 ≤ J ≤ d2, 0 ≤ K ≤ d3, 1 ≤ a ≤ Ip,
1 ≤ b ≤ 3 be fixed indices,

NΓ
I J K :=

{
NI J K , if yI J K /∈ ∂Ω,

0, else.
(21)

Then, with S := Re
[
μ(symUe − I) + μc skwUe + λ

2 tr(Ue − I)I
]
(F−1

p )t , with Ta := Ue
∂Fp
∂γa

F−1
p , and Cb :=

∂(Qt
1Q

t
2Q

t
3)

∂αb
Fe, it holds:

∂Ed
ε (ϕ, α, γ )

∂ϕ I J K
b

= η1η2η3

8

{
NΓ
I−1,J,K
η1

Sb1(yI−1,J,K )− NΓ
I+1,J,K
η1

Sb1(yI+1,J,K )

+NΓ
I,J−1,K
η2

Sb2(yI,J−1,K )− NΓ
I,J+1,K
η2

Sb2(yI,J+1,K )

+NΓ
I,J,K−1
η3

Sb3(yI,J,K−1)−
NΓ
I,J,K+1
η3

Sb3(yI,J,K+1) −NΓ
I J K fextb(yI J K )

}
, (22)

∂Ed
ε (ϕ, α, γ )

∂α I J K
b

= η1η2η3

4

{
μ2

2

(
Σ I J K

1,b (α) + Σ I J K
2,b (α) + Σ I J K

3,b (α)
)

−NΓ
I J K Mext(t)(yI J K ) : ∂(Q3Q2Q1)(α

I J K )

∂α I J K
b

+ NΓ
I J K

[
μ(symUe−I) :symCb+μc skwUe :skwCb+ λ

2
tr(Ue−I)tr(Cb)

]
(yI J K )

}
, (23)

∂Ed
ε (ϕ, α, γ )

∂γ I J K
a

= η1η2η3

8
NI J K

{[
σY − V ′(κ0−

∑Ip

e=1
rε(γe−γ 0

e )
)]
r ′
ε(γa−γ 0

a ) −2μ(symUe−I) :sym Ta

− 2μc skwUe :skw Ta−λtr(Ue−I)tr(Ta)
}
(yI J K ). (24)



2426 T. Blesgen

The symbols Σ I J K
1,b , Σ I J K

2,b , Σ I J K
3,b in (23) originate from derivatives of the curvature energy and are defined by

Σ I J K
1,b (α) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NΓ
I−1,J,K

α I J K
b −α

I−2,J,K
b

η21
−NΓ

I+1,J,K
α
I+2,J,K
b −α I J K

b
η21

, 2≤ I ≤d1−2,

4NΓ
0,J,K

α
1,J,K
b −α

0,J,K
b

η21
+NΓ

2,J,K
α
1,J,K
b −α

3,J,K
b

η21
, I =1,

NΓ
d1−2,J,K

α
d1−1,J,K
b −α

d1−3,J,K
b

η21
+ 4NΓ

d1,J,K
α
d1−1,J,K
b −α

d1,J,K
b

η21
, I =d1−1,

0, I =0 or I = d1,

Σ I J K
2,b (α) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NΓ
I,J−1,K

α I J K
b −α

I,J−2,K
b

η22
−NΓ

I,J+1,K
α
I,J+2,K
b −α I J K

b
η22

, 2≤ J ≤d2−2,

4NΓ
I,0,K

α
I,1,K
b −α

I,0,K
b

η22
+NΓ

I,2,K
α
I,1,K
b −α

I,3,K
b

η22
, J =1,

NΓ
I,d2−2,K

α
I,d2−1,K
b −α

I,d2−3,K
b

η22
+ 4NΓ

I,d2,K
α
I,d2−1,K
b −α

I,d2,K
b

η22
, J = d2−1,

0, J = 0 or J = d2,

Σ I J K
3,b (α) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NΓ
I,J,K−1

α I J K
b −α

I,J,K−2
b

η23
−NΓ

I,J,K+1
α
I,J,K+2
b −α I J K

b
η23

, 2≤K ≤d3−2,

4NΓ
I,J,0

α
I,J,1
b −α

I,J,0
b

η23
+NΓ

I,J,2
α
I,J,1
b −α

I,J,3
b

η23
, K =1,

NΓ
I,J,d3−2

α
I,J,d3−1
b −α

I,J,d3−3
b

η23
+ 4NΓ

I,J,d3
α
I,J,d3−1
b −α

I,J,d3
b

η23
, K =d3−1,

0, K = 0 or K = d3.

Due to the boundary conditions (16) on ϕ and α, the equations (22) and (23) are only evaluated for 1 ≤ I ≤
d1 − 1, 1 ≤ J ≤ d2 − 1, 1 ≤ K ≤ d3 − 1; i.e., the right-hand sides of (22) and (23) are well defined.

Proof The equations (22)–(24) are obtained by direct calculations starting from (15) and (19), using the chain

rule and
∂(F−1

p )

∂γa
= −F−1

p
∂Fp
∂γa

F−1
p . ��

Similarly, Ed
ε ∈ C2(Xd; R) can be shown, an essential requirement of the convergence analysis in [48].

Remark 1 Each component αk of α is a solution of a scalar Allen–Cahn equation [6], which is known to respect
the maximum principle; see [24,52] for a proof. Consequently, for all x ∈ Ω ,

min
∂Ω

αD,k ≤ αk(x) ≤ max
∂Ω

αD,k, k = 1, 2, 3.

Remark 1 also explains why the algorithm does not require a projection step (e.g., to the interval [0, 2π))
of the computed αk .

4 Numerical simulations

In Sect. 4.1, a benchmark problem is studied and the convergence behavior of the algorithm is worked out.
Then, 3D bending experiments are simulated. The final section deals with the torsion of a rod.

All computations are dimensionless. The computations of the first Sect. 4.1 share the parameters

Ω = (0, 1)3, t ∈ [0, 1], β(t) = 0.25 ∗ t, h = 0.1, ε = 10−4, Ip = 1,

m1 = (1, 0, 0)t , n1 = (0, 1, 0)t , ρ = σY = 0, fext = 0, Mext = 0.
(25)
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Table 1 Comparison of the first time step for the benchmark problem, different spatial resolutions, and the two chosen relative
precisions Ed

ε < δ for δ = 10−5 and δ = 10−6

(d1, d2, d3) No. nodes No. unknowns Time (δ=10−5) Time (δ=10−6)

10×10×10 1000 4072 0.94 s 1.1 s
20×20×20 8000 42,992 30.4 s 39.6 s
30×30×30 27,000 158,712 211.2 s 291.2 s
40×40×40 64,000 393,232 732s 1052s
50×50×50 125,000 788,552 1508s 2928s
60×60×60 216,000 1,386,672 2762s 6100s
70×70×70 343,000 2,229,592 5674s 11777s

The tabulated times are the computation times of the L-BFGS algorithm and refer to one single-desktop PC with Intel Dual-Core
E7400 (2.8GHz) and 4GB RAM

Table 2 L-BFGS iterations required to satisfy Ed
ε < δ for the first time step of the benchmark problem, different spatial

resolutions, and different relative precisions δ

(d1, d2, d3) δ=10−5 δ=10−6 δ=10−7 δ=10−8 δ=10−10

10×10×10 460 552 635 689 804
20×20×20 1393 1795 2177 2606 3308
30×30×30 2517 3489 4366 5290 7330
40×40×40 3335 4805 6824 9068 12,730
50×50×50 3445 6387 9844 13,289 19,787
60×60×60 3521 7814 12,471 17,584 27,795
70×70×70 4057 9244 14,857 22,219 35,517

4.1 A benchmark problem

In [6], a class of analytic solutions to a Cosserat medium in 3D is computed analytically assuming (7) and

Dϕ(t) = I +
Ip∑

a=1

βa(t)ma⊗na on ∂Ω, (26)

where β(t) = (β1(t), . . . , βIp(t)) is the prescribed shear. Subsequently, for the case of an ultra-soft material,
i.e., for σY = ρ = 0, this problem is used as a benchmark. The numerical tests recover the analytic solution.
In particular, (26) holds in Ω; i.e., the Cauchy–Born rule holds.

Simulation 1: λ = 103, μ = 104, μc = 2 · 104, μ2 := μ
L2
c
2 = 100.

Initial values: ϕ0 ≡ I, κ0 = γ 0 ≡ 0 in Ω .
Boundary conditions at ∂Ω: ϕ(x, t) = (x1 +β(t)x2, x2, x3), α ≡ 0 at ∂Ω .

Results: γ (·, t) ≡ β(t), Re = Ue ≡ I, Wst = Wc ≡ 0 in Ω ,
ϕ(x, t) = (x1 + β(t)x2, x2, x3) in Ω , i.e., the validity of Eq. (26).

Table 1 gives an overview of the computation times of the code and the number of unknowns for different
spatial resolutions. Table 2 displays the required L-BFGS iteration steps needed to obtain a desired accuracy
Ed

ε < δ for different values of δ and different spatial resolutions. Since E = 0 for the analytic solution, Ed
ε

also measures the total numerical error. In order to have a meaningful test, no knowledge about the converged
solution is used when picking the start values of the L-BFGS iteration. For the data of Tables 1, 2, and Fig. 1,
randomly α∈[0, 2π)3 in Ω is chosen as start values.

The boundedness of E implies the boundedness ofWc(Ke) ∼ μ2‖Dx Re‖2. Due to the Rellich–Kondrakov
theorem, this term is essential for the existence of minimizers as it provides compactness for sequences of
Re. Equation (13) converts this into a compactness property for α. Correspondingly, 2μ2|∇α|22 stabilizes the
numerical scheme as it damps oscillations in α. Clearly, the smaller μ2, the weaker this effect. Figure 2
documents this feature showing that the required L-BFGS iterations increase for smaller values of μ2.
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Fig. 1 Computed shear of Ω = (0, 1)3 along (1, 0, 0)⊗(0, 1, 0), d1 = d2 = d3 = 40. Left undeformed material. Right deformed
solid at t = 1

4.2 A 3D bending experiment

While the previous subsections focused on the characteristics of the algorithm itself, in this section a bending
experiment for a rod is simulated. The parameters of the simulation are as in (25), but with

Ω = (0, L1) × (0, L2) × (0, L3) := (0, 5) × (0, 1) × (0, 2).

For given β(t), the deformation at ∂Ω is prescribed by

ϕ(x1, x2, x3, t) :=
⎛
⎜⎝

x1
x2 + 2L1

π

[
sin

(
3π
2 + π

2
x1
L1

)
+ 1

]
β(t)

x3

⎞
⎟⎠ . (27)

The implementation of the singular value decomposition for solving (4) uses the algorithm in [16] based on
the Householder transformation. In tests, this method turned out more robust than the algorithm in [66]. After
RD has been computed by (4), in the last step αD is determined such that Re(αD) = RD . This is done with the
algorithm in [58].
Simulation 2: λ = μ = 0.025, μc = 0.4, μ2 = 0.02. Other parameters are as in (25).

Spatial discretization: d1 = 200, d2 = 40, d3 = 80.
Initial values: ϕ0 ≡ I, κ0 = γ 0 ≡ 0 in Ω .
Boundary conditions at ∂Ω: ϕ(x, t) given by (27), α = αD with Re(αD)= RD given by (3).

Results: α2 = α3 ≡ 0, γ (x, t) = sin(π
2

x1
L1

)β(t), Ue = I, Wst ≡ 0 in Ω , ϕ(x, t) follows (27) for x ∈ Ω .
Figures 3 and 4 display the spatial distribution of κ and α1. For t ∈ [0, 0.1], the boundary conditions (3)

impose a range [−0.38,+0.38] onα1 and enforceα2 = α3 = 0 on ∂Ω , hence inΩ byRemark 1. Consequently,
the local minimum of J (α) = Wst(Re(α)) at α1 = π is not reached and no deformation patterning occurs.

4.3 The effect of the discrete lattice point group

This subsection studies the influence of the discrete point group on the formation of rotation deformation
zones. To this end, an additional term η dist(Re(α),R) is added to E in (1) with η > 0 a constant and R
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Fig. 2 Number of L-BFGS iterations for the first time step of Simulation 1 and different values of μ2. Only μ2 is varied, and the
other parameters are kept fixed with the values stated for Simulation 1
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Fig. 3 Spatial distribution of κ for Simulation 2 and t = 0.0, t = 0.03, t = 0.07, t = 0.1

Fig. 4 Level sets of α1 at t = 0.03, t = 0.07, t = 0.1 for Simulation 2

the discrete point group of the material, owing to the fact that certain rotations are preferred by the crystal
lattice. The mechanical energy E with this modification possesses additional local minima. Numerically, the
minimization problem

dist(Re(α),R) = min
{
‖Re(α) − M‖ | M ∈ R

}
(28)

is solved by passing through the finitely many elements ofR, using once more the parametrization (12). This
also provides a formula for d

dα dist(Re(α),R) required for the computation of DEd
ε .
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Fig. 5 Bending of a slab with FCC lattice structure. Left Curvature energy for the deformed slab at t = 0.05. Right Additional
patterning due to the energy contribution of the lattice point group

Fig. 6 Twisting and stretching of the bar at t = 0.0, t = 0.03, t = 0.07, and t = 0.1

The following simulation documents the effects. The parameters are as in Section 4.1, but with ϕ at ∂Ω
prescribed by

ϕ(x1, x2, x3, t) :=

⎛
⎜⎜⎜⎝

x1
x2 + 2L1

π

[
sin

(
3π
2 + π

2
x1
L1

)
+ 1

]
β(t)

x3 + 2L1
π

[
sin

(
3π
2 + π

2
x1
L1

)
+ 1

]
β(t)

⎞
⎟⎟⎟⎠ . (29)

This represents bending along two directions. Furthermore, η = 1 is set and R is chosen as the FCC lattice

R = {
R = Re(α1, α2, α3)

∣∣ αk ∈ {0, π/2, π, 3π/2}}.
Figure 5 shows the results. As can be seen, additional patterning inside the slab occurs which is only due to
the energy contribution of the lattice point group, i.e., disappears for η = 0.

4.4 Torsion and stretching of a 3D rod

In the final computation, for given a(x3, t), β(t), the deformation at ∂Ω is prescribed as

ϕ(x1, x2, x3, t) :=
⎛
⎜⎝
x1 cos(a(x3, t)) − x2 sin(a(x3, t))

x1 sin(a(x3, t)) + x2 cos(a(x3, t))

(1 + β(t))x3

⎞
⎟⎠ . (30)

This represents torsion of the material in the (x1, x2)-plane by an angle a(x3, t) with simultaneous stretching
by β(t). The domain is chosen as a bar, Ω = (0, 1) × (0, 1) × (0, 5).
Simulation 3: λ = μ = 0.025, μc = 0.4, μ2 = 0.02, ρ = σY = 20, a(x3, t) := 4.0 ∗ x3 ∗ t , β(t) = 2.0 ∗ t .

Other parameters as in (25). Spatial discretization: d1 = d2 = 20, d3 = 200.
Initial values: ϕ0 ≡ I, κ0 = γ 0 ≡ 0 in Ω .
Boundary conditions at ∂Ω: ϕ(x, t) given by (30), α=αD with Re(αD)= RD given by (3).
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Results: γ (x, t) = κ(x, t) ≡ 0, Ue = I, Wst ≡ 0 in Ω , ϕ(x, t) follows Eq. (30) for x ∈ Ω .
α3 ≡ 0 in Ω .

The simulations show that the curvature energy is determined by the geometry of the slab. The stretching
energy is largest near the top, and stretching leads to patterning of α1 in x3 direction. In contrast, patterning
in α2 is due to twisting and occurs perpendicular in the (x1, x2) plane. Combined, the two effects lead to a
complicated 3D morphology. The computations also demonstrate how a length scale is introduced by ‖∇Re‖.

5 Discussion

In this article, a new algorithm for the solution of the finite-strain rate-independent Cosserat theory of crystal
plasticitywas developed.A family of time-discreteminimizationproblemsof themechanical energy controlling
the evolution of the material due to imposed deformations is solved with a variational ansatz, utilizing in 3D
a limited-memory Broyden–Fletcher–Goldfarb algorithm based on finite differences.

In contrast to earlier algorithms, the method developed here does not rely on fictitious intermediate config-
urations and is capable of computing the micro-rotations, achieved by solving discrete systems with a larger
number of unknowns. While the L-BFGSmethod does not store the Hessian and is thus specialized to such sit-
uations (Table 1), some comments are in place regarding other aspects of the algorithm. Firstly, a disadvantage
of introducing rε leading to (15) is that the onset of plasticity depends now on ε with more accurate predictions
for smaller values of ε. On the other hand, r ′

ε and thus DEε explode for ε ↘ 0, resulting in numerical instabili-
ties. Secondly, since SO(3) is a manifold, all charts are only locally invertible. Consequently, no representation
of SO(3) works all the time and whether it is suitable or not depends on the studied problem. In case of the
Euler angles (11), for every R ∈ SO(3) there exist two distinct α1, α2 ∈ [0, 2π)3 with Re(α1) = Re(α2) = R.
In certain cases, this non-uniqueness may lead to difficulties when the algorithm switches between the two
local maps. A possible alternative to Euler angles are quaternions.

The investigated Cosserat model is very general and allows to study a large number of mechanical effects
with a rich morphology. The present work is motivated by the analysis in [5,6] where the occurrence of
deformation patterning is predicted, i.e., the formation of cells in the material with approximately constant
micro-rotations as a consequence of deformation, possibly leading to a better understanding why grains and
subgrains form [25,49,61,65].

The computations carried out here are of principle nature. No attempt was made to adapt to particular
materials. This would require quantum mechanical simulations, leading to energies which typically possess a
large number of localminima. To some extend, the effect of such energies can already be studied at Fig. 5, where
additional local minima of E lead to increased deformation patterning. With regard to realistic simulations, it
must also be mentioned that the parameter identification is one of the major problems for the Cosserat model
[45].

Acknowledgments TB wishes to thank Prof. G. Gottstein and Prof. S. Luckhaus for valuable discussions.

Appendix: List of symbols

Ω ⊂ R
d Reference domain, undeformed solid (x, t) Space and time coordinates,

sym σ Symmetric part of tensor σ (8) skw σ Skew-symmetric part of σ (8)
tr σ Trace of tensor σ σ t Transpose of σ ; Rt = R−1 for R∈SO(3)
h > 0 Discrete time step ε > 0 Regularization of | · | (14)
ϕ Deformation vector of the solid (5) F=Dϕ Deformation tensor (5)
Fe Elasticity tensor (5) Fp Plasticity tensor (5)
Re Rotation tensor (5), (11) Ue (Right) stretching tensor (5)
Ke (Right) curvature tensor (6) I Identity tensor, (I)kl = (δkl)kl
‖ · ‖ Frobenius matrix norm (8) σY Yield stress (1)
A : B Tensor product of A, B, below (9) u·v Inner product of u, v ∈ R

3

fext External volume forces (1) Mext External volume couples (1)
gD Dirichlet boundary values of ϕ (2) RD Dirichlet boundary values of Re (2)
Wst Stretching energy (8) Wc Curvature energy (9)
Ip Number of slip systems (7) ρ > 0 Dislocation energy constant (1)
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λ, μ Lamé parameters (8) μc Cosserat couple modulus (8)
Lc Internal length scale (9) μ2 Parameter μ scaled by L2

c (9)
γ Single-slip parametrization of Fp (7) κ Dislocation density (10)
γ 0 Values of γ at time t (10) κ0 Values of κ at time t (10)
ma Slip vector of slip system a, 1≤a≤ Ip na Slip normal of slip system a (7)
α Euler angle to Re in 3D (11) αD Dirichlet boundary data of α (16)
A : B Tensor product of A and B (9) | · |2 Euclidean vector norm in R

3 (13)
L1,L2,L3 Size of Ω (18) d1,d2,d3 Spatial resolution (19)
Qi Rotation along xi (11) β(t) Deformation parameter (26), (27), (30)
sk sk = sin(αk), 1 ≤ k ≤ 3 (12) ck ck = cos(αk), 1 ≤ k ≤ 3 (12)
E Mechanical energy (1) Ed

ε Discretization of E (19)
yi jk Discretization points (17) N (Γ )

I J K Discrete weights (19), (20), (21)
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